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Preface

Welcome to the Eighth International Conference on Chemical Structures!

With  the  Eighth  International  Conference  on  Chemical  Structures  we  continue  this  well-established 
conference series that begun in 1973 as a workshop on  Computer Representation and Manipulation of  
Chemical Information sponsored by the NATO Advanced Study Institute and thereafter was held under its 
new name every third year starting in 1987. The 2008 conference will assuredly continue the high standard 
of technical presentations and discussions that characterized all previous conferences. The response to the 
Call for Papers has produced an outstanding program of technical papers and posters and also attracted a 
sizable  number  of  vendors  and  scientific  institutions  showing  their  newest  software,  content,  and 
applications.

The conference was chosen as the preferred venue to award the third CSA Trust Mike Lynch Award to 
Professor  Alexander  Lawson  at  Elsevier  Information  Systems.  Professor  Lawson  will  kick-off  the 
conference by receiving the award and delivering the keynote address titled  Challenges/opportunities for  
chemical structure databases in the 21st century on Sunday evening. Prior recipients of the CSA Trust Mike 
Lynch Award  include Professor  Johnny Gasteiger  at  the  University of  Erlangen-Nürnberg in  2005 and 
Professor Peter Willett at the University of Sheffield in 2002.

The scientific poster session has been divided into two sessions this year due to the large number of posters 
being presented. All posters will be exhibited during the poster sessions; however, presenters from the odd-
numbered posters will  be available during the Monday evening poster session and during the Tuesday 
evening poster session presenters from the even-numbered posters will be available.

Following  the  conference  you  are  encourage  to  submit  your  talk/poster  to  the  Journal  of  Chemical 
Information  and  Modeling  (JCIM)  for  publication.   Typically  a  special  issue  of  JCIM  follows  the 
conference containing accepted papers from the conference. 

This year there will be a change from prior years for the group excursion on Wednesday afternoon/evening 
in  that  we will  be exploring nearby Amsterdam.  Buses  will  transport  the conference attendees to  the 
Museumplein in the center of Amsterdam.  Free tickets will be provided which allow you to visit the Van 
Gogh Museum.  Afterwards you are free to explore Amsterdam until 18:00, at which time we will all hop 
aboard a  boat  at  the Blue Boat  Company and view Amsterdam by traveling through its  many canals. 
Following the tour the boats will drop us off at the restaurant d’Vijff Vlieghen where we will have dinner 
and drinks.  At the conclusion of dinner, the buses will pick us up at the restaurant and transport us back to 
the conference center.  We welcome your feedback on the new excursion as we deviate from the traditional 
ICCS sail boat ride on The IJsselmeer.

We hope that you enjoy the conference and if you ever need assistance during the week please contact one 
of the conference Organizing Committee or Scientific Advisory Board members or the assistants located at 
the conference desk.

Bob Snyder, Chair
Markus Wagener, Vice Chair
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Exhibition Layout (Atrium)

B1 : Chemical Abstracts Service (CAS)
B2 : Molecular Networks GmbH
B3 : Digital Chemistry
B4 : Cidrux Pharminformatics B.V.
B5 : Transition State Technology Limited
B6 : OpenEye Scientific Software 
B7 : ID Business Solutions Ltd. (IDBS)
B8 : ChemAxon
B9 : BioSolveIT
B10 : Cresset BioMolecular Discovery

B11 : CCDC
B12 : COSMOlogic 
B13 : Evolvus Group
B14 : Chemical Computing Group (CCG)
B15 : Keymodule Ltd.
B16 : Xemistry GmbH
B17 : Simulations Plus
B18 : CambridgeSoft 
B19 : Tripos International

Exhibition Hours

● Monday 15:00 – 19:30
● Tuesday 15:00 – 19:30
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Excursion to Amsterdam

Agenda:

13:00 Departure from the conference center, Noordwijkerhout

14:00 Arrival in Amsterdam
● possibility to visit the Van Gogh Museum (free ticket provided)
● explore Amsterdam

18:00 Boat cruise on the Amsterdam canals (Dutch: grachten)
● departure from the dock of Blue Boat Company

19:30 Arrival by boat at the restaurant d’Vijff Vlieghen, dinner & drinks

22:15 Departure from the restaurant d’Vijff Vlieghen by bus

23:00 Arrival at the conference center, Noordwijkerhout

Itinerary:

 Van Gogh Museum, Paulus Potterstraat 7 – the Van Gogh Museum houses the largest 
collection of Van Gogh's paintings and drawings in the world

 Blue Boat Company, Stadhouderskade 30

 Restaurant d’Vijff Vlieghen, Spuistraat 294-302, phone +31-20-5304060

Other Points of Interest:

 Rijksmuseum – the Rijksmuseum possesses the largest and most important collection of 
classical Dutch art, e.g. works from Vermeer, Hals, Rembrandt (The Nightwatch). 
Additionally, the collection consists of a large variety of decorative art, e.g. Delftware or 
17th century dollhouses. Currently, only the most important works are on display, since the 
Rijksmuseum is undergoing reconstruction

 Flower Market – permanent market selling flowers, plants and tulip bulbs

 Rembrandtplein – square with many pubs and outdoor cafes

 Leidseplein – square with many pubs and outdoor cafes

 Begijnhof – the Begijnhof is one of the oldest inner courts in the city which was used by 
Beguines, a lay sisterhood. Entrance from the Gedempte Begijnensloot

 Anne Frank House – The Anne Frank House is a museum dedicated to Jewish wartime 
diarist Anne Frank, who hid from Nazi persecution in hidden rooms at the rear of the 
building
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Technical Program

Plenary Session

Sunday, 1 June

12:00 - 18:00 Registration

18:00 - 19:00 Welcome and Keynote Address

18:00 - 18:15 ORG-1 : Welcome and Introduction
Bob Snyder, ICCS Program Chair

18:15 - 19:00 Opening Session - Keynote Address, CSA Trust Mike Lynch Award
K-1 : Challenges/opportunities for chemical structure databases in the 21st 
century
Alexander J. Lawson, Elsevier Information Systems, Frankfurt

19:00 Welcoming Reception – Atrium, courtesy of CCDC

20:00 Rijsttafel Dinner – Atrium, courtesy of Chemical Abstracts Service (CAS)

Monday, 2 June

08:30 - 10:30 Informatics for Bridging Between Chemistry and Biology
Kimito Funatsu, Presiding

08:30 - 09:00 A-1 : Protein target prediction of toxic molecules identifies toxicological  
relationships between proteins
Florian Nigsch, University of Cambridge

09:00 - 09:30 A-2 : Exploiting systems chemical biology to predict and understand (un)desired 
drug effects
Josef Scheiber, Novartis Institutes for Biomedical Research

09:30 - 10:00 A-3 : Binding site similarity analysis for the functional classification of the protein 
kinase family
Richard M. Jackson, University of Leeds

10:00 - 10:30 A-4 : Merging high-content screening and in silico approaches for compound 
profiling and mode-of-action analysis
Andreas Bender, Leiden / Amsterdam Center for Drug Research

10:30 - 11:00 Break
11:00 - 15:00 Cheminformatics

Lothar Terfloth, Presiding

11:00 - 11:30 B-1 : Performance of common similarity measures in virtual screening and lead-
hopping
J Christian Baber, Wyeth Research

11:30 - 12:00 B-2 : Maximum unbiased validation (MUV) of ligand based virtual screening
Knut Baumann, University of Technology Braunschweig

12:00 - 12:30 B-3 : Molecular similarity by pattern recognition: Fast calculation of 3D 
pharmacophore resemblence
Gerhard Wolber, Inte:Ligand GmbH

12:30 - 13:30 Lunch – Atrium
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Monday, 2 June

13:30 - 14:00 B-4 : Analysis of natural products: Lessons from nature inspiring the design of 
new drugs
Peter Ertl, Novartis Institutes for BioMedical Research

14:00 - 14:30 B-5 : It's all in the bits: Improved database searching with better bits
Harold Helson, CambridgeSoft Inc.

14:30 - 15:00 B-6 : Is there a general model for bioactivity?
Tudor I. Oprea, University of New Mexico

15:00 - 15:30 Break
15:00 - 19:30 Exhibition & Posters – Atrium

15:30 - 17:30 Poster Presentations (odd-numbered poster authors present)

18:30 - 19:30 Reception – Atrium

19:30 - 21:30 Dinner – Atrium

Tuesday, 3 June

08:30 - 15:00 Structure-Based Drug Design and Virtual Screening
Val Gillet & Bob Snyder, Presiding

08:30 - 09:00 C-1 : SAMPL: Statistical assessment of the modeling of proteins and ligands
A. Geoffrey Skillman, OpenEye Scientific Software

09:00 - 09:30 C-2 : HYDE: An integrated description of dehydration and H-bonding within 
protein ligand interfaces
Gudrun Lange, Bayer CropScience

09:30 - 10:00 C-3 : Specificity scoring
Joannis Apostolakis, LMU Munich / MoDeST

10:00 - 10:30 C-4 : Flexophore, a new versatile 3D pharmacophore descriptor
Modest von Korff, Actelion Ltd.

10:30 - 11:00 Break
11:00 - 11:30 C-5 : A fragment-based computational protocol at PDB scale - Application to 

lead-optimization of DFG-out kinase inhibitors
Fabrice Moriaud, MEDIT

11:30 - 12:00 C-6 : Can 3D ligand based virtual screening compete with docking? Application 
of molecular fields to virtual screening with the DUD dataset
Mark Mackey, Cresset BioMolecular Discovery Limited

12:00 - 12:30 C-7 : Novel fragment-like PTR1 inhibitors discovered by virtual screening
Chido Mpamhanga, Dundee University (Drug Dicovery Unit)

12:30 - 12:45 Group Photo
12:30 - 13:30 Lunch

13:30 - 14:00 C-8 : Fleksy: a flexible approach to induced fit docking
Sander B. Nabuurs, Radboud University Nijmegen

14:00 - 14:30 C-9 : Index-driven structure-based virtual screening
Jochen Schlosser, Center for Bioinformatics Hamburg (ZBH)

14:30 - 15:00 C-10 : Algorithmic design of ligand binding pockets on protein surfaces
Susanne Eyrisch, Center for Bioinformatics, Saarland University

15:00 - 15:30 Break

15:00 - 19:30 Exhibition & Posters – Atrium

15:30 - 17:30 Poster Presentations (even-numbered poster authors present)
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Tuesday, 3 June

18:30 - 19:30 Reception – Atrium

19:30 - 21:30 Dinner – Atrium

Wednesday, 4 June

08:30 - 10:30 Virtual Chemistry
Markus Wagener, Presiding

08:30 - 09:00 D-1 : De novo drug design using multi-objective evolutionary graphs
Christos Nicolaou, University of Cyprus

09:00 - 09:30 D-2 : Planning organic synthesis using reaction types derived from reaction 
databases
Christof H. Schwab, Molecular Networks GmbH

09:30 - 10:00 D-3 : Knowledge-based de novo design using reaction vectors
Hina Patel, University of Sheffield

10:00 - 10:30 D-4 : Recore: Instant 3D scaffold hopping using replacement fragments
Peter Richard Oledzki, BioSolveIT

10:30 - 11:00 Break
11:00 - 13:00 Analysis of Large Data Sets

Christoph Steinbeck, Presiding

11:00 - 11:30 E-1 : Turns revisited: Clustering turn structures using ESOMs leads to a uniform 
classification for open, normal and reverse turn families
Oliver Koch, The Cambridge Crystallographic Data Centre

11:30 - 12:00 E-2 : Searching fragment spaces with feature trees
Uta Lessel, Boehringer Ingelheim Pharma GmbH & Co. KG

12:00 - 12:30 E-3 : Three way comparison of chemical spaces avoiding structure exchange
Jens Loesel, Pfizer

12:30 - 13:00 E-4 : Use of data mining to help identify compounds that are unstable in DMSO
Jameed Hussain, GlaxoSmithKline

13:00 - 13:00 Box Lunch
13:00 - 23:00 Excursion, dinner courtesy of Chemical Computing Group (CCG)

Thursday, 5 June

07:30 - 08:30 Hotel Check-out
08:30 - 13:00 Structure-Activity and Structure-Property Prediction

Matthias Rarey, Presiding

08:30 - 09:00 F-1 : CypScore - in silico case studies on metabolic stability optimization
Andreas H. Göller, Bayer Healthcare AG

09:00 - 09:30 F-2 : SyGMa: combining knowledge and empirical scoring in the prediction of  
metabolites
Lars Ridder, Organon, a part of Schering-Plough Corporation

09:30 - 10:00 F-3 : TopoHERG – A highly selective pharmacophoric classifier for hERG-
channel active compounds
Britta Nisius, Bayer Healthcare AG

10:00 - 10:30 F-4 : Compound set optimization and sequential screening using emerging 
chemical patterns
Jens Auer, Bonn-Aachen International Center for Information Technology

10:30 - 11:00 Break and Hotel Check-out
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Thursday, 5 June

11:00 - 11:30 F-5 : Interpretable Activity Models: exploring the limits of pharmacophore and 
3D QSAR methods
David Anthony Evans, Eli Lilly

11:30 - 12:00 F-6 : QSAR modeller seeks meaningful relationship
Craig L. Bruce, University of Nottingham

12:00 - 12:30 F-7 : Rational design of M1-Muscarinic Antagonists using combinatorial  
transformation
Michael B. Bolger, Simulations Plus, Inc.

12:30 - 13:00 F-8 : Structure-activity landscapes: a new way to study a structure-activity 
relationship
John H van Drie, John H Van Drie Research LLC

13:00 - 13:15 Closing Remarks
Markus Wagener, ICCS Vice Chair

13:15 - 14:00 Lunch or Box Lunch
13:30 - 14:00 Shuttle buses leave for Schiphol Airport

14:30 - 15:00 Shuttle buses leave for Schiphol Airport

BioSolveIT Workshop

14:00 - 17:00 Interactive Workshop on Virtual Screening and De Novo Design
BioSolveIT GmbH (registration with BioSolveIT required)

17:00 - 17:30 Shuttle buses leave for Schiphol Airport
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Poster Session

P-1 : Discovery Portal - a novel tool to increase productivity, efficiency and transparency across 
R&D organizations
Jaroslaw Tomczak, Accelrys

P-2 : A simple language for conversing between diverse applications
Omara Williams, Accelrys  WITHDRAWN

P-3 : The use of stereo descriptors in the context of a structure validation workflow
Pedro Gomez Fabre, Accelrys

P-4 : OSIRIS, an entirely in-house developed drug discovery informatics system
Thomas L Sander, Actelion Pharmaceuticals Ltd.

P-5 : Scientific database application without borders: Empowering the scientists
Man-Ling Lee, Aestel Scientific Information, LLC

P-6 : Diversity oriented virtual compound selection strategy for high throughput screening of 
potential anticancer agents
Gyorgy Dorman, AMRI

P-7 : Investigating false predictions in mutagenicity QSAR models: What are we missing?
Catrin Hasselgren, AstraZeneca

P-8 : Selecting druglike pieces for the jigsaw puzzle: towards optimal fragment spaces
Christof Gerlach, Bayer Schering Pharma

P-9 : Going on SARfari in the protein kinase data jungle
Judith Günther, Bayer Schering Pharma

P-10 : A probabilistic approach to classifying metabolic stability
Antonius ter Laak, Bayer Schering Pharma

P-11 : MCS clustering - A hierarchical clustering approach for large data sets
Alexander Böcker, Boehringer Ingelheim

P-12 : Comparison of different approaches for cytochrome P450 modeling
Paul Czodrowski, Boehringer Ingelheim

P-13 : Mapping of activity class characteristic substructures extracted from random fragment 
populations
Eugen Lounkine, Bonn-Aachen International Center for Information Technology

P-14 : In silico prediction of efflux substrates classification
Litai Zhang, Bristol Myers Squibb
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P-15 : Digging deep for GOLD - Using buriedness to improve discrimination between actives and 
inactives in docking
Noel M. O'Boyle, Cambridge Crystallographic Data Centre

P-16 : Representation, searching and enumeration of generic structures – From molecules 
towards patents
Szabolcs Csepregi, ChemAxon Ltd.

P-17 : Hierarchical clustering of chemical structures by learned scaffolds
Miklos Vargyas, ChemAxon Ltd.

P-18 : Molecular framework based analysis of large chemical spaces
Anthony Joseph Trippe, Chemical Abstracts Service

P-19 : Towards automated searching of data in Internet chemical databases
Xiaoxia Li, Chinese Academy of Sciences

P-20 : Chemotype bias in virtual screening: the elephant in the room
Mark Mackey, Cresset BioMolecular Discovery Limited

P-21 : Rapid property profiling and similarity calculations in large virtual libraries
John Mordaunt Barnard, Digital Chemistry Ltd

P-22 : Opportunities for integrating Markush patent searching with drug discovery
John Mordaunt Barnard, Digital Chemistry Ltd

P-23 : A mathematically more precise taxonomy and nomenclature for polymers
Seymour Benjamin Elk, Elk Technical Associates

P-24 : Indirect drug design using MD for flexible structure alignment application to HIV-1 protease 
inhibitors
Alok Juneja, Freie Universität Berlin

P-25 : Optimizing drug classification by feature selection: To bind or not to bind that is the 
question
Ernst-Walter Knapp, Freie Universität Berlin

P-26 : Understanding selective CDK4 inhibition through molecular dynamics
Nahren Manuel Mascarenhas, Indian Institute of Chemical Biology

P-27 : Extracting chemical CYP proteins interactions from literature using natural language 
processing methods
Dazhi Jiao, Indiana University

P-28 : An infrastructure for data mining public chemical & biological information
David J Wild, Indiana University

P-29 : Binding affinity prediction of distinct inhibitors of group-1 and group-2 Neuraminidases 
(NAs): ArgusLab4/AScore protocol
Marija L. Mihajlovic, Institute for Multidisciplinary Research

P-30 : Prediction of novel drug targets in the metazoan parasite schistosoma mansoni
Frank Oellien, Intervet Innovation GmbH
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P-31 : Performance of different machine learning methods
Uwe Koch, IRBM Merck Research Laboratories

P-32 : Assessing and exploiting non-additivity in a structure-activity relationship
John H van Drie, John H Van Drie Research LLC

P-33 : CLiDE Pro: A chemical OCR tool
Aniko Tunde Valko, Keymodule Ltd.

P-34 : Molecular subgraph mining for analyzing ligand activity classes
Julio E. Peironcely, LACDR

P-35 : Frequent Substructure Mining of GPCR ligands
Eelke van der Horst, Leiden University

P-36 : Characterization of the inhibition of HIV-1 reverse transcriptase by non-nucleoside 
inhibitors and proteochemometric models which are able to predict compound activity against 
particular target mutants
Gerard Jacob Pieter van Westen, Leiden University

P-37 : Consensus modeling of chemical biodegradation pathways
ML Patel, Lhasa Limited

P-38 : Scaffold hunter: Exploiting holes in chemical space
Stefan Wetzel, Max-Planck Institute for Molecular Physiology

P-39 : Dynamic web application for drug design research
John David MacCuish, Mesa Analytics & Computing

P-40 : Parallel tiered clustering for large data sets using a modified Taylor’s algorithm
John David MacCuish, Mesa Analytics & Computing

P-41 : Ligand-based models for the isoform specificity of Cytochrome P450 substrates
Lothar Terfloth, Molecular Networks GmbH

P-42 : Metabolomics approach for determining growth-specific metabolites based on Fourier 
transform ion cyclotron resonance mass spectrometry
Hiroki Takahashi, Nara Institute of Science and Technology

P-43 : Clustering peptidases emplying structural features of their inhibitors
Mariusz Milik, Novartis Institutes for Biomedical Research

P-44 : Prediction of cell permeability
Paul Selzer, Novartis Institutes for Biomedical Research

P-45 : Validation using the RCSB: Good idea or bad idea?
Paul Charles Hawkins, OpenEye Scientific

P-46 : Automated generation of fragment-based rules for mutagenicity prediction
Olaf Günter Othersen, Radboud University Nijmegen
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P-47 : The detection of new active site conformations using molecular dynamics and rotamer 
assignments
Gijs Schaftenaar, Radboud University Nijmegen

P-48 : Automated extraction of kinase hinge-binding fragments from the protein data bank
Dave John Wood, Radboud University Nijmegen

P-49 : Get the best from substructure mining
Jeroen Kazius, Research For Charity Foundation

P-50 : The RSC's Project Prospect: identification and reuse of chemistry in publications
Colin Batchelor, Royal Society of Chemistry

P-51 : In silico studies on P63 as a new drug-target protein
Anna Karawajczyk, RUMC

P-52 : QSAR modelling of antineoplastic activities using NIH Roadmap Data
Alexey Zakharov, Russian Academy of Medical Science

P-53 : GUSAR: new approach for multiple QSAR
Alexey Zakharov, Russian Academy of Medical Science

P-54 : Fast empirical estimates of quantum mechanical descriptors for QSAR/QSPR modeling
Robert Fraczkiewicz, Simulations Plus, Inc.

P-55 : The representation, registration, and retrieval of substances with incompletely defined 
chemical structures
Keith T Taylor, Symyx Technologies Inc

P-56 : Exploring synthetically accessible chemical space
Keith T Taylor, Symyx Technologies Inc

P-57 : Development and visualization of the drug-likeness model
Masamoto Arakawa, The University of Tokyo

P-58 : Reverse analysis and multi-objective optimization of predictive models for polymer 
properties
Shun Goto, The University of Tokyo

P-59 : Development of a new regression analysis method using independent component analysis
Hiromasa Kaneko, The University of Tokyo

P-60 : Rule Induction of the site of metabolism by human Cytochromes P450 by data-mining
Michio Koyama, The University of Tokyo

P-61 : Dynamic interplay between chemotype, similarity and docking studies: Towards a virtual  
screening approach for protein kinase B inhibitors
Jose L. Medina-Franco, Torrey Pines Institute for Molecular Studies

P-62 : Multi-fusion similarity maps for comparing the chemical space of compound databases
Jose L. Medina-Franco, Torrey Pines Institute for Molecular Studies
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P-63 : The effect of structural redundancy on virtual screen performance
Robert D. Clark, Tripos International

P-64 : Topomer CoMFA for rapid optimization
Bernd Wendt, Tripos International

P-65 : Development of an a priori ionic liquid design tool: Integration of a novel COSMO-RS 
molecular descriptor on neural networks
Jose Palomar, Universidad Autónoma de Madrid

P-66 : Radial scan of the electrostatic potential of RNA double helices: An application on tRNA 
acceptor stems
Ray Marcel Marín, Universidad Nacional de Colombia

P-67 : A graph theoretical approach to compare molecular electrostatic potentials
Ray Marcel Marín, Universidad Nacional de Colombia

P-68 : Engineering polymer informatics
Nico Adams, University of Cambridge

P-69 : Information extraction from the polymer literature
Lezan Hawizy, University of Cambridge

P-70 : MeFc and large chemical data sets
Hamse Y. Mussa, University of Cambridge

P-71 : Kernel based least squares and large data sets
Hamse Y. Mussa, University of Cambridge

P-72 : Molecular spam: Use of a modified spam filter for classification of bioactive molecules and 
drug target prediction
Florian Nigsch, University of Cambridge

P-73 : SPECTRa-T: Machine-based data extraction and semantic searching of chemistry e-
theses
Joseph Andrew Townsend, University of Cambridge

P-74 : Creating chemo- & bioinformatics workflows: Further developments within the CDK-
Taverna project
Thomas Kuhn, University of Cologne

P-75 : Protein-Protein interactions as targets for drugs: A view from the binding site
Richard M. Jackson, University of Leeds

P-76 : Determinants for selectivity in map kinase inhibitors by computational simulations 
Nikita Basant, University of Modena and Reggio Emilia

P-77 : Fragment weighting schemes for similarity-based virtual screening: Use of occurrence 
weighting
Shereen Arif, University of Sheffield

P-78 : Effect of data standardization on the clustering of chemical structures
Chia-Wei Chu, University of Sheffield
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P-79 : Multiobjective optimisation of pharmacophore hypotheses: Bias towards low-energy 
conformations
Val Gillet, University of Sheffield

P-80 : Weighted data fusion with turbo similarity searching to improve chemical similarity 
searching
John Holliday, University of Sheffield

P-81 : Using wavelets to represent GRID fields in virtual screening
Richard Martin, University of Sheffield

P-82 : A multiobjective approach to scoring functions for docking
Iain Peter Mott, University of Sheffield

P-83 : Neighbourhood behaviour studies for lead optimisation
Georgios Papadatos, University of Sheffield

P-84 : Maximum unbiased validation (MUV) datasets for virtual screening by PubChem based 
chemogenomics data mining
Sebastian Georgios Rohrer, University of Technology Braunschweig

P-85 : 3D-Visualization of molecular conformations in the MOGADOC database
Jürgen Vogt, University of Ulm

P-86 : Similarity based correction for the predictions of compounds physicochemical properties
Andrius Sazonovas, Vilnius University

P-87 : Prediction of ionization constants for complex multicenter electrolytes utilizing proprietary 
‘in house’ data
Andrius Sazonovas, Vilnius University

P-88 : A novel chemical database for sustainable development of synthesis routes - An instance 
of developing synthesis routes of quinolone derivatives
Kenzi Hori, Yamaguchi University

P-89 : Combinatrial chemistry using theoretical calculations: An application to boric acid catalyzed 
esterification of phenol
Maki Shimeno, Yamaguchi University

P-90 : Calculation of difference of free energy of solvations using the QM/MC/FEP method in 
chemical reactions
Keita Uezu, Yamaguchi University

P-91 : Toward in silico screening using transition state data base for developing new synthesis 
routes
Toru Yamaguchi, Yamaguchi University

P-92 : Tautomer generation. pKa based dominance conditions for generating the dominant  
tautomers
Ferenc Csizmadia, ChemAxon Ltd.

P-93 : Chemical terms – A language for cheminformatics
Akos Papp, ChemAxon
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Plenary Session Abstracts
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Plenary Session Abstracts

K-1 : Challenges/Opportunities for chemical structure databases in the 21st century
Alexander J. Lawson, Elsevier Information Systems, Frankfurt, Germany
The 19th century witnessed the birth of large-scale structure-based data collections in chemistry as aids to 
harnessing the knowledge deposited in the primary literature. The developments of the 20th century enabled 
these collections (and the literature itself) to make the transition from print  to electronic media.  In  the 
course of the 21st century further development will inevitably take place, shaping this synergy into new 
forms.

In this talk the challenges facing several possible scenarios will be explored.

A-1: Protein target prediction of toxic molecules identifies toxicological relationships 
between proteins
F. Nigsch, J.B.O. Mitchell, Unilever Centre for Molecular Science Informatics, Department of Chemistry,  
Cambridge, UK
Computational methods for protein target prediction can be used for the in silico identification of potential 
off-target activities. These off-target activities may often be the origin of clinically observed toxic effects or 
adverse drug reactions.
Based on a method that we recently applied successfully to a similar but easier classification problem, we 
built a model encompassing a larger dataset for protein target prediction of toxic molecules. [1] Our model 
uses the Winnow algorithm as underlying classification framework and circular fingerprints as molecular 
descriptors. A protein target dataset with 90,000 molecules spanning 233 activity classes was obtained by 
selecting all relevant classes from the MDL Drug Data Report (MDDR). Prior to the application of the 
protein target  prediction model,  we validated it  using a 
15-fold Monte Carlo cross-validation, each of which using 
a 50:50 split.  We retained the 3 top-ranking predictions 
and found that in 82 percent of all cases the correct target 
was  predicted  within  these  three  predictions.  The  first 
prediction was  the  correct  one  in  almost  70 percent  of 
cases.

This model was then applied to predict the protein targets 
of  150,000  molecules  with  experimentally  determined 
toxicities contained in the MDL Toxicity Database.  The 
resulting  associations  allowed  us  to  determine  proteins 
that are related with respect to their toxicities, as well as 
to cluster toxicities which are related with respect to the 
proteins likely to cause these toxicities. For both highly 
correlated protein clusters and also the top-ranking proteins for each toxicity class, we were able to confirm 
the significance of our results by independent evidence from published literature.

1. Nigsch, F.; Mitchell, J.B.O. How to Winnow Actives from Inactives: Introducing Molecular 
Orthogonal Sparse Bigrams (MOSBs) and Multiclass Winnow. J. Chem. Inf. Model. 2008, ASAP 
article
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A-2 : Exploiting systems chemical biology to predict and understand (un)desired drug 
effects
Josef Scheiber, Jeremy L. Jenkins, Dmitri Mikhailov, Meir Glick, John W. Davies, Novartis Institutes for 
Biomedical Research, Cambridge, MA, USA
Several  drug withdrawals  associated with adverse side effects –Vioxx® and Lipobay® being the most 
prominent ones – gained broad attention in recent years. To avoid such cases and thereby improve the life of 
patients it is without question highly desirable to identify and eliminate such problems in early research.

Figure 1: This figure illustrates that the interaction of a compound with a single  target may not always be 
the isolated cause for an undesired effect. Hitting two different targets can have the same outcome 
downstream in a pathway. This contribution will deal with approaches to address such cases through the 
combination of cheminformatics approaches with systems biology data.

In some cases the reason for an undesired effect can be found in the interaction of the compound with a 
certain target, e.g. the prolonged QT-syndrome with the hERG-channel.1 These cases can then be identified 
with well-established  in vitro-methods,2 as well as newly developed  in silico-methods.  3-5 However, often 
chemically diverse compounds cause similar problems. This is the case when two different targets are hit in 
the same biological pathway, which is illustrated for stomach bleeding in Figure 1. In this case models can 
be established that predict certain adverse effects irrespective of target considerations, where the models are 
based on compound-adverse event pairings. After computing these models a link through chemical space 
can be made to compute correlations with  different target prediction models.3 Thereby it becomes possible 
to link certain phenotypic effects to the interaction between a molecule and a target.

This contribution will introduce an extension of these methods. On the one hand the predictive models for 
both adverse side effects and targets have been optimized, re-calculated and heavily validated using the 
MedDRA terminology for  side  effects6 and  sophisticated  validation  methods.7  Further,  we linked  the 
predictions  with  biological  network  information  to  establish  firm  links  between  side  effects  and  the 
interference of a compound with a certain pathway. The predictions can then be validated by analyzing the 
data from well-known pathway tools and databases like GeneGo’s MetaCore and Ingenuitys’ IPA. Also, 
new links between pathways and side effects can be established. 

To summarize: The presentation will link Systems Chemical Biology8 approaches to the field of adverse 
side effects of drugs to better understand the latter ones.

1. Curran, M. E.; Splawski, I.; Timothy, K. W.; Vincent, G. M.; Green, E. D.; Keating, M. T., A 
molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80, 
(5), 795-803.

2. Whitebread, S.; Hamon, J.; Bojanic, D.; Urban, L., In vitro safety pharmacology profiling: an 
essential tool for successful drug development. Drug Discovery Today 2005, 10, (21-24), 
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1421-1433.
3. Bender, A.; Scheiber, J.; Glick, M.; Davies , J.; Azzaoui, K.; Hamon, J.; Urban, L.; Whitebread, S.; 

Jenkins, J., Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-
Target Effects from Chemical Structure. ChemMedChem 2007, 2, (6), 861-873.

4. Fliri, A. F.; Loging, W. T.; Thadeio, P. F.; Volkmann, R. A., Analysis of drug-induced effect 
patterns to link structure and side effects of medicines. Nature Chemical Biology 2005, 1, (7), 
389-397.

5. Azzaoui, K.; Hamon, J.; Faller, B.; Whitebread, S.; Jacoby, E.; Bender, A.; Jenkins, J.; Urban, L., 
Modeling Promiscuity Based on in vitro Safety Pharmacology Profiling Data. ChemMedChem 
2007, 2, (6), 874-880.

6. ICH-MSSO Medical Dictionary for Regulatory Activities (MedDRA). 
7. Breiman, L., Bagging Predictors. Machine Learning 1996, 24, (2), 123-140.
8. Oprea, T. I.; Tropsha, A.; Faulon, J.-L.; Rintoul, M. D., Systems chemical biology. Nat Chem Biol  

2007, 3, (8), 447-450.

A-3 : Binding site similarity analysis for the functional classification of the protein kinase 
family
Richard Jackson, Sarah Kinnings, Institute of Molecular and Cellular Biology, Faculty of Biological  
Sciences, University of Leeds, Leeds, UK
Methods for analysing complete gene families in the drug discovery process are becoming of increasing 
importance,  because  similarities  and  differences  within  a  family  are  often  the  key  to  understanding 
functional differences that can be exploited in drug design. Constituting around 1.7% of the human genome, 
the protein kinase family is one of the largest enzyme families and plays key roles in almost all signalling 
pathways. Since the deregulation of these signalling pathways often leads to disease, the control of protein 
kinase activity is a principle focus of pharmaceutical research. The vast majority of kinase inhibitors target 
the ATP-binding site. However, the high degree of sequence and structural conservation amongst the protein 
kinases means that the design of potent, selective kinase inhibitors is a significant challenge.

We have developed a large online database for the retrieval of ligand binding site similarities 1. These are 
extracted automatically from the Macromolecular Structure Database using a geometric hashing algorithm 
2. We have undertaken a large-scale comparison of protein kinase ATP-binding sites. This has allowed us to 
discover binding site similarity in different sub-families of protein kinase that are not evident from sequence 
similarity alone. It has also enabled us to quantify the effect of how different drug molecules bind to the 
same binding site and influence the local binding site conformation. We propose a relevant classification of 
the protein kinase family based on the similarity of their binding sites. Not only does this classification 
highlight features that are important for the potency and selectivity of kinase inhibitors, but it also allows us 
to predict possible cross-reactivity among the protein kinases.

1. Gold, N.D., Jackson, R.M. SitesBase: A database for structure-based protein-ligand binding site 
comparisons. Nucleic Acids Res. 2006, 34, D231-234.

2. Gold N.D., Deville K., Jackson, R.M. New opportunities for protease ligand-binding site 
comparisons using SitesBase. Biochem Soc Trans. 2007, 35: 561-565.

3. Brakoulias A., Jackson RM. Towards a Structural Classification of Phosphate binding sites in 
protein-nucleotide complexes: an automated all-against-all structural comparison using geometric 
matching. Proteins; structure function and bioinformatics, 2004, 56, 250-260.

A-4 : Merging high-content screening and in silico approaches for compound profiling and 
mode-of-action analysis
A. Bender 1,2, D. W. Young 2, J. L. Jenkins 2, Y. Feng 2

1Leiden / Amsterdam Center for Drug Research, Division for Medicinal Chemistry, Leiden University,  
Leiden, The Netherlands
2 Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
High-content screening observes the reaction of a cell to an administered compound by multidimensional 
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microscopy and it provides a potentially more information-rich complement to single-readout conventional 
assays.  On the other  hand,  microscopy-based screening can also be more  'opaque'  in  the way that  no 
mechanistic explanation for the observed effect is provided per se.

The  work  we performed  to  improve  our  ability to  handle  and  understand  high-content  screening  data 
consists of two parts1. Firstly, in order to reduce the vast amount of information obtained from microscopy 
based data, we performed factor analysis to reduce the amount of data to analyze, while at the same time 
retaining most of the information. We were able to define a six-dimensional factor space that defines cell 
state variables such as nuclear size and DNA replication, as depicted in Figure 1.

Figure 1.  Factor analysis employed to project high-dimensional HCS readout space into low-dimensional 
space, using 6 variables to describe a cell state.

Next, by merging high-content screening with in silico target prediction, we merge both phenotypic and 
mechanistic approaches: by high-content screening we are able to observe the systems response, while at 
the same time providing hypotheses for the observed effects via the predicted targets of compounds. 

We screened more than 6k compounds in high-content screenings and discuss cases where the phenotypic 
response and the predicted targets agree with each other, but also the even more interesting 'atypical' cases 
where similar phenotypes are observed by very different predicted targets (which might for example be 
located in the same pathway; Figure 2).
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Figure  2. Four compounds, three of which steroids, which generate very similar phenotypes despite two 
distinct scaffolds present. Shown to the left are phenotypic readouts in six dimensions as well as a ligand 
structure similarity matrix.

Looking at the full compound set screened, one now has the opportunity to compare phenotypic similarity 
(‘systems response’) to structural similarity on a larger scale. This is shown in the similarity matrices in 
Figure 3 – while overall similar structures give similar readouts, also clear deviations from the rule are 
present. This analysis gives us the opportunity to compare compounds by not only using single or a defined 
set of targets, but the complete systems response instead.

 

Figure  3. Comparison  of  phenotypic  and  ligand  structure  similarities  of  all  ligand  pairs.  While  both 
matrices show similarities, also clear differences are present, giving the possibility for example to define 
‘phenotypic’ compound similarities.

1. Young, D.W.; Bender, A.; Hoyt, J. McWhinnie, E.; Chirn, G.W.; Tao, C.Y.; Tallarico, J.A.; Labow, 
M.; Jenkins, J.L.;  Mitchison, T.J.; Feng, Y. Integrating high-content screening and ligand-target 
prediction to identify mechanism of action. Nature Chem. Biol. 2007, 4, 59 – 68.

B-1 : Performance of common similarity measures in virtual screening and lead-hopping
J.C. Baber 1, G.. Tawa 2, R. Nilakantan3, D. Mobilio3, L. Greenblatt2, K. Fan2, C. Humblet 2

1 Chemical & Screening Sciences, Wyeth Research, Cambridge, USA
2 Chemical & Screening Sciences, Wyeth Research, Princeton, USA
3 Chemical & Screening Sciences, Wyeth Research, Pearl River, USA
A large number of molecular  similarity measures are now available to computational  chemists and are 
routinely used in  virtual  screening exercises  –  particularly when no structural  information is  available. 
Virtual screening may be divided into two general types of problem: the follow up existing hits and lead-
hopping to obtain new, structurally distinct, series. In the former compounds that are structurally similar to 
the  query  compound  are  generally  sought  whereas  for  lead-hopping  compounds  that  are  structurally 
dissimilar but have similar activity are required.

We will present the result of a recent examination of the virtual screening performance of over 60 different 
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similarity measures in terms of both enrichment and overall performance as defined by the area under a 
ROC curve. Each method has been tested against the 40 different targets in the Directory of Useful Decoys 
(DUD) set1 which provides a diverse range of drug-like classes of compounds. Tests were carried out both 
exhaustively using each known active in turn as an exemplar and by repeatedly choosing a random training 
set consisting of approximately 10% of the known actives. In order to test lead-hopping ability the known 
actives for each of the targets in the DUD set were classified into chemical series by experienced medicinal 
chemists. The compounds in each series were then used as known exemplars when screening the remainder 
of the set and the enrichment, overall performance and number of other series identified calculated.

Analysis of these results shows large differences in performance between methods and across targets. As 
would be expected, increasing the diversity of the test set generally results in a reduction in performance 
although some similarity methods appear  to  be more affected  by structural  diversity than  others.  This 
analysis provides a useful benchmark to assess the performance of new similarity methods and may also 
assist in selecting the most appropriate method, or methods, to use in order to achieve a given set of virtual 
screening goals. 

1. Nuang, N.; Shoichet, B. K.; Irwin, J. J.; Benchmarking Sets for Molecular Docking. J. Med. Chem. 
2006, 49, 6789-6801

B-2 : Maximum unbiased validation (MUV) of ligand based virtual screening
K. Baumann, S.G. Rohrer, Institute of Pharmaceutical Chemistry, Braunschweig University of Technology,  
Braunschweig, Germany
A common finding of many reports evaluating ligand-based virtual screening methods is that validation 
results vary considerably with changing benchmark datasets. Such effects are caused by the redundancy and 
self-similarity  inherent  to  those  datasets.  These  phenomena  manifest  themselves  in  the  datasets’ 
representation in descriptor space, which is termed the dataset topology. Three key findings that allow the 
design of MUV datasets are presented.

1. A methodology for the characterization of dataset topology based on spatial statistics is introduced. 
The method is non-parametric and can deal with arbitrary distributions of descriptor values.  It 
utilizes two cumulative distribution functions of distances in chemical space, called the “nearest-
neighbor function” G(t) and the “empty space function”  F(t), which reflect the distributions of 
active-active  and  decoy-active  distances,  respectively.  With  this  methodology it  is  possible  to 
associate  differences  in virtual  screening performance on different  datasets  with differences  in 
dataset  topology (correlation coefficient:  0.92,  n = 234).  Moreover,  the better  virtual  screening 
performance of certain descriptors can be explained by their ability of representing the benchmark 
datasets by a more favorable topology (correlation coefficient: 0.91, n = 234).

2. It  is  shown, that  the topologies of certain benchmark datasets cause over-optimistic  validation 
results. Spatial statistics analysis as proposed here allows the detection of such biased datasets.

3. G(t) and F(t) can effectively be used as objective functions in the design of unbiased benchmark 
datasets. In order to design benchmark datasets with minimum bias, datasets should exhibit the 
lowest possible level of self-similarity, which can be monitored by  G(t). Conversely, the set of 
decoys should be selected as similar to the benchmark set as possible. This process can efficiently 
be guided by F(t). Here, we apply this design strategy to a collection of datasets carefully selected 
from the bio-activity data available in PubChem. 

The  resulting  maximum  unbiased  benchmark  datasets  are  validated  by  retrospective  virtual  screening 
simulations and spatial statistics analysis. 

The  presented  benchmark  datasets  will  be  available  for  download  on  our  web-page. 
(http://www.pharmchem.tu-bs.de/forschung/baumann/)
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B-3 : Molecular similarity by pattern recognition: Fast calculation of 3D 
pharmacophore resemblence
Gerhard Wolber 1,2, Johannes Kirchmair 2, Thomas Seidel 2 and Fabian Bendix 2

1 Inte:Ligand Softwareentwicklungs- und Consulting GmbH, Vienna, Austria
2 University of Innsbruck, Institute of Pharmacy, Innsbruck, Austria
Chemical-feature  based  pharmacophore  models  have  been  established  as  state-of-the-art  technique 
describing interactions of small molecules with macromolecules and virtual screening [1, 2].  While there 
are  already  many  approaches  for  molecular  similarity  in  general,  available  similarity  measures  are 
commonly based on topological resemblance, atom pair coding or on n-point pharmacophores derived from 
subsets of chemical feature distances. If used for pharmacophoric similarity, these methods suffer from a 
topological bias to specified structure classes or by the combinatorial explosion occurring in the comparison 
algorithms if distance multiplets are involved.

We present a novel approach describing molecular similarity by multi-conformationally overlaying all their 
possible  pharmacophoric  features  using  pattern  recognition  and  parts  of  our  3D  alignment  algorithm 
presented earlier [3]. The new similarity calculation method is based on a rotationally and translationally 
independent, but conformation-dependent representation of a molecule consisting of all chemical feature 
locations. Distance shells with feature proximity counts are derived from pharmacophore point locations, 
which are then paired and subtracted using a bipartite matching algorithm. The matching approach using 
distance shells, a method that has its original  application in pattern recognition, bears the advantage of 
polynomial  computational  complexity  and  therefore  allows  for  fast  similarity  measure  calculation  for 
conformational ensembles. 

The use of pharmacophore points allows for a broader application scope such as measuring similarities 
between pharmacophore models. Applications for clustering and ligand-based pharmacophore creation are 
discussed.

References:
1. H. Kubinyi. In Search for New Leads, EFMC - Yearbook 2003, 14-28.
2. T. Langer, R. Hofmann. Pharmacophores and Pharmacophore Searches, R. Mannhold, H. Kubinyi, 

G. Folkers, series editors, Methods and principles in medicinal chemistry, pp. 131-148, Wiley-
VCH, Weinheim, Germany, 2006.

3. G. Wolber, A. Dornhofer,  T. Langer. Efficient overlay of small organic molecules using 3D 
pharmacophores. J. Comput. Aided Mol. Des.; 2007; 20(12); 773-788.

B-4 : Analysis of natural products lessons from nature inspiring the design of new drugs
Peter Ertl, Novartis Institutes for BioMedical Research, Basel, Switzerland
Natural products (NPs) have evolved over a very long natural selection process to form optimal interactions 
with biological macromolecules. NPs are therefore a valuable source of inspiration for the design of new 
drugs. As illustrated in this study, application of cheminformatics techniques can provide useful help in this 
endeavor. First the physicochemical properties of NPs and their typical structural features are compared to 
those of  bioactive molecules  and average  organic molecules.  Then the substructure analysis  of  NPs is 
performed, with particular focus on comparing NP scaffolds with those of common synthetic molecules. 
The relationship between the structure of NPs scaffolds and the type of organism from which they have 
come is also analyzed. 

To provide a  guide  for  the  design of  NP-like  bioactive  structures  a  novel  method to  calculate  natural 
product-likeness score is described. This score, which allows to determine how molecules are similar to the 
structural space covered by natural products, is shown to efficiently separate NPs from synthetic molecules 
in a crossvalidation experiment. Possible applications of the NP-likeness score are discussed and illustrated 
on  several  examples  including prioritization of  compound libraries  towards  NP-likeness  and  design  of 
building blocks for the synthesis of NP-like libraries.

Hopefully the results of this analysis help to eliminate the old myth about NPs as being “too complex” or 
having “bad properties”, as well as help us to focus on these areas of NP structural space which are essential 
for biological activity, taking advantage of the long process of natural selection to guide us to new and as 
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yet unexplored areas of the chemical structure universe.

1. Ertl, P.;  Schuffenhauer, A. Cheminformatics Analysis of Natural Products: Lessons from Nature 
Inspiring the Design of New Drugs. In Natural Compounds as Drugs, Vol. II, Petersen, F.; 
Amstutz, R., Eds.; Birkhäuser Verlag: Basel, 2008.

2. Ertl, P.;  Roggo, S.; Schuffenhauer, A. Natural Product-likeness Score and Its Application for 
Prioritization of Compound Libraries.  J. Chem. Inf. Model. 2008, 48, 68-74.

3. Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M.; Waldmann, H. The Scaffold Tree - 
Visualization of the Scaffold Universe by Hierarchical Scaffold Classification. J. Chem. Inf.  
Model. 2007, 47, 47-58.

4. Ertl, P.; Jelfs, S.; Muehlbacher, J.; Schuffenhauer, A.; Selzer, P. Quest for the Rings. In Silico 
Exploration of Ring Universe to Identify Novel Bioactive Scaffolds. J. Med. Chem. 2006, 49, 
4568-4573.

Reprint download: http://peter-ertl.com/publications.html

B-5 : It's all In the bits: Improved database searching with better bits
Harold E. Helson, Andrew Smellie, Cambridgesoft Inc., Cambridge, USA
Traditionally,  substructure searches in databases have been performed by first  reducing the topological 
representation of the molecule into an encoded representation in a bit string, where each bit in the string 
codes for the presence of one or more substructures.  In its simplest form, a molecule is decomposed into 
fragments which are hashed into an enormous bitstring.  Various techniques are used to reduce the length of 
the bitstring so that  it  is  tractable to store it  in a  computer.  In  this paper,  we describe a technique of 
generating a reduced length bitstring whilst attempting to preserve the maximal amount of information.

Additionally, we introduce a novel data structure that takes particular advantage of the way distances are 
computed in a bitstring space (i.e. the tanimoto coefficient) to greatly accelerate nearest neighbor searching 
and similarity calculations in those spaces.

Examples  will  be  shown  that  demonstrate  the  screening  effectiveness  with  the  modified  bitstring  by 
comparison with traditional methods. Using the improved bitstring, it will be shown that search speeds are 
greatly enhanced.

B-6 : Is there a general model for bioactivity?
T.I. Oprea, O. Ursu, C.G. Bologa, and L.A. Sklar, New Mexico Molecular Libraries Screening Center,  
University of New Mexico, Albuquerque, NM, USA
The  Molecular  Libraries  Screening  Centers  Network  (MLSCN)  uploads  bioactivity  screening  data  in 
PubChem  (http://pubchem.ncbi.nlm.nih.gov/)  based  on  the  Molecular  Libraries  Small  Molecules 
Repository  (MLSMR).  On  01-30-2008,  we  found 222,878 unique  MLSMR compounds  tested  on  478 
MLSCN bioassays. Not all compounds were tested on all assays. 

The majority of MLSMR compounds are “inactive” in the above numbers of assays. A smaller subset of 
MLSMR were active (25.03%, active in >1 assay), or among inconclusives (30.56%, in > 1 assay). Overall, 
a large percentage of compounds are inactive in all assays to date. This dataset allows us to address the 
following question: Is there a general model for bioactivity? 

We used chemical fingerprints (560 predefined keys) and a machine learning technique (support vector 
machines, SVM), to discriminate actives from inactives.  For “inactives” we used compounds that were 
found inactive in at least 60 assays; all actives or inconclusives were removed from this dataset, to yield 
over 22,271 compounds. For “actives” we used compounds that were found active in at least one assay; all 
“inactives”  were removed from this  data  set  to  yield over  55,782 compounds.  To the  “actives”  set  of 
compounds  were  added  the  compounds  from  WOMBAT  2007.1  database 
((http://www.sunsetmolecular.com)) to yield over 209,451 unique compounds. 

From a pool of 209,451 actives and 22,271 inactives, two sets of 6000 randomly selected compounds were 
used to build/validate 100 different active/inactive models using a Radial Basis Function SVM kernel. Each 
SVM model  was  build  using 300 random “actives”/”inactives”  compounds from 6000 subset  and  was 
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validated using the rest of the subset. 

External prediction yields ~67% accuracy in the active class (135,467 out of 203,307 actives), and ~83% 
for the inactive class (13,350 out of 16,127 compounds). 

An  analysis  based  on  molecular  weight  shows  a  small  shift  towards  higher  molecular  weight  for  the 
“actives”  set  compared  to  the  “inactives”  set.  Analyses  based  on  estimated  aqueous  solubility  and 
octanol/water  partioning  did  not  indicate  significant  differences  between  “actives”  and  “inactives”. 
Furthermore,  a  large  number  of  chemical  scaffolds  are  present  in  both  the  active  and  inactive  class. 
Artifactual  results,  such  as  florescent  compounds,  and  aggregators,  were  not  individually  examined. 
However, in one MLSMR/MLSCN assay, only ~1100 compounds out of ~70,000 were considered potential 
aggregators. 

Taken together, these results appear to indicate that bioactivity, as captured in the MLSMR and WOMBAT 
“actives”, can be discriminated from the MLSMR “inactives”. If validated by additional data, such models 
could be used to enrich screening libraries with compounds that are more likely to belong to the “active” 
class.

C-1 : SAMPL: Statistical assessment of the modeling of proteins and ligands
A. Skillman, G. Warren, P. Hawkins, A. Nicholls, OpenEye Scientific Software, Inc, Santa Fe, USA
Opportunities for prospective or blinded validation of computational models in drug discovery are rare yet 
valuable.  SAMPL provides the computational chemistry community an opportunity to evaluate a variety of 
methods on previously unpublished or difficult to discover data.

We will report on the second annual SAMPL evaluation, a blinded trial of a variety of computational tasks. 
We received three unpublished data collections for use in the study.  Abbott Laboratories provided twenty-
seven  Urokinase  inhibitors  with  measured  affinities  and  co-crystal  structures.   Vertex  Pharmaceuticals 
provided fifty-two JNK-3 Kinase inhibitors with measured affinities and co-crystal  structures.   Finally, 
Peter  Guthrie  provided sixty-three water-vacuum transfer  energies,  calculated from data collected from 
obscure sources.

We used these data to generate  eleven different  blinded experiments in which participants could make 
predictions.  All experiments were open to the public for approximately four months.  Four experiments 
examined virtual screening, four experiments examined pose-prediction, two experiments examined affinity 
prediction, and one experiment examined vacuum-water transfer energies.   We encouraged professional 
modelers  to participate using third-party software in  addition to both academic and industrial  software 
developers.  SAMPL attracted approximately fifty participants from North America and Europe and we 
accepted over one hundred public and anonymous predicted data sets.

The virtual screening experiments were designed to address important questions in evaluation design as 
well as generate feedback for individual algorithms.  These four experiments allowed evaluation of both 
ligand-based and structure-based design programs.  Pairs of experiments with the same ligands were used to 
measure the change in performance with improved knowledge of the protein structure.  They also included 
simultaneous comparison of six different decoy sets including DUD-like decoys (1), Drug-like decoys (2) 
and the Rognan decoys (3) allowing evaluation of each method’s performance on these well-known decoy 
collections in the same system.  In addition, the predictions were evaluated on all the ligands provided as 
well as on a subset of low-potency chemically independent ligands, to simulate a prospective approach to a 
new target.

Pose prediction experiments  included an initial  cross-docking phase followed by a self-docking phase. 
Each method is evaluated based how well they perform in each experiment and how much they improve 
going from cross-docking to self-docking experiment.  We will discuss important issues regarding crystal 
structure quality and its impact on structure reproduction evaluation.

At the last stage, the co-crystal models were provided to participants to predict binding affinities.  This 
portion of SAMPL saw the most varied methods, including QSAR models, Docking algorithms, implicit 
solvent molecular mechanics calculations, explicit solvent molecular mechanics as well as Monte Carlo 
perturbation approaches.  We will present an analysis of each model’s ability to predict the absolute affinity, 
the relative affinity, and the rank of the inhibitors, including an assessment of the experimental error.
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The vacuum-water transfer energy prediction data set included highly flexible multifunctional molecules 
that are much more challenging than typical transfer energy data sets.  This data set also included some 
large drug-like molecules.  This valuable data set allowed new insights into the effects of partial charge 
models upon salvation energy.

We will present a summary of all the results.  It will include an assessment of the field in general, the effects 
of increasing information content on our ability to make predictions, trends in virtual screening predictions 
with different decoys and a discussion of affinity prediction and transfer energy.  Finally, we will briefly 
discuss plans for the next SAMPL challenge in 2009.

1. Haung, N; Shoichet, B.K.; Irwin, J.J. Benchmarking Sets for Molecular Docking. J. Med. Chem. 
2006, 49, 6789-6801.

2. Ajay; Walters, W.P.; Murcko, M.A. Can We Learn To Distinguish between “Drug-like” and 
“Nondrug-like” Molecules? J. Med. Chem. 1998, 41, 3314-3324.

3. Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. 
Evaluation of Different Docking/Scoring Combinations. J. Med. Chem. 2000, 43, 4759-4767.

C-2 : HYDE: An integrated description of dehydration and H-bonding within protein ligand 
interfaces
Gudrun Lange1, Ingo Reulecke2, Matthias Rarey2, Robert Klein 1

1 Bayer CropScience, Frankfurt, Germany
2 University of Hamburg, Hamburg, Germany
Scoring functions describe the interaction between molecules such as the binding of ligands to their target 
protein. They are used to identify the correct pose of a ligand with known inhibition in structure-based drug 
design. More importantly,  they are used in a more automatic approach to score poses  of  thousands of 
putative ligands positioned into a target by docking programs and subsequently select those ligands which 
bind to the target (Virtual Screening). However, this goal was not always achieved and alternative scoring 
functions  are needed (1).  A comparison with experimental  observations suggests  that,  for  instance,  the 
calculated contributions of interfacial H-bonds seem to be often overestimated while the hydrophobic effect 
is underestimated in many cases (2). In addition, comparing the size of the experimental ∆G with the size of 
the contribution attributed to the formation of an interfacial H-bond or the burial of an apolar surface, it 
becomes  obvious  that  in  addition  to  stabilizing  contributions,  there  must  exist  a  fair  amount  of 
counterbalancing destabilizing contributions  to  ∆G which are in  most  scoring functions  not  taken into 
account.

We  believe  that  the  underlying  reason  for  the  insufficient  understanding  of  the  interaction  between 
molecules in aqueous solution lies in the imperfect description of water and its interaction with functional 
groups. Thus, we derived new dehydration terms for polar and apolar functions solely based on structural 
features of the water network and experimental logP values. These dehydration terms contribute stabilizing 
for apolar atoms (hydrophobic effect) or destabilizing in case of polar atoms and compare very well with 
experimental values. Our scoring function HYDE combines these dehydration terms with a term for H-bond 
energies and thus represents a very simple empirical  approach describing the physics of protein ligand 
interactions (3). The balance between the hydrophobic effect and the contribution of H-bonds agrees well 
with experimental observations. In addition, significant destabilizing contribution to ∆G of individual atoms 
become apparent which lead to ∆G > 0 if either the pose of a binder is incorrect or the ligand does not bind. 
The size of these destabilizing contribution explains why a single atom exchange within the binding site can 
lead to a significant altered affinity. This will be illustrated based on examples taken from the DUD data set 
(4). The examples show that HYDE is able to distinguish (a) between correct and wrong poses of known 
binders, (b) between protomers and tautomers of a binder and (c) between binders (Figure 1) and non-
binders (Figure 2). This gives rise to drastically improved enrichments (Figure 3). In addition, the target-
independ cut-off score allows a much more confident selection of compounds from huge libraries which is 
particularly important if not many binders to this particular target are known. 

1. Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. Prediction of protein-ligand interactions. Docking 
and scoring successes and gaps. J. Med. Chem. 2006, 49, 5851-5851.

2. Davies, A., D.; Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid 
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receptor hypothesis. Angew. Chem. International Edition 1999, 38, 736.
3. Reulecke, I.; Lange, G.; Albrecht, J.; Klein, R.; Rarey, M. Towards an integrated description of 

hydrogen bonding and dehydration: Reducing false positives in virtual screening using the HYDE 
scoring function. ChemMedChem accepted

4. Huang, N., Shoichet, B.K., Irwin, J.J. Benchmarking sets for molecular docking J. Med. Chem. 
2006, 49, 6789-6801.

Figure 1: Contribution of individual atoms of the inhibitor in the crystal structure of the estrogen receptor 
(1l2i). Green coloured atoms contribute favourable to ∆G.. 

 

Figure 2: Contribution of individual atoms of decoy  ZINC03977652 positioned in the  estrogen receptor 
(1l2i) according to (a) the FlexX scoring function and (b) the HYDE scoring function. Green coloured 
atoms contribute favourable and read atoms unfavourable to ∆G..
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Figure 3: Enrichment plot using the estrogen agonist data set (4) and a random compound library as non-
binders.

C-3 : Specificity scoring
S. Tietze, J. Apostolakis , Ludwig Maximilian University, Munich, Germany
Structure  based  virtual  screening (SVS) is  now a common tool  in  the  study of  molecular  recognition, 
specificity, and the development of novel molecules for pharmaceutical and technological purposes. For a 
given  target  molecule  the  structure  of  its  complex  with  different  candidate  ligands  (or  receptors)  is 
predicted, and from the predicted structure the stability of the complex (binding affinity) is estimated. For 
the  estimation,  simple  scoring  functions  are  used,  which  are  parametrized  either  by fitting to  binding 
affinities or using simple statistical approaches. It has recently been shown that the most common of these 
scoring functions do not predict binding affinity significantly better than simple features of the ligands, such 
as molecular weight. It is therefore not particularly surprising that score based rankings in SVS often yield 
poor enrichments in screening benchmarks and applications. 

Here we suggest two independent approaches for obtaining specific empirical scoring functions. In the first 
approach  the  parameters  of  the  scoring  function  are  optimized  solely  with  respect  to  performance  in 
screening, without using binding affinity. The potential is trained on a so called cross screening benchmark 
set, where 100 different ligands are screened against 100 different proteins. The accuracy of the trained 
potential  is  evaluated on a complementary cross screening set,  which has  been selected as  to  have no 
overlap with the training set proteins. Significant improvement over our previously validated regression 
based parameterization of the same functional form (ChillScore1) is observed, with the average Area Under 
ROC (AUC) over all 100 targets improving from 0.65 to 0.77.

The second approach is based on a simple two-step affinity regression method, where however, unspecific 
(based on ligand properties alone) contributions to the affinity are removed from the potential. A detailed 
comparison between the two obtained score parameterizations, among each other, and with a number of the 
generally used scoring functions was performed to highlight the peculiarities of both approaches. One of the 
interesting results of this study is that the two methods lead to similar parameterizations, even though the 
first is purely qualitative (no use of binding affinities and X-ray structures is ever made), while the second is 
based  only  on  crystal  structures  and  experimentally  measured  binding  affinities  (no  use  of  predicted 
structures is  made).  To further validate the method we show results on standard screening benchmarks 
(taken from Jain et al. 20052), where a significant improvement over the standard regression potential can 
be demonstrated:   average AUC increases from 0.65 for our previous standard regression based potential to 
0.87 for the potential trained on independent cross-screening data, and 0.9 for the two-step specificity fit. 
We finally discuss one of the most interesting results of this study, namely that scoring functions that show 
practically no correlation with binding affinity (R=0.32 and 0.26), are significantly better at screening than 
empirical scoring functions parametrized according to affinity (R=0.53).
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1. Tietze S, Apostolakis J, GlamDock: development and validation of a new docking tool on several 
thousand protein-ligand complexes. J. Chem. Inf. Model. 2007, 47(4):1657-72.

2. Pham TA, Jain AN, Parameter Estimation for Scoring Protein-Ligand Interactions Using Negative 
Training Data. J. Med. Chem. 2005, 49(20): 5856-5868

C-4 : Flexophore, a new versatile 3D pharmacophore descriptor 
M. Korff, T. Sander, J. Freyss, Actelion Ltd., Allschwil, Switzerland
A new  molecular  descriptor  encoding  three-dimensional  pharmacophore  information  is  described  and 
evaluated. The encoding of a molecule starts by generating a reduced graph. Its nodes, which are called 
pharmacophore points, are classified by determining their enhanced atom types from a predefined list that 
was  derived  from an  analysis  of  the  protein  data  bank.  This  analysis  also yielded  a  similarity matrix 
between these atom types characterizing the similarity of any two atom types concerning their coordination 
behavior to different protein atoms. The pharmacophore descriptor consists of the complete graph of these 
pharmacophore points. Any of the graph's edges is represented by a histogram of the distances through 
space between the corresponding nodes considering a representative set of conformers. These conformers 
are generated by a self-organization based algorithm for conformation sampling.

The pharmacophore similarity of two molecules is then determined by a sub-graph matching procedure 
considering node and edge similarities. Node similarities are taken from the enhanced atom type similarity 
matrix described above and edge similarities are calculated from the overlapping areas  of the distance 
histograms. 

To evaluate our descriptor's capability to model similarities of protein binding affinities we compiled a data 
set from the free available DUD dataset.1 Because the DUD dataset contains proteins and ligands as well as 
decoys it  is  not  only possible to compare ligand based and structure based screening,  this dataset  also 
enabled  us  to  compare  our  results  with  other  groups  using the  same dataset.  The  DUD database  was 
designed to evaluate docking programs and contains 2,950 active compounds against 40 target proteins. 
Additionally the database contains 36 decoys for each ligand with similar physicochemical properties. We 
extracted the ligands from the target proteins to extend the applicability of the dataset to ligand based virtual 
screening. From the 40 target proteins 37 contained ligands which we used as query molecules for virtual 
screening evaluation. The query molecules were used to screen the test datasets consisting of ligands and 
decoys. In a large virtual screening experiment the Flexophore descriptor was challenged with five other 
descriptors and with our in-house docking tool. Four descriptors were chemical fingerprints, all encoding 
the molecular structure in a different way; the fifth descriptor was a topological pharmacophore histogram. 
Our experiments showed that the Flexophore descriptor outperformed the chemical descriptors as well as 
the topological  pharmacophore descriptors considering the ability to detect structurally different actives 
while still  being competitive concerning enrichment rates.  Thus,  it  is  well  suited to find new chemical 
entities  via  "scaffold  hopping".  The  Flexophore  descriptor  can  be  explored  with  a  Java  applet  at 
http://www.cheminformatics.ch/flexophore. Its usage is free of charge and doesn’t need any registration.

1. Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking Sets for Molecular Docking. J. Med. Chem. 
2006, 49, 6789-6801.

C-5 : A fragment-based computational protocol at PDB scale -  Application to lead-
optimization of DFG-out kinase inhibitors
F. Moriaud1, T. Henry 1, S.A. Adcock 1, A.M. Vorotynsev 1, L. Martin 1, O. Doppelt 1,2, A.G. De Brevern 2, F.  
Delfaud 1

1 MEDIT, Palaiseau, France
2 EBGM University Paris, Paris, France
Fragment-based drug design has emerged in the last decade and has become an established paradigm at 
many pharmaceutical companies. This exciting field has been recently reviewed [1].  Obtaining structural 
information on the fragment complexed to the protein target is a key step and also a major limitation to the 
number  and types  of  target  that  are  amenable  to  fragment-based  approaches.  Therefore,  computational 
methods are needed to mine efficiently all the available 3D structures of ligands complexed to proteins, 
both treated as a whole and as smaller fragments to increase the likelihood of fragment hopping from one 
target to another.

◄ 47 ►



Eighth International Conference on Chemical Structures

MED-SuMo [2,3], a target based drug design tool, offers a procedure to adequately characterize the protein 
binding site.  This tool is based on the identification of local  shape and 3D Surface Chemical Features 
similarities in the target binding site with other proteins (with their co-crystallized ligands). MED-SuMo 
uses the binding site of the target as a query to search either the whole Protein Data Bank (or any corporate 
protein structure databank) for all the binding sites that display a local match with the query. This valuable 
information can then be used to identify which residues of the binding site are potentially important for 
ligand binding affinity and selectivity. As the similar binding sites are overlaid, the co-crystallized ligands 
are aligned and are therefore a starting material for ligand hybridization. Among the hundreds of overlaid 
binding sites generated by MED-SuMo, we found the protein-ligand complexes overlaid by Pierce et al. [4] 
as their starting material for ligand hybridization in the BREED method. Interestingly, they found relevant 
combinations of ligands starting from only a few protein-ligand complexes structures and we believe that 
the output of MED-SuMo is a very promising input for automatic methods like BREED. 

In this work, we’ve worked on a fragment database derived from the PDB: each pdb file is converted into 
one or more pdb files containing a single fragment as ligand. Fragments are converted to MED-Portions 
which are fragments annotated with protein 3D environnement and dummy bonds. We’ve used MED-SuMo 
to  query  and  mine  the  Protein’s  Surface  Chemical  Functions  surrounding  MED-portions,  seeking 
similarities with the kinase of interest (i.e. Vegfr DFGout, pdb code 2oh4, ligand code GIG) and collecting a 
library of 1129 unique MED-Portions positioned in the vegfr’s active site and annotated with the counts of 
contacts and h-bonds. MED-Portions can be used to design novel ligand scaffolds (lead generation) or to 
optimize  attachments  on  a  fixed  scaffold  (lead  optimization).  Here  we  present  the  optimization  of  a 
substructure (i.e. phenylamide) of the GIG ligand to find others DFGout ligands.  The 3D hybridisation in 5 
iterations of the phenylamide moiety with 1129 fragments suggested by our MED-Hybridiser protocol leads 
to 22824 molecules. In this list, we identified 3585 different scaffolds, 298 are in PubChem, 46 in the PDB 
attesting of the diversity and quality of those generated molecules.  25 are marked as active on protein 
kinase in PubChem bioassay.

1. Hajduk PJ,  Greer  J.  “A decade of fragment-based drug design:  strategic advances  and lessons 
learned” Nat Rev Drug Discov. 2007 Mar; 6(3):211-9.

2. Jambon M, Imberty A, Deléage G, Geourjon C “A new bioinformatic approach to detect common 
3D sites in protein structures” PROTEINS 2003 Structure, Function, and Genetics 52:137-145 

3. Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon C « The SuMo server : 3D 
search for protein functional sites” Bioinformatics. 2005  Vol 21, n°20, 3929-3930

4. Pierce AC, Bemis  GW, “BREED:  generating novel  inhibitors  through hybridization of  known 
ligands. Application to CDK2, p38, and HIV protease” J. Med. Chem. 2004 May 20;47(11):2768

C-6 : Can 3D ligand based virtual screening compete with docking? Application of molecular 
fields to virtual screening with the DUD dataset.
M Mackey, T Cheeseright, J Melville, S Rose, A Vinter, Cresset BMD, Welwyn Garden City, UK
The  use  of  virtual  screening  to  find  new  hits  and  leads  has  become  common  place  within  the 
pharmaceutical industry. However, the majority of examples and methods in the literature are based around 
docking  to  a  protein  active  site  or  use  2D  ligand  similarity  methods.  3D  ligand  methods  are  rarely 
referenced. Moreover, there is a common perception that ligand based methods are inferior to docking, in 
that the search ligands do not necessarily encode all the information necessary to find new active molecules, 
particularly  those  with  completely  novel  chemotypes.  Herein  we  will  present  the  application  of  3D 
molecular fields1 to virtual  screening using the “directory of useful  decoys”2 as  modified by Good for 
testing of chemotype retrieval rates.3

The  FieldScreen  virtual  screening  method  uses  the  similarity  of  molecular  electrostatic,  steric  and 
hydrophobic fields to rank molecules according to their similarity to a known active (Figure 1). If a protein 
structure is available, then it can be used as an excluded volume to further focus the search.
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Figure 1. Schematic representation of the steps involved in searching the FieldScreen database.

Field similarity searching with FieldScreen is found to significantly outperform DOCK on almost all of the 
targets tested, both in terms of raw enrichment rates and in terms of enrichments of novel chemotypes. To 
allow fair comparison with the “fully automated” nature of the DOCK results2, the FieldScreen searches 
were run where possible  using the native ligands from the proteins used in  the DOCK study with no 
optmisation  or  manual  tweaking.  The  inclusion  of  protein information into the  ligand-based  screening 
protocol  as an “excluded volume” is  shown to further  enhance enrichment rates  (Figure 2).  Moreover, 
FieldScreen preferentially retrieves small actives, which are more likely to be useful as leads (Figure 3). 

We conclude that field similarity searching should be included either as a replacement for or in conjunction 
with docking in all 3D virtual screening situations. 

Figure 2. BEDROC enrichments for DOCK (Blue), FieldScreen (Red) and FieldScreen including excluded 
volume data (Green) for each target.
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Figure 3 Average Molecular weight (MW) of the top scoring 500 compounds in the DUD all decoys dataset 
plotted against the MW of the search query. Error bars are 1 standard deviation.

1. T. Cheeseright, M. Mackey, S. Rose, A. Vinter; J. Chem. Inf. Model. 2006; 46, 665-676
2. N. Huang, B. Shoichet, J.J. Irwin; J. Med. Chem. 2006, 49, 6789-6801
3. A. C. Good, T. I. Oprea, J. Comput. Aided Mol. Des., in press, DOI 10.1007/s10822-007-9167-2

C-7 : Novel fragment-like PTR1 inhibitors discovered by virtual screening 
C. P. Mpamhanga, L. Tulloch, E. Shanks, D. Robinson, W.N. Hunter P.W. Wyatt, R. Brenk, Biological  
Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, U.K.
It is a not uncommon in the drug discovery process to find projects that have been ensnared into intractable 
‘chemical cul-de-sacs’. This is often due to inherent poor physicochemical and ADMET properties of the 
existing hits or lead compounds.   An increasingly popular method used to avoid this problem is fragment 
screening. The rationale being that identification of new fragments could provide new starting points for 
chemistry this process is  now popularly referred to as ‘scaffold hopping’.  Typically these methods use 
particularly  sensitive  biophysical  methods  such  as  NMR  and  X-ray  which  are  able  to  identify  even 
fragments with low binding affinities; however they come with one major disadvantage that  of limited 
throughput. We therefore explored if virtual screening can be used as an initial step to screen rapidly vast 
fragment libraries for novel scaffolds. 

To validate our strategy we chose the enzyme pteridine reductase 1 (PTR1), a short-chain dehydrogenize 
responsible for the salvage of pterins in,  Trypanosoma brucei, a protozoan parasite. This parasite is the 
causative  agent  of  sleeping  sickness  or  Human  African  Trypanosomiasis  (HAT),  a  human  epidemic 
affecting large numbers in the Sub-Saharan region of Africa. The parasites are auxotrophic for foliates thus 
making PTR1 a desirable potential drug target.(1) So far all known PTR1 scaffolds retain high PSA and as a 
result  may  suffer  from  poor  blood  brain  permeability,  a  crucial  property  required  for  effective  HAT 
therapeutic agents. 

Our strategy involved use of DOCK 3.5 (2); DrugScore (3), Interaction fingerprints (4) and the MAB force 
field  (5),  to identify fragment-like compounds.  This was followed by hit  verification using appropriate 
biological-assays and X-ray crystallography to confirm the binding modes of the novel scaffolds. From an 
initial  library of  25,000 commercially available fragments only 56 compounds were chosen for  testing 
leading to the discovery of 15 compounds containing eight new scaffolds. One of these hits was subjected 
to crystal  structure analysis and the predicted binding mode was confirmed. However,  crystal structure 
analysis of two analogous revealed two distinct alternative binding modes. In these complexes, previously 
not  observed  protein  movements  and  water-mediated  protein-ligand  contacts  occur  which  prohibit 
prediction of the binding modes. This study demonstrates the power and pitfalls of using molecular docking 
for the discovery of fragment-like inhibitors.
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1. Bello, A.R.; Nare, R.; Freedman, D.; Hardy, L.; Beverley, S.M.  Proc. Natl. Acad. Sci. 1994, 91, 
11442-11446.

2. Lorber, D.M.;  Shoichet, B.K, Protein Sci. 1998 7 :938-50
3. Gohlke, H.; Hendlich, M.; Klebe, G. J. Mol. Biol. 2000, 295, 337-356.
4. Mpamhanga, C.P.; Chen, B.; McLay, I.M.; Willett, P. J. Chem. Inf. Model. 2006, 46, 2, 686 – 698
5. Gerber PR. J Comput. Aided Mol Des. 1998 12(1):37-51.

C-8 : Fleksy: a flexible approach to induced fit docking.
Sander B. Nabuurs 1, Markus Wagener 2, Jacob de Vlieg 1,2

1 Computational Drug Discovery, CMBI, Radboud University, Nijmegen, The Netherlands
2 N.V. Organon, Oss, The Netherlands
Protein receptor rearrangements upon ligand binding are a major complicating factor in structure-based 
drug design. An accurate prediction of these so-called induced fit phenomena calls for ligand docking and 
virtual screening approaches capable of considering receptor flexibility. 

We present  Fleksy,1 a  flexible  approach aimed at  accurately positioning small  molecule  ligands into a 
protein receptor, while taking both ligand and receptor flexibility into account. Our method consists of an 
ensemble docking stage in which the ligand of interest is docked into a structural ensemble of receptor 
conformations, followed by a complex optimization stage during which both ligand and protein are allowed 
to move.

Pivotal to our method is the use of receptor ensembles to describe protein flexibility. To construct these 
ensembles  we  use  a  backbone  dependent  rotamer  library  and  implement  the  concept  of  interaction 
sampling.  The  latter  allows  for  the  evaluation  of  different  orientations  and,  when  relevant,  different 
tautomers of ambivalent interaction partners in the binding site such as asparagine, glutamine and histidine 
side  chains.  The  docking  stage  comprises  an  ensemble-based  soft-docking  experiment  using  FlexX-
Ensemble,2 followed  by  an  effective  flexible  receptor-ligand  complex  optimization  using  Yasara.3 

Ultimately Fleksy results in a set of receptor-ligand complexes ranked using a consensus scoring function 
which combines both docking scores and force field energies.

Averaged  over  three  cross-docking  datasets,  in  total  containing  35  different  pharmaceutically  relevant 
receptor-ligand complexes,  Fleksy reproduces the observed binding mode within 2.0 Å for 78% of the 
complexes.  This compares  favorably to  the rigid receptor  FlexX program4  which on average reaches  a 
success rate of 44% for these datasets.

1. Nabuurs, S.B.; Wagener, M.; de Vlieg, J. A flexible approach to induced fit docking. J.  
Med. Chem. 2007, 50, 6507-6518.

2. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an 
incremental construction algorithm. J. Mol. Biol. 1996, 261, 470-489.

3. http://www.yasara.org/
4. Claussen, H.; Buning, C.; Rarey, M.; Lengauer,  T. FlexE: efficient molecular docking 

considering protein structure variations. J. Mol. Biol. 2001, 308, 377-395.

C-9 : Index-driven structure-based virtual screening 
Jochen Schlosser, Matthias Rarey, Center for Bioinformatics (ZBH), Hamburg, Germany
The  standard  approach  to  structure  based  high-throughput  virtual  screening  nowadays  is  a  sequential 
procedure.  Each  molecule  of  a  given library is  individually docked into the target  protein in  order  to 
produce a ranked hit list. With the TrixX approach, we introduce a new paradigm avoiding the iterative 
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process of virtual screening. The non-sequential character of our workflow allows a substantial speedup 
while yielding comparable re-docking results and enrichment rates. 

In order to avoid the iterative processing of molecules, the TrixX method is based on a novel descriptor 
capable to cover pharmacophoric as well as shape information. Applying standard database technology, 
TrixX is able to retrieve active compounds in sets of up to several ten thousand ligands. Here, we introduce 
the next generation of our index-driven virtual screening technology named TrixX BMI with multiple new 
developments. We replaced the placing and linking procedure of small molecular fragments by rigid body 
docking of pre-processed conformational ensembles of small molecules or molecular fragments with up to 
ten rotatable bonds. Furthermore we extended the descriptor significantly by introducing an 80 dimensional 
steric bulk vector in addition to interaction types, directions and triangle side lengths (Fig. 1). We kept the 
promising  idea  of  splitting  virtual  screening  into  disjoint  phases.  In  the  Data  Pre-Processing  phase, 
descriptors are computed based on conformational ensembles and stored in a database. This is a one-time 
effort.  In  the  Virtual  High-Throughput  Screening phase, a  given protein active site  is  used to  generate 
complementary descriptors as query templates which are used to identify potential hit candidates within the 
database.  Query matches  are then translated into initial  fragment  placements  which are then extended, 
optimized and scored. Because of the enormous amount of descriptors and their high-dimensional content 
there is the need for an efficient and overhead-free decision support system. This functionality is realized 
using compressed bitmap indices supplied by Fastbit.

Re-docking experiments on 115 protein-ligand complexes show that TrixX BMI correctly predicts the pose 
of the bioactive conformation within a RMSD of less than 2.5 Å of the co-crystallized ligand in 100 cases, 
thus achieving typical values for current docking tools (Table 1) and improving the runtime by about one 
order of magnitude. In  addition to that  several  enrichment experiments demonstrate that  TrixX BMI is 
competitive to current methods. TrixX BMI is especially suited for structure-based virtual screening under 
pharmacophoric constraints (Table 2). To show the systems scalability,  a large test set consisting of 1.2 
million random lead-like compounds, distributed over a 94-node computing cluster, is used. Four different 
targets (CDK2, DHFR, ER(agonists), ER(antagonists)) from the DUD, together with pharmacophores from 
the literature are used as benchmark set. TrixX BMI is able to finish the VHTS runs on all four targets in 
less than 20 minutes, whereas the average time is below 12 minutes with comparable enrichment rates (see 
Table 2).  Due to its  speed, index-based docking opens a new route for modelling protein flexibility in 
structure-based virtual screening.

1. Schellhammer I, Rarey M. TrixX. Structure-Based Molecule Indexing for Large-Scale Virtual 
Screening in Sublinear Time. J. Comp. Aided Mol. Design, 2007,  1573-4951

2. Wu K, Otoo E, Shoshani A. An Efficient Compression Scheme for Bitmap Indices. ACM 
Transactions on Database Systems, 2006, 31, 1-38.

3. Huang, Shoichet, Irwin. Benchmarking Sets for Molecular Docking. J. Med. Chem., 2006, 49(23), 
6789 – 6801.

Figure 1: Example of a ligand descriptor

Table 1:  Root-mean-square-deviation histogram of the re-docking experiments and the average runtime 
using all targets against a lead-like dataset of 12600 compounds.
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RMSD [Å] ≤ 1.0 1.5 2.0 2.5 Avg. runtime

FlexX 2.2.0 76 88 94 96 9.55 [sec/lig]

TrixX BMI 48 77 92 100 0.29 [sec/lig]

Table 2: Enrichment factors at 2% [with | without] pharmacophore constraints. In addition [TrixX BMI | 
FlexX] runtimes using pharmacophore constraints on the target specific dataset from the DUD and on a 
random lead-like dataset of 12600 compounds.

Target E[2%] TrixX 
BMI

E[2%] FlexX 
2.2.0

E[2%] DOCK 
3.5.54 

(estimated)

Runtime 
[DUD]

Runtime 
[rand.]

ER(agonists) 39.39 | 7.57 21.21 | 15.15 n.a. |  8 0.05 |  6.18 0.04 | 4.65

ER(antagonis
ts)

20.51 | 2.56 33.33 | 17.94 n.a. | 12 0.13 | 21.72 0.04 | 6.41

DHFR 44.48 | 40.13 50.16 | 44.81 n.a. | 35 0.03 | 14.39 0.01 | 2.66

CDK2 28.13 | 26.56 15.62 | 21.87 n.a. | 15 0.04 |  5.52 0.01 | 4.07

C-10 : Algorithmic design of ligand binding pockets on protein surfaces
S. Eyrisch, V. Helms, Center for Bioinformatics, Saarland University, Saarbruecken, Germany
In the last few years, the modulation of protein-protein interactions and, in particular, the discovery of so-
called small molecule protein-protein interaction inhibitors (SMPPIIs) has become a very active field of 
research. So far, SMPPIIs have been identified for several protein complexes [1]. However, structure-based 
drug design of such inhibitors  is  still  in its  infancy.  In  contrast  to the well-defined binding pockets in 
enzymes, most unbound structures of proteins involved in protein-protein interactions lack deep clefts or 
clearly shaped binding pockets. We therefore developed a pocket detection protocol that provides a starting 
point for in-silico drug design for such cases. This method was validated on three protein-protein interaction 
systems  for  which  small  molecule  inhibitors  are  known,  namely  MDM2:p53,  BCL-XL:Bak,  and 
IL-2:IL-2Rα. We found that large pockets not detectable in the unbound structure opened frequently on the 
protein surface during a 10 ns molecular dynamics (MD) simulation in explicit water at room temperature. 
These  transient  pockets  represent  potential  binding  sites  of  new inhibitors.  At  the  native  binding site, 
pockets of similar size as with a known inhibitor bound could be observed for all three systems, although 
these pockets were not - or only partly - present in the starting structure. Docking known inhibitors into 
these  transient  pockets  resulted  in  docking  poses  with  less  than  2  Å  RMS deviation  from the  crystal 
structures [2].  Unfortunately,  the underlying MD simulations make this protocol  quite time-consuming. 
However, if the potential binding site of a SMPPII (e. g. the protein-protein interaction interface) is known, 
conformational sampling focused on this region appears more promising than scanning the whole protein 
surface for transient pockets. Therefore, we present here an efficient method for generating putative binding 
pockets on protein surfaces algorithmically. After defining the starting structure(s), the approximate location 
and volume of the desired binding pockets, and a radius dictating which surrounding residues are treated as 
flexible, the algorithm calculates a pre-defined number of energetically favorable conformations containing 
these pockets. Internally, the algorithm represents the pockets by dummy atoms and scores their volume via 
van der Waals energies with the flexible part of the protein. The actual generation of conformations consists 
of two stages: In the first stage, all flexible residues are mutated to glycine and all rotameric states of their 
real side chains are pre-calculated. In the second stage, a tree is built up in which each node represents a 
(partial) conformation of the flexible part of the protein. Each node is scored according to the energy of this 
conformation and the pocket contribution. The top-scoring leaf nodes then represent the energetically most 
favorable  conformations  containing  putative  ligand  binding  pockets.  For  the  three  proteins  mentioned 
before, the algorithm could generate promising low-energy pockets with realistic predetermined volumes 
within a few CPU minutes on a standard desktop PC.

1. Wells, J. A.; McClendon, C. L. Reaching for High-Hanging Fruit in Drug Discovery at Protein-
Protein Interfaces. Nature 2007, 450, 1001-1009.

2. Eyrisch, S.; Helms, V. Transient Pockets on Protein Surfaces Involved in Protein-Protein 
Interaction. J. Med. Chem. 2007, 50, 3457-3464. 
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D-1 : De novo drug design using multi-objective evolutionary graphs
C. A. Nicolaou 1, 2, C. S. Pattichis 1, J. Apostolakis 3

1 Computer Science Dept, University of Cyprus, Nicosia, Cyprus
2 Noesis Chemoinformatics, Nicosia, Cyprus
3 Ludwig Maximilian University, Munich, Germany
Drug discovery and development is a complex, lengthy process and failure of a candidate molecule can 
occur as a result of a combination of reasons, such as poor pharmacokinetics, lack of efficacy or toxicity.  
Successful  drug  candidates  necessarily  represent  a  compromise  between  the  numerous,  sometimes 
competing objective so that the benefits to patients outweigh potential drawbacks and risks [1]. De novo drug 
design involves searching an immense space of feasible, drug-like molecules to select those with the highest 
chances of becoming drugs using computational technology[2]. Traditionally, de novo design has focused on 
designing molecules satisfying a single objective, such as similarity to a known ligand or an interaction 
score,  and  ignored  the  presence  of  the  multiple  objectives  required  for  drug-like  behavior.  Recently, 
methods have appeared in the literature that attempt to design molecules satisfying multiple predefined 
objectives[3] and thereby produce candidate solutions with a higher chance of serving as viable drug leads. 

In  the  first  section  of  this  presentation  we  briefly  describe  the  Multi-objective  Evolutionary  Graph 
Algorithm (MEGA),  a  new multi-objective optimization de novo design algorithm that  can be used to 
design  structurally  diverse  molecules  satisfying  one  or  more  objectives.  The  algorithm  combines 
evolutionary techniques with graph-theory to directly manipulate graphs and perform an efficient global 
search  for  promising solutions.  In  the  experimental  section we present  results  from the application  of 
MEGA for designing molecules that selectively bind to a known pharmaceutical target using the ChillScore 
interaction score family[4]. The primary constraints applied to the design are based on the identified structure 
of the protein target and a known ligand currently marketed as a drug. A detailed explanation of the key 
elements of the specific implementation of the algorithm is given, including the methods for obtaining 
molecular building blocks, evolving the chemical graphs, and scoring the designed molecules. Our findings 
demonstrate that MEGA can produce several structurally diverse candidate molecules representing a wide 
range of compromises of the supplied constraints and thus, can be used as an “idea generator” to support 
expert chemists assigned with the task of molecular design.

1. Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. Application of Complex Aldol Reactions to the 
Total Synthesis of Phorboxazole B. J. Am. Chem. Soc. 2000, 122, 10033-10046.

2. Nicolaou, C. A.; Brown, N.; Pattichis, C. Molecular optimization using computational multi-
objective methods. Curr. Opin. Drug Discov. Dev. 2007, 10(3), 316-24. 

3. Schneider, G.; Fechner, U. Computer-based de novo design of druglike molecules. Nat. Rev. Drug 
Discov. 2005, 4(8), 649-663.

4. Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A graph-based genetic algorithm and its 
application to the multiobjective evolution of median molecules. J. Chem. Inf. Comput. Sci. 2004, 
44(3), 1079-1087.

5. Tietze, S; Apostolakis, J. GlamDock: development and validation of a new docking tool on several 
thousand protein-ligand complexes. J. Chem. Inf. Model. 2007, 47(4), 1657-1672. 

D-2 : Planning organic synthesis using reaction types derived from reaction databases
C.H. Schwab 1, B. Bienfait 1, J. Gasteiger 1,2

1 Molecular Networks GmbH, Erlangen, Germany
2 Computer-Chemie-Centrum and Institute of Organic Chemistry, University of Erlangen-Nuremberg,  
Erlangen, Germany
A novel,  reaction  database-driven  approach  for  a  stepwise  retrosynthetic  analysis  of  a  given  target 
compound will be presented. The method uses a knowledge base of different reaction types that has been 
automatically derived from either a commercially available or in-house reaction database.  New synthetic 
routes are suggested by applying appropriate reaction types to the target compound in a retrosynthetic and 
automated manner. At each step, the proposed precursors are automatically searched in integrated catalogs 
of available starting materials for their commercial availability. The rather general definition of chemical 
reactivity provides the user with new ideas for organic synthesis and deals with a broad range and diverse 
chemistry, including, e.g., formation of heterocycles, pericyclic reactions, rearrangements and metathesis.
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The  method  has  been  implemented  in  the  web-based,  easy-to-use  program  system  THERESA (THE 
REtroSynthesis  Analyser)  and contains  tools  to  browse the suggested syntheses  and the  corresponding 
published reaction data, such as literature data and experimental conditions, to build and display interactive 
synthesis trees and to generate reports.

The presentation will  provide insights into the general  algorithms of the approach and demonstrate the 
application of THERESA to some medicinally relevant synthetic targets.

D-3 : Knowledge-based de novo design using reaction vectors

 H Patel 1, V Gillet1, B Chen 2, M Bodkin 3

1 University of Sheffield, Department of Information Studies, Sheffield, UK
2 University of Sheffield, Department of Chemistry, Sheffield, UK
3 Eli Lilly UK, Windlesham, UK
A number of de novo design tools have been described with the aim of generating novel molecules for drug 
design, however, they are limited in their ability to propose molecules which are synthetically feasible. Here 
we describe a novel method that  utilises reaction vectors from databases of known reactions to generate 
structures of interest. The method has been implemented using the pipelining environment KNIME (1). 

The reaction vector captures the changes that take place at the reaction centre, without the need for complex 
reaction  mapping  procedures  (2).   By  first  describing  the  individual  components  of  a  reaction  using 
descriptors such as atom pairs, the overall reaction vector is generated using:

Reaction Vector = [Sum of product vectors] – [Sum of reactant vectors]

We show how reaction vectors can be used to generate novel molecules for synthesis based on simple 
transformations involving, for example,  a simple functional  group substitution, to more complex multi-
component reactions of the form (R1 + R2 → P1 + P2).  We demonstrate the application of the method to 
the design of known drugs from simple starting materials and a ‘cleaned’ reaction dataset, via mixing and 
matching of reaction transforms and reactants.   

We also describe the how the method can be developed into an automated multi-objective application for de 
novo design.

References:
1. Konstanz Information Miner. www.knime.org
2. Broughton, H. B. et al. Methods for Classifying and Searching Chemical Reactions. United States 

Patent Application 367550, 25 Sept, 2000. 

D-4 : Recore: Instant 3D scaffold hopping using replacement fragments
P Oledzki, C Detering, T Zuhl, M Gasterich ,  C Lemmen,  BioSolveIT GmbH, Sankt Augustin, Germany
Recore is a 3D ligand scaffold replacement tool [1] which allows the user to generate new ligand cores 
within a few seconds. The method is an ideal solution for deriving new lead structures from existing ones, 
which may be patent protected or otherwise unusable.

Given  a  user-defined  central  part  of  a  molecule  (the  ‘core’),  Recore  identifies  the  geometrically  best 
possible replacement from a 3D fragment database containing millions of moieties. This is achieved within 
seconds using an ultra-fast indexing mechanism, based on the exit vectors which connect the core with the 
side-chains.

We used Recore to define multiple 3D fragment sets based on either 3D crystal structures or generated 
conformers of drug-like molecules. In this step Recore identifies suitable fragments by shredding according 
to RECAP-type rules [2] for high likelihood of synthetic accessibility. We then applied the search engine on 
a number of pharmaceutically relevant targets using the bioactive conformations of known binders.

We present results showing that Recore is able to replace a central unit such as to jump from one chemical 
series to another, while preserving the position of the side-chains. In the hit-lists of Recore we identified 
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other known actives in their bioactive conformation. We show that the use of additional pharmacophore-
constraints help further guide the search towards relevant solution sets.

1. Maass, P.; Schulz-Gasch, T.; Stahl, M.; Rarey, M. Recore: A Fast and Versatile Method for 
Scaffold Hopping Based on Small Molecule Crystal Structure Conformations. J. Chem. Inf.  
Model. 2007, 47(2), 390-399.

2. Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M. RECAP—retrosynthetic combinatorial 
analysis procedure: a powerful new technique for identifying privileged molecular fragments with 
useful applications in combinatorial chemistry. J. Chem. Inf. Model. 1998, 38(3), 511-522.

E-1 : Turns revisited: Clustering turn structures using ESOMs leads to a uniform 
classification for open, normal and reverse turn families
O. Koch 1/2, G.. Klebe 2

1 The Cambridge Crystallographic Data Centre, Cambridge, CB2 1EZ, UK
2 Philipps-University Marburg, Institute of Pharmaceutical Chemistry, 35032 Marburg, Germany
In  contrast to helices and β-sheets, turns are irregular secondary structure elements. They are up to six 
residues in length and contain a hydrogen bond or a specific Cα-Cα distance between the first and last 
residue.  Because  of  their  irregularity  and  a  lack  of  data  in  the  past,  previous  classifications  do  not 
accommodate possible new turn-types in the current protein structures. Additionally, there is a lack of an 
overall classification for all turn families. Therefore, a new classification was done from scratch. Based on a 
non-redundant dataset of 1903 protein chains, all possible turn structures were retrieved from Relibase[1] 

using Reliscript (the Python-based interface) and clustered using Emergent SOMs[2]. The backbone torsion 
angles describing a turn, including the ω torsion angle, were used as the feature vector.

In general, a hydrogen bond between COi – NHi+n is expected[3] within hydrogen bonded turns (‘normal’ 
turns, Figure 1b), but this analysis shows that NHi – COi+n hydrogen bonded turns also exists (‘reverse’ 
turns,  Figure  1a).  They have  been  theoretically described[4],  but  never  reported  previously in  proteins. 
Furthermore, a Cα-Cα distance cut-off of 10 Å was chosen for structures lacking a hydrogen bond followed 
by a visual inspection of the retrieved clusters to identify turn structures (‘open’ turns, Figure 1c). 

An analysis of these turn families reveals that, based on the amino acid propensities, the differentiation into 
normal, open and reverse turn families seems reasonable. Additionally, a large fraction of open turn-types 
would be ignored using a shorter distance cut-off. Finally, this survey describes 3 open turn, 4 normal and 5 
reverse turn families with several turn-types that have not been previously described (Table 1). Protein 
sequence-based turn prediction with high accuracy confirmed this new categorization based on machine 
learning methods as consistent and well-defined[5].

In  addition  to  the  information  about  helices  and  β-sheets  retrieved  from  the  PDB,  this  new  uniform 
classification of turn families is integrated into Secbase, a new extension of Relibase. Relibase is an object-
oriented data management system and stores the three dimensional structural information of protein-ligand 
complexes  deposited  in  the  PDB.  Both  tools  provide  integrated  access  for  the  analysis  of  secondary 
structure elements within proteins, protein-protein interfaces and ligand binding.

1. Hendlich, M.; Bergner, A.; Günther, J.; Klebe, G. Relibase: design and development of a database 
for comprehensive analysis of protein-ligand interactions. J. Mol. Biol. 2003, 326(2), 607-620.

2. Ultsch, A. Maps for the Visualization of high-dimensional Data Spaces. In Proceedings of  
Workshop on Self-Organizing Maps (WSOM); Kyushu, Japan, 2003, 225-230.

3. Chou, K.C. Prediction of tight turns and their types in proteins. Anal. Biochem. 2000, 286, 1-16.
4. Toniolo, C. Intramolecularly hydrogen-bonded peptide conformations. CRC Crit. Rev. Biochem. 

1980, 9(1), 1-44.
5. Meissner, M.; Koch, O.; Klebe, G.; Schneider, G. Prediction of Turns in Protein Structure by 

Kernel-Based Machine Learning Methods, submitted
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Figure 1: Different turn conformations: a) reverse ε-turn (3 residues), b) normal β-turn (4 residues), c) open 
β-turn (4 residues)

Table 1: Description of used datasets for clustering with number of retrieved turn-types (open turns show 
structure cluster that looks more like: a) a kink or b) a hook)

designation number of
residues structures turn-types

op
en

β 4 137101 11 + 6a

α 5 19607 21 + 1a

π 6 21204 22 + 6b

no
rm

al

γ 3 20198 2
β 4 28718 6
α 5 91726 9
π 6 3994 8

re
ve

rs
e

δ 2 210 9
ε 3 134 5
- 4 1957 18
- 5 1340 21
- 6 954 13

E-2 : Searching fragment spaces with feature trees
Uta Lessel, Bernd Wellenzohn, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss,  
Germany
Virtual combinatorial chemistry easily produces billions of compounds, which can not be screened in a 
conventional manner even with the fastest methods available. An efficient solution for such a scenario is the 
generation  of  Fragment  Spaces  which  encode  huge  numbers  of  virtual  compounds  by  their 
fragments/reagents and rules of how to combine them. Fragment Spaces can be screened with so-called 
Fragment Space searches.

Rarey and Stahl [1] published a method for such searches based on the Feature Tree descriptor [2]. The 
Feature Tree descriptor is frequently used for virtual screening and has a potential for scaffold hopping [e.g. 
3]. The Fragment Space searches are performed without ever fully enumerating all virtual products.

In this presentation we show the preparation of Fragment Spaces based on combinatorial chemistry and 
share our experiences with Fragment Space searches based on the Feature Tree descriptor in a possible 
workflow to use this methodology in a pharmaceutical setup.

1. Rarey, M.; Stahl, M. Similarity searching in large combinatorial chemistry spaces. 
J. Comp.-Aided Molecular Design 2001, 15, 497-520.

2. Rarey, M.; Dixon, J.S. Feature trees: A new similarity measure based on tree matching. 
J. Comp.-Aided Molecular Design 1998, 12, 471-490.
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3. Good, A.C.; Hermsmeier, M.A.; Hindle, S.A. Measuring CAMD technique performance: A virtual 
screening case study in the design of validation experiments. J. Comp.-Aided Molecular Design 
2004, 18, 529-536.

E-3 : Three way comparison of chemical spaces avoiding structure exchange
Jens Loesel, Pfizer, Sandwich, United Kingdom
The comparison of chemical space between two compound collections tends to involve knowledge about 
the individual  structures  forming the collections.  Unfortunately the exchange of structure data between 
pharmaceutical  companies  can  pose  such  big  administrative  hurdles  that  the  scientific  effort  of  a 
comparison sometimes seems not worthwhile. In addition a generic comparison between two compound 
collections  tends  to  outline the  difference  and  novelty between  them.  To investigate  the  quality of  an 
unknown set more labor intense work is often necessary.

We tried to address both these issues by developing a generic three way comparison between chemical 
spaces  using a fixed six  dimensional  BCUT space as  a  frame of  reference.  Into  this  space we map a 
background set, a reference set as well as an unknown set of compounds.

The background and reference set it used to generate scores for individual bins between zero and one – 
based on enrichment or lack of it in the reference set compared to the background set. The unknown set is 
then mapped into the same bins and an overall score between zero and one is generated which is based on 
the occupancy figures of these set in the individual bins.
This work flow allows a comparison of compound collections by exchanging the frame of reference and the 
binning operation in one way and by getting bin occupancy values back. Multiple reference sets can be 
mapped into the same space. These reference sets represent the space of known drugs, active compounds in 
specific target classes or property spaces like high MW or ClogP areas. Each set will generate an individual 
score for the unknown set – giving an indication for the suitability of the unknown set to be fit for a set of 
properties or targets.

Once  multiple  reference  sets  are  generated  the  process  can  be  automated  –  allowing  the  scoring  and 
evaluation of a new collection in mere minutes without manual intervention.

One often cited disadvantage of BCUT descriptor is the inability to use them for a targeted design. For the 
purpose of this work the obfuscation of chemical structure into Eigenvalues is seen as an advantage. The 
exchange of raw descriptors like fingerprints always bears the danger of re-engineering of the descriptor via 
a GA approach into a (similar) structure. This problem doesn’t exit in the outlined work flow.

Some examples of scores for Gene classes and properties are shown in the presentation. A discussion will 
focus on limitations – as for some analysis you still need structure information. The sensibility of the score 
will be demonstrated using two sets with (known) different Molecular Weight distributions. 

E-4 : Use of data mining to help identify compounds that are unstable in DMSO
J. Hussain, G Harper, Z Blaxill, I Areri, F Saremi-Yarahmadi, S Pickett, P Sidebottom, GlaxoSmithKline 
Research & Development Limited, Stevenage, UK
Dimethyl sulfoxide (DMSO) has the ability to dissolve a wide range of organic compounds hence it is not 
surprising that it is the solvent of choice for the solution storage of large compounds sets for use in High 
Throughput Screening (HTS). One of the issues that need to be addressed when new compounds are added 
to a HTS compound collection is the likely stability of the compounds in DMSO. GSK and other companies 
[1,2], employ a set of in silico substructural filters to remove known unstable compounds from their HTS 
compound collections. However, the diversity of these compound sets is large hence it is likely that many 
compounds that degrade in DMSO are not captured by these filters. The presentation will explain some of 
the work done within GSK to identify further compounds and substructures that are unstable within DMSO. 

GSK has done a significant amount of compound quality assurance (QA) work to make sure its legacy HTS 
compound collection does not contain any impure compounds [1]. Additionally any new compounds that 
are purchased by GSK go through the QA process before entering the HTS collection. Because of this, GSK 
now has a large volume of data on compounds that do not pass the QA process. This data is inherently noisy 
as compound degradation is just one of the many reasons why a compound can fail QA. The talk will 
describe the use of a data-driven algorithm [3] to mine this noisy data and retrieve substructures that may be 
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unstable in DMSO.

The data driven algorithm will be explained, along with the range of molecular descriptors used in the 
algorithm,  from  simple  substructures  to  more  complex  pharmacophoric  representations.  The  talk  will 
present the results of the data driven analysis and describe subsequent experimental work which shows that 
a selection of the substructures selected by the data driven algorithm do indeed degrade in DMSO. The 
future direction of the work will also be discussed; describing how the data-driven technique has potential 
to  highlight  those  compounds  that  need  to  be  re-checked  for  purity  to  help  maintain  a  high  quality 
compound collection. 

1. Lane, S. J.; Eggleston, D. S.; Brinded, K. A.; Hollerton, J. C.; Taylor, N. L.; Readshaw, S. R. 
Defining and maintaining a high quality screening collection: the GSK experience. Drug 
Discovery Today. 2006, 11, 267-272.

2. Schopfer, U.; Engeloch, J.; Stanek, J.; Girod, M.; Schuffenhauer, A.; Jacoby, E.; Acklin, P. The 
Novartis Compound Archive – From Concept to Reality. Combinatorial Chemistry & High 
Throughput Screening. 2005, 8, 513-519.

3. Harper, G.; Bravi, G. S.; Pickett, S. D.; Hussain, J.; Green, D. V. S.; The Reduced Graph 
Descriptor in Virtual Screening and Data-Driven Clustering of High-Throughput Screening Data. 
J. Chem. Inf. Comput. Sci. 2004, 44, 2145-2156. 

F-1 : CypScore - in silico case studies on metabolic stability optimization 
A. H. Göller 1, M. Hennemann 2, T. Clark 2

1 Bayer Healthcare AG, Bayer Schering Pharma Global Drug Discovery, Wuppertal, Germany
2 Computer Chemie Centrum, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Metabolism (the M in ADMET) via first-pass clearance leads to low bioavailabilities and is one of the 
unfavorable ADMET properties leading to the termination of lead optimization and development projects. 
Additionally, toxic metabolites and metabolites altering the overall metabolism via inhibition or induction 
of CYP enzymes cause severe side effects.

It  is therefore highly desirable to have a tool to predict the lability of specific atomic positions and the 
metabolites of any compound in silico, since (i) experimental metabolite determinations can often not done 
be for each interesting project compound due to resource limitations, (ii) even state-of-the-art experiments 
often provide only larger fragments but not the exact atomic position metabolized, (iii) an in silico method 
allows to calculate labilities for compounds not yet synthesized and the metabolism of the metabolites, i.e. 
to simulate multi-step reactions.

CypScore  is  an  in  silico prediction software  for  small  molecule metabolic  oxidations  [1]  mediated by 
cytochrome P450s by applying distinct models for the most important types of oxidation reactions. The 
models were established based on an in-house created literature compound database comprised of about 850 
compounds with about 20000 non-hydrogen atoms labile to about 2400 metabolic transformations. The 
models were created by a combination of data-mining and linear regression techniques to yield optimized 
predictions  of  the  labilities  of  the  compounds.  The  models  are  based  on  Parasurf  atomic  reactivity 
descriptors [2]  from VAMP AM1 quantum chemistry [3] calculated electron density distributions fitted 
against  positionally defined  labile  molecular  positions.  The  different  reaction  models  in  CypScore  are 
appropriately weighted and allow for direct  semi-quantitative comparison of the labile positions in one 
molecule (e.g. aliphatic oxidation vs. hydroxylation), in congeneric series, and in heterogenous datasets. 
Due to the quantum-chemistry base of the reactivity descriptors, CypScore does predictions ab initio and is 
not just a learned method. Thus, it is able to extrapolate outside the dataset used for calibrating the models.

CypScore was carefully validated against literature and in-house data sets where the software was able to 
find the major metabolite(s) for about 90 % of the compounds if considering the 3 weakest positions in each 
molecule. It is regularly applied to in-house projects for parallel SAR and metabolism optimization.

In  this  paper  we  present  several  literature  examples  of  optimization  strategies  to  reduce  first-pass 
metabolism in CCR5 antagonists, endotehelin antagonists, farnesyltransferase inhibitors, Cox-2 inhibitors, 
thrombin inhibitors and mGlu5 allosteric antagonists and one generic in-house example which illustrate the 
capabilities of the CypScore approach. 
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1. (a) GRC Computational Chemistry, 2006, Les Diablerets, Switzerland, Talk; (b) SMI in silico 
ADMET conference, 2007, London, UK, Talk; (c) 4th Joint Sheffield Conference on Chemoin-
formatics, 2007, Sheffield, UK, Poster; (d) publication in preparation.

2. Parasurf, CEPOS InSilico Ltd., 26 Brookfield Gardens Ryde, Isle of Wight PO33 3NP. 
3. VAMP 10.0, Clark, T.; et al., Erlangen 2007.

F-2 : SyGMa: combining expert knowledge and empirical scoring in the prediction of 
metabolites
L. Ridder, M. Wagener, Molecular Design & Informatics Department, Organon, part of Schering-Plough,  
The Netherlands
Predictions of potential metabolites, based on chemical structure, are becoming increasingly important in 
drug  discovery to  guide  medicinal  chemistry addressing  metabolic  issues  and  to  support  experimental 
metabolite  screening  and  identification.  We  present  a  novel  rule-based  method,  SyGMa  (Systematic 
Generation of Metabolites), to predict potential metabolites of a given parent structure. A set of reaction 
rules covering a broad range of phase 1 and phase 2 metabolism has been derived from metabolic reactions 
reported in the Metabolite database to occur in man. An empirical probability score is assigned to each rule 
representing the fraction of correctly predicted metabolites in the training database. This score is used to 
refine the rules and to rank predicted metabolites. To obtain a better overview of which metabolic reactions 
are reproduced / not reproduced by SyGMa, and to support ongoing efforts to extend the rules, a similarity 
analysis of the reactions present in the database was performed and mapped with the SyGMa results. The 
current rule set of SyGMa covers approximately 70% of metabolic reactions observed in man.

Evaluation of the rule based predictions demonstrated a significant enrichment of true metabolites in the top 
of  the  ranking  list:  while,  in  total,  68%  of  all  observed  metabolites  in  an  independent  test  set  were 
reproduced by SyGMa, a large part, 30% of the observed metabolites, were identified among the top 3 
predictions. From a subset of cytochrome P450 specific metabolites, overall 84% were reproduced, with 
66% in the top 3 predicted phase 1 metabolites.

Specific examples are given to demonstrate the usage of SyGMa in experimental metabolite identification 
as well as the application of SyGMa to suggest chemical modifications improving the metabolic stability of 
compounds.

Finally,  a  method will  be presented  to  supplement  each  prediction with the  most  similar  experimental 
examples in a metabolite database. This enables the user to quickly assess with more detail the value of 
individual SyGMa predictions.

F-3 : TopoHERG – A highly selective pharmacophoric classifier for hERG-channel active 
compounds
B. Nisius 1, A. H. Göller 2

1 B-IT Life Science Informatics, University of Bonn, Germany, and Bayer Healthcare AG, Bayer Schering 
Pharma Global Drug Discovery, Wuppertal, Germany
2 Bayer Healthcare AG, Bayer Schering Pharma, Global Drug Discovery, Wuppertal, Germany

Cardiac arrhythmia as a side-effect of many drugs has become a major pharmacological safety concern and 
led to the withdrawal of many drugs through recent years. Virtually every case of prolonged duration of 
cardiac  action  potential  related  to  drug  exposure  (long  QT syndrome)  can  be  traced  to  one  specific 
mechanism: blockade of Ikr current in the heart, conducted by an ion channel encoded by the human ether-a-
gogo-related gene (hERG).  

Experimental and modelling results provide clear evidence that ligand binding is rather unspecific and in-
homogenous, and there will exist multiple binding SAR’s. It is therefore wise to combine multiple models 
based on different structure and property descriptors. 

Our  highly specific  TopoHERG approach  uses  the  Tripos  Topomer  Search  [1]  to  compare  any  query 
molecule via topomer similarity to a database of known actives and inactives [2] using the fact that similar 
compounds tend to show similar biological effects. The classifier with strict topological distance classifies 
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about  54 % of the compounds with a  specificity of 95 % and a sensitivity of  76 % on the classified 
compounds.

The unclassified compounds were then run through a decision tree-based classifier based on clogP, CMR 
and the availability of a ionizable nitrogen we adapted from literature [3]. Since the classifier was created 
on 490 Johnson&Johnson in-house compounds,  our  data are a  real  validation set.  The outcome of the 
combined TopoHERG  and decision-tree classifiers on the complete dataset is a sensitivity of 54 %, a 
specificity of 94 % and overall 87 % of the compounds predicted correctly.

TopoHERG, has a high predictivity for any compound it is applicable to due to the fact that regardless of 
the binding mode of any chemotype the model will  classify by inherent  pharmacophoric similarity.  By 
design, the model will improve with any new compound added to the database which can grow on a daily 
basis without re-training. Additionally, no split into training and test set is necessary, broadening the domain 
of  applicability  of  the  method.  Combined  with  one  or  multiple  orthogonal  classifiers  the  overall 
performance of the model can fulfill the needs of pharmaceutical industry. 

1. Cramer, R. D.; Jilek, R. J.; Andrews, K. M. dbtop: Topomer similarity searching of conventional 
structure databases, J. Molec. Graph. Mod., 2002, 20, 447-462. 

2. Database: The dataset consists of 475 compounds. 232 compounds were collected from publicly 
available hERG blockade IC50 data, the other compounds are in-house patch clamp measurements 
on HEK and CHO cells. 276 compounds in the dataset don’t exhibit hERG blockade (pIC50<5), 
118 compounds show medium hERG activity (5<=pIC50<6) and 82 compounds are highly hERG 
active (pIC50>=6).

3. (a) Buyck, C.; Tollenaere, J.; Engels, M.; Clerck, F. D.; An in silico model for detecting potential 
hERG blocking; Poster presentation, Euro-QSAR 2002, Bournemouth, 2002; (b) Aronov, A. M.; 
Goldman, B. B.; A model for identifying HERG K+ channel blockers; Bioorg. & Med. Chem. 
2004, 12, 2307-2315.

F-4 : Compound set optimization and sequential screening using Emerging Chemical 
Patterns
J. Auer , J. Bajorath, University of Bonn, Bonn, Germany
A method called “Emerging Chemical Patterns” (ECP) has recently been introduced as a novel approach to 
binary  molecular  classification1.  The  underlying  pattern  recognition  algorithm  was  first  introduced  in 
computer science and then adopted for applications in medicinal chemistry and compound screening. The 
methodology makes it possible to extract key molecular features from very few known active compounds 
and classify molecules according to different potency levels. The approach was developed in light of the 
situation often faced during the early stages of lead optimization efforts: too few active reference molecules 
are available to build computational  models for the prediction of  potent  compounds.  The ECP method 
generates high-resolution signatures of active compounds by selecting class-specific combinations of 2D 
descriptor value ranges. These signatures can then be used to build highly accurate classifiers (Figure 1).

A special feature of ECP is its ability to accurately classify molecules on the basis of very small training 
sets containing only a few compounds. This feature is highly relevant for virtual compound screening when 
only very few experimental  hits  are available as  templates.  We designed an experiment  based on four 
classes  from literature  sources  (benzodiazepines,  dihydrofolate  reductase  inhibitors,  glycogen  synthase 
kinase-3 inhibitors and HIV protease inhibitors), comparing ECP to a decision tree approach and a binary 
QSAR implementation. The analysis showed that ECP produced predictive models on the basis of training 
sets consisting of only three compounds.1

In  addition  to  individual  compound  predictions,  an  iterative  ECP scheme  has  been  designed  which 
optimizes a compound set's potency in a sequential manner. In each iteration, small compound sets are 
selected as training sets and used to remove weakly potent compounds. We could show that this iterative 
ECP classification produced compound selection sets with increases in average potency of up to 3 orders of 
magnitude (Figure 2). 

The ability of ECP to produce highly accurate classifiers based on small training sets can also be used to 
reduce  the  experimental  effort  in  high-throughput  screening  campaigns  by  combining  experimental 
screening and ECP classification in a sequential screening methodology2. We simulated sequential screening 
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using an  experimental  high-throughput  screening (HTS)  data  set  containing inhibitors  of  dihydrofolate 
reductase. We focused on minimizing the number of database compounds that need to be evaluated in order 
to identify a substantial fraction of available hits. Iterative ECP calculations recovered on average between 
19% and 39% of available hits in the data set while dramatically reducing the number of compounds that 
need to be tested to 0.002% - 9% of the screening database.2 

1. Auer, J. and Bajorath, J. Emerging Chemical Patterns: A New Methodology for Molecular 
Classification and Compound Selection  J. Chem. Inf. Model. 2006, 46, 6, 2502 – 2514.

2. Auer, J. and Bajorath, J. Simulation of Sequential Screening Experiments Using Emerging 
Chemical Patterns, Medicinal Chemistry 2008, 4, 1, 80 – 90.

Figure 1: Classification of compounds based in ECPs. Class-specific descriptor combinations (patterns) 
are computed from a training set. For classification, the supports (fraction of training compounds that match 
a pattern)  of  all  patterns  matching the test  compounds are accumulated and the class  with the highest 
accumulated support is the predicted class.

Figure 2: Simulated lead optimization. ECP, binary QSAR, and a decision tree are used to select highly 
potent sets of active compounds in an iterative procedure. During each step, compounds are classified as 
highly active (<= 1μM) or weakly active (> 1μM) and weakly active compounds are iteratively removed. 

F-5 : Interpretable activity models: Exploring the limits of pharmacophores and 3D QSAR 
methods
D.A. Evans , D.A. Thorner, M.J. Bodkin, Eli Lilly & Co. Ltd., Lilly Research Centre, Windlesham, UK
QSAR modeling in  pharma is often focused on the rapid production and systematic updating of models 
based upon large numbers of easy to calculate molecular descriptors or fingerprints whose interpretation 
can be difficult. Such methods typically output either a predicted activity class or a numerical value with a 
significant uncertainty. This makes them most useful in the early stage of a drug discovery project to screen 
existing compounds, prioritize library design options or check for potential off-target activities. In the later 
lead  optimization  phase  significant  activity  data  on  a  particular  compound  series  already  exist  and 
medicinal chemists tend to be searching for a systematic understanding of the SAR. Activity models which 
are interpretable by a medicinal chemist are more useful in deciding ‘what to make next?’
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Recent validation studies on QSAR methods have demonstrated that equivalent or superior performance 
can be obtained with more interpretable 3D QSAR methods such as CoMFA compared to selected 2D 
methods.1 The  atom  based  grid  method  Phase  was  also  demonstrated  to  be  generally  superior  in 
performance to the pharmacophore alignment method Catalyst Hypogen.2 The work to be reported aims to 
establish the viability of using pharmacophore-based alignment to produce 3D QSAR models from a project 
SAR of potentially thousands of compounds in an automated fashion. We compare the performance of 
Phase and CoMFA and the quality of QSAR models generated from manual and pharmacophore based 
alignments and also rank these against the now commonly used fingerprint-based support vector machine 
(SVM) models.  Interestingly,  we present results on the variation of predictive QSAR performance with 
training set size and investigate the observed performance plateau.

The use  of  automated  pharmacophore  overlays  become computationally demanding when hundreds  of 
molecules need to be considered simultaneously. We address this problem by pre-clustering the data set 
using 2D methods before building pharmacophore models within and across each cluster and combining the 
derived pharmacophores into a minimal set. This approach aims to answer the common question of whether 
compounds of two chemical series have the same binding mode and hence transferable SAR, by testing 
both whether they have the same pharmacophore and whether the combined series can produce a good 
quality QSAR model.3 We will discuss the delivery of the approach as a desktop tool for medicinal chemists

1. Sutherland, J.J.; O'Brien, L.A; Weaver, D.F. A Comparison of Methods for Modeling Quantitative 
Structure-Activity Relationships. J. Med. Chem., 2004, 47, 5541 -5554, 

2. Evans, D.A.; Doman, T.N.; Thorner, D.A.; Bodkin, M.J. 3D QSAR methods: Phase and Catalyst 
Compared. J. Chem. Inf. Model., 2007, 47, 1248 -1257.

3. Iyer, M.; Hopfinger, A. J. Treating Chemical Diversity in QSAR Analysis: Modeling Diverse 
HIV-1 Integrase Inhibitors Using 4D Fingerprints. J. Chem. Inf. Model., 2007, 47, 1945 -1960. 

F-6 :  QSAR modeller seeks meaningful relationship
C.L. Bruce 1, S.D. Pickett 2, J.D. Hirst 1

1 School of Chemistry, University of Nottingham, Nottingham, U.K.
2 GlaxoSmithKline, Stevenage, U.K.
Disappointment with QSAR has been articulated recently1 and although the technique is an important tool 
in the drug discovery process, improvements perhaps have not been as forthcoming as in other areas. A 
good  model  comprises  several  components.  Predictive  accuracy  is  paramount,  but  it  is  not  the  only 
important  aspect. In  addition, one should apply robust  and appropriate statistical  tests to the models to 
assess their significance or the significance of any apparent improvements. The real impact of a QSAR, 
however, perhaps lies in its chemical insight and interpretation, an aspect which is often overlooked. 

Any insight into the relationship between descriptors and structure can be used to further our understanding, 
but obtaining this insight is not always as straightforward as calculating predictive accuracy. Interpretation 
is dependent on the classifier. For example, a decision tree is simple to interpret, but does not produce the 
most  predictive  models.  Similarly,  support  vector  machines  offer  excellent  predictive  capability,  but 
generate a model that is difficult to interpret. 

Previously, we have shown random forests predict with accuracies comparable to support vector machines.2 

A decision  tree  is  easier  to  interpret  than  a  random forest;  Breiman  gave  them an  ‘A+’ and  ‘F’ for 
interpretability, respectively.3 It is the different tree construction and number of trees present in a forest that 
makes their interpretation complicated. One cannot simply glance through the forest and readily see the 
model, whereas one can with a decision tree. 

Therefore, to obtain useful interpretation from a random forest we have employed a selection of tools. This 
includes alternative representations of the trees using SMILES and SMARTS. Using existing methods we 
can  compare  and  cluster  the  trees  in  this  representation.  Descriptor  analysis  and  importance  can  be 
measured at the tree and forest level. Pathways in the trees can be compared and frequently occurring sub 
graphs identified. The ability to distinguish multiple modes of action in a data set is tested. In terms of 
model assessment, all test data can be assigned a level of confidence, reflecting the extent to which the 
prediction is  an  extrapolation  from the model.  These  tools  have  been  built  around the  Weka machine 
learning workbench4 and are designed to allow further additions of new functionality.
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F-7 : Rational design of M1-Muscarinic Antagonists using combinatorial transformation
M.B. Bolger, R. Fraczkiewicz, D. Miller, J. Crison, W.S. Woltosz, Simulations Plus, Inc., Lancaster, CA,  
U.S.A.

Purpose. To develop an in silico process for de-novo design from high throughput screening (HTS) data.

Methods.  HTS  data  for  61,044  M1-muscarinic  antagonists  (PubChem  .AID  628)  were  filtered  and 
classified  by  ClassPharmer™  (Simulations  Plus,  Inc.,  Lancaster,  CA).  A categorical  Support  Vector 
Machine  Ensemble  (SVME)  model  for  an  N-phenylpiperazine  chemical  class  with  168  members  was 
generated using ADMET Predictor™ (AP). SVME performance accuracy: 91% TP, 88% TN, with only 5% 
FP, and 5% FN. We automatically generated 10,000 bioisosteres of the lowest  molecular weight active 
molecule  in  this  class  using  the  Combinatorial  Transformation  feature  in  ClassPharmer.  The  new 
compounds were filtered using AP rules for ADMET properties and for M1-antagonist activity. Finally, the 
resulting data was exported and loaded into ClassPharmer for final class generation.

Results.  10,000  potential  antagonists  produced  6  molecules  predicted  to  be  active  and  with  only one 
adverse ADMET characteristic. The most active class (phenyl-perhydrodiazepines) had 226 members with 
68% of the molecules predicted to be active based on the SVM categorical model. Three of the molecules 
with the lowest ADMET Risk score had no hits in a substructure search of Chemical Abstracts registry 
indicating  novel  composition  of  matter.  These  molecules  scored  three  hits  in  the  ADMET Risk  scale 
indicating potential interaction with the estrogen receptor, potential toxicity on the fat-head minnow LD50 
scale, and potential inhibitory activity at the hERG potassium channel.

Conclusions. Classification, activity modeling, and ADMET property estimation for HTS data, combined 
with Combinatorial Transformation feature in ClassPharmer, are a powerful set of tools for the rational 
design of novel M1-muscarinic receptor antagonists

1. May, L.T. and A. Christopoulos, Allosteric modulators of G-protein-coupled receptors. Curr Opin 
Pharmacol, 2003. 3(5): p. 551-6.

2. Gasparini, F., R. Kuhn, and J.P. Pin, Allosteric modulators of group1 metabotropic glutamate 
receptors: novel subtype-selective ligands and therapeutic perspectives. Curr Opin Pharmacol, 
2002. 2(1): p. 43-9.

3. Spalding, T.A., et al., Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol 
Pharmacol, 2002. 61(6): p. 1297-302.

F-8 : Structure-activity landscapes:  a new way to study a structure-activity relationship
J. van Drie1, R. Guha 2

1 John H Van Drie Research LLC, Andover, MA, USA,
2Indiana University, Bloomington, IN, USA
When first confronted with a new SAR (structure-activity relationship), it is a challenge to identify the 
salient aspects of that SAR.  We present a new method1, Structure-Activity Landscapes, that facilitates the 
identification of those salient features, by studying the SAR pairwise, and ranking all pairs by a simple 
index

SALI = ΔAij / (1 – Sij)
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which highlights those pairs of molecules most similar, with the largest change in activity.  The similarity of 
a pair of molecules is denoted Sij; their activity differences is denoted Δaij.

In addition to simply looking at a list of pairs sorted by the SALI, one can use the SALI to convert an SAR 
into a graph representation, which further facilitates obtaining an overall perspective on the SAR.

Finally, the SALI index leads to a novel metric for assessing the performance of a computational model of 
that SAR, and can even be used as a metric for discovering novel models.

Examples of each of these applications will be highlighted using literature SAR.

1. Guha, R.; van Drie, J.H.,  The Structure-Activity Landscape Index:  Identifying and Quantifying 
Activity Cliffs. J. Chem. Inf. Model. 2008, accepted for publication.

◄ 65 ►



Eighth International Conference on Chemical Structures

◄ 66 ►



Eighth International Conference on Chemical Structures

Poster Session AbstractsPoster Session Abstracts

◄ 67 ►



Eighth International Conference on Chemical Structures

◄ 68 ►



Eighth International Conference on Chemical Structures

Poster Session AbstractsPoster Session Abstracts

P-1 : Discovery Portal – a novel tool to increase productivity, efficiency and transparency 
across R&D organizations
J. Tomczak, Accelrys, Cambridge, United Kingdom
Data integration and data standardization is a major challenge and an important area of investment for most 
pharmaceutical companies.  There are a number of commercial, in-house and even open source tools and 
solutions for bringing together and analyzing chemical and biological data.  However, the data are usually 
disconnected  from  the  processes  that  generate  the  data  and  internal  drug  discovery  workflows. 
Furthermore, R&D scientists have to spend significant amount of time on learning and using generic tools 
for  data  extraction,  mining and  reporting and  adapting them to their  daily practices.  Recognizing this 
bottleneck,  a  higher-level  decision  support  and  tracking  tool  can  be  designed  on  top  of  an  existing, 
integrated infrastructure that fully implements internal discovery processes. The resulting Discovery Portal 
would be a Web-based resource where scientists and managers could not only share, mine and visualize all 
of  their data and knowledge about drug discovery programs, but  also define the programs in terms of 
experiments to be performed, which in turn could be requested and tracked on-line.  The system developed 
by  Accelrys  combines  Accelrys'  products  (in  particular  Pipeline  Pilot),  modern  Web-based  enterprise 
technologies and open source frameworks.  The technology choice makes the system highly expandable and 
allows adding new capabilities to a running system.  The portal demonstrates also that limitations of Web-
based  solutions  are  not  as  restrictive  as  they  might  seem.  (Concepts  will  be  illustrated  with  specific 
implementation examples).

P-2 : A simple language for conversing between diverse applications
O Williams, A Westley, R Brown, Accelrys, Cambridge, UK

WITHDRAWN

P-3 : The use of stereo descriptors in the context of a structure validation workflow
Pedro Gomez Fabre, R Brown, Accelrys, Cambridge, UK
The proper interpretation of a chemical structure drawing within a chemical information system is essential 
for storage and retrieval as well as for the analysis of chemical structures. A Structure Validation workflow 
will  go through several  stages  of structure examination in order  to verify consistency with proprietary 
drawing  rules  and  to  identify  stereochemical  features.  This  presentation  describes  these  stages  with 
particular focus on the stereochemical analysis. The latter relies on a robust, accurate, and high performing 
CIP calculator, which was developed in a joint collaboration of scientists and software engineers. The range 
of  stereochemical  descriptors  provided  by  this  calculator  includes  regular  Cahn-Ingold-Prelog 
stereodescriptors  as  well  as  descriptors  for  identifying  stereocentres  which  are  not  explicitly specified 
(hidden) in a given structure drawing or which are incorrectly drawn.

P-4 : OSIRIS, an entirely in-house developed drug discovery informatics system
T. Sander, J. Freyss, M. Korff, J. Reich, C. Rufener, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
We  present  OSIRIS,  a  drug  discovery  informatics  system  entirely  self-developed  at  Actelion 
Pharmaceuticals  Ltd.  OSIRIS  covers  all  information  handling  aspects  from  compound  synthesis  via 
biological testing to preclinical development. Its design principles were platform and vendor independence, 
a  consistent  look  and  feel,  and  complete  coverage  of  the  drug  discovery  process  by  custom tailored 
applications. These include electronic laboratory notebook applications for biology and chemistry, tools for 
high-throughput- and secondary screening evaluation, state-of-the-art chemistry-aware data visualization, 
physicochemical property prediction, 3D-pharmacophore comparisons, interactive modeling and computing 
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grid based ligand-protein docking. Most applications were written in Java and built on top of a Java library 
layer  that  provides  reusable  functionality  and  GUI  components  such  as  structure  canonicalization, 
combinatorial enumeration, chemical editors, etc.

We use an Oracle database as a scalable persistence engine for data and documents. Its search capabilities 
were extended by writing an Oracle Cartridge to allow for SQL based chemical substructure and similarity 
searches. We also employ the Oracle ConText Option to allow document full text searches.

Exemplarily we will demonstrate OSIRIS DataWarrior, a chemistry aware data analysis and visualization 
tool. It provides simultaneous tabular and graphical views on the same data and allows interactive record 
filtering on numerical, textual or chemical criteria. It opens various file formats or may directly query the 
research database. DataWarrior is used for diverse tasks such as combinatorial library planning, microarray 
data analysis, structure activity correlations on multidimensional project data, or HTS data analysis and lead 
selection.

Concluding we consider our experience a valid prove that a high degree of in-house software development 
may be a valid alternative even for smaller drug discovery departments versus the supposedly less risky 
approach of licensing best-of-bread tools and investing substantially into their integration.

Actelion is a 10 years old biopharmaceutical company with 1700 employees of which about 250 work in 
drug discovery. We have three drugs on the marked, which exceeded CHF 1.3 billion net revenues in 2007.

P-5 : Scientific database application without borders: Empowering the scientists
Man-Ling Lee, Ignacio Aliagas, Alberto Gobbi, Genentech Inc., South San Francisco, USA
Traditionally, database applications are geared towards a scientific domain and their search capabilities are 
specific  to  that  domain.  For  example,  chemical  database applications  typically have  only 2D structure 
search functionality. It is not possible to search by 3D shape similarity or other computational methods. For 
data such as sequence or crystal data, the users have to use other database applications. This requires users 
to familiarize themselves with multiple applications.

The goal of this presentation is to demonstrate that a database application is an ideal platform for end-users 
to explore scientific methods, applications and services offered on the intranet and internet. Scientists can 
operate in a familiar environment while still  having easy access to external  applications and data from 
different scientific domains.

AEREA is a web-based database application with interfaces that enable the straightforward integration of 
external programs and services allowing users to perform cross-border investigations. External programs 
can be  integrated as  filters  in  the  query builder.  A “filter"  could be  a  3D molecule  shape  comparison 
program, enabling scientists to perform other types of structure searches in the same application. Other 
programs can be integrated as hyperlinks or service requests. This enables post-processing of the retrieved 
data.

AEREA follows the paradigm of the architecture described by Hewitt et. al.1 XML files are used to store the 
meta data describing the relationship of the data in the database and the access to the external programs. In 
addition,  the  meta  data  configures  the  graphical  user  interface.  The  xml-file  is  a  flexible  and  human 
readable way to configure the application. It  enables the integration of external programs with minimal 
programming  knowledge.  It  also  enables  to  use  AEREA for  searching  in  databases  other  than  small 
molecule databases.
We will describe the plattform focusing on the interfaces that allow for the flexibility and extensibility. We 
will illustrate the interfaces and explain the configuration by the xml definition. Examples based on the data 
in the PubChem and WOMBAT databases will be presented.

1. Hewitt, R.; Gobbi, A.; Lee, M.; A Searching and Reporting System for Relational Databases Using 
a Graph-based Metadata Representation. J. Chem. Inf. Comput. Sci. 2005, 45, 863-869.
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Fig. 1 On the right is the query builder with a query containing a shape search. For the user, the ROCS 
Shape search appears like other search constraints. As shown in the xml configuration on the left, OMEGA 
is used to generate a 3D conformation from the 2D structure input and ROCS is used to perform the 3D 
shape comparisons. (OMEGA and ROCS are products of OpenEyes Scientific Software).

P-6 : Diversity oriented virtual compound selection strategy for high throughput screening 
of potential anticancer agents
György Dormán1, Miklós J. Szabó1, Angelo Carotti6, Simona Distinto2, Amiram Goldblum4, Anna Gulyás-
Forró1, Johannes Kirchmair3, Thierry Langer3, David Marcus4, Jordi Mestres5, Orazio Nicolotti6, Ferran 
Sanz5 and Ismael Zamora5

1AMRI, Záhony u. 7, 1031 Budapest, Hungary
2Dipartimento Farmaco Chimico Tecnologico, Universita` degli Studi di Cagliari, Cagliari, Italy
3Inte:Ligand Software-Entwicklungs- und Consulting GmbH, Maria Enzersdorf, Austria
4Hebrew University of Jerusalem; Jerusalem, Israel
 5University Pompeu Fabra; Barcelona, Spain
 6University of Bari, Bari, Italy
The CancerGrid consortium was formed by ten life sciences companies and academic centers in 2007 to 
carry  out  a  three-year  multidisciplinary  research  program  funded  by  the  European  Commission 
(www.cancergrid.eu). The consortium members work together to develop novel methods to increase the 
chance of finding potential anticancer agents. Grid-based computing technology is applied to the virtual 
screening of huge discovery libraries in order to identify promising lead compounds.  According to the 
project plan 30,000 small molecules are selected by various state-of-the-art computational methods, and are 
then screened in cell-based and target-based assays. This stage will be followed by model development and 
validation based on the large number of screening data.  

In order to discover novel chemotypes for anticancer agents, a multi-step virtual screening procedure was 
developed and carried out on the initial compound set which includes merged collections from repositories 
of  University of  Bari  (1,500) and AMRI (199,100) leading to a  diverse library (30,000) for  biological 
screening.  Forty percent of the compounds were selected against specific cancer targets (HSP90, RET, 
HDAC and MMP) , or their known, biologically active ligands by using  in silico  similarity and 2D/3D 
target-based methods [1-4].  Another 50% of the compounds were selected using Drug Like Index (DLI) [5] 
and strict ADME filters [6]. In order to support future works of HTS as well as QSAR model building, a 
reference set was selected randomly (5%) and a "Trojan horse"-type of counter set (5%) having poor Drug 
Like  Index and  ADME properties  was  also included.  We present  here  the  generation  of  the  discovery 
screening library carried out by the various research groups.   

CancerGrid  is  a  multinational  research  project  supported  by  the  European  Commission  under  the 
Framework Program 6 (#LSHC-CT-2006-037559, www.cancergrid.eu).

1. Nicolotti, O.; Miscioscia, T. F.; Leonetti, F.; Muncipinto, G.; Carotti, A. J. Chem. Inf. Mod., 2007, 
47, 2439-48; 

2. Langer, T.; Hoffmann, R. D., Expert Opinion on Drug Discovery 2006, 1(3), 261-267; 
3. Tovar, A.; Eckert, H.; Bajorath, J. ChemMedChem. 2007, 2, 208-217; 
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4. Mestres, J.; Martín-Couce, L.; Gregori-Puigjané, E.; Cases, M.; Boyer S. J. Chem. Inf. Model  
2006, 46: 2725-2736; 

5. Rayan, A.; Marcus, D.; Givaty, O.; Barasch, D.; Goldblum, A.; Abstracts of Papers of the 
American Chemical Society 2005, 230, U1013 . 

6. Fontaine, F., Pastor M., Zamora I., Sanz F. J Med Chem. 2005, 48(7):2687-94.

P-7 : Investigating false predictions in mutagenicity QSAR models: What are we missing?
C. Hasselgren,  S. Boyer, AstraZeneca, Mölndal, Sweden
Mutagenicity is the ability of a compound to induce permanent, heritable alterations in DNA sequence. The 
most common experimental test is the Ames1 assay which is used as a predictor of carcinogenicity. The use 
of QSAR models to predict mutagenicity is current practice not only in the pharmaceutical industry but also 
in the manufacturing of industrial chemical and food additives etc. Numerous QSAR models have been 
published and report predictivities ranging from 60 to 85% depending on the dataset. 

We have previously reported a  rules-based system for risk assessment  of mutagenicity.  This comprises 
QSAR results, experimentally tested structural near neighbours and the presence of substructural alerts.2 

The overall predictivity of this system based on the QSAR alone was reported to be around 80-85% with 
sensitivity being slightly lower than specificity. 

In this study, we report the temporal validation of this system based on data generated within AstraZeneca 
after the system was built. The aim is to assess true model predictivity on external data. In addition, work 
directed  at  understanding  why some  compounds  are  not  correctly  predicted  by  our  QSAR models  is 
presented.  Emphasis  was placed  on experimentally active  compounds  which were  falsely predicted  as 
inactive, as these are of critical importance to guide experimental testing. Poor sensitivity has previously 
been discussed in terms of non-covalent interactions and poor structural coverage.3

The work includes various methodologies, such as assessing local structural environments in the dataset 
around the classified compounds, using a variable kNN approach. This was done to identify poor/variable 
coverage  in  the  dataset.  Also,  separately modelling subgroups  of  the  dataset,  based  on  the  presumed 
mechanism of interaction with DNA, was explored to investigate if non-covalently interacting agents could 
be modelled using electrostatic surfaces or pharmacophore/shape based methods. 
The temporal validation shows that the models do not perform as well on an external dataset for active 
compounds  but  inactive  predictions  have  high  confidence.  A number  of  public  compounds  were  also 
included in the analysis and will be used to illustrate modelling results.

1. Ames, B. N.; McCann, J.; Yamasaki, E., Methods for detecting carcinogens and mutagens with the 
salmonella/mammalian-microsome mutagenicity test. Mutat. Res.  1975, 31, (6), 347-63.

2. Hasselgren, C.; Carlsson, L.; Boyer, S., A rule-based method for comprehensive risk assessment of 
the mutagenic potential of drugs. Manuscript.

3. Snyder, R. D.; Smith, M. D., Computational prediction of genotoxicity: room for improvement. 
Drug Discovery Today 2005, 10, (16), 1119-1124.

P-8 : Selecting druglike pieces for the virtual chemistry jigsaw puzzle: towards optimal 
fragment spaces
Christof Gerlach 1, Jörg Degen 2, Matthias Rarey 2 and Andrea Zaliani 2

1 Bayer-Schering Pharma AG, Med Chem VII-Comp. Chemistry, Berlin, Germany
2 Universität Hamburg, Zentrum für Bioinformatik, Hamburg, Germany
Fragment-based approaches have become very popular  within the lead finding phase of  a  drug design 
project.  Different  experimental  techniques  such  as  X-ray  and  NMR-supported  protocols  have  been 
developed to detect and applied to successfully novel lead structures [1]. In addition, in silico approaches 
considering  either  descriptor-  [2],  ligand-  [3]  or  structure-based  [4]  information  for  navigating  within 
chemical fragment spaces have been established.

Still  the question remains,  how does a typical  ‘druglike’ fragment looks like and from which source it 
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should be derived?

We present our results from a comparison of two retrosynthetic sets of rules for the generation of fragment 
spaces.  RECAP  [5]  was  checked  against  our  newly  developed  procedure  BRICS  (Breaking  of 
Retrosynthetically  Interesting  Chemical  Substructures).  Within  BRICS  the  shredding  of  molecules  to 
fragments  tries  to  mirror  retrosynthetical  concepts  in  a  more  elaborate  way considering,  for  instance, 
bioisosteric replacements for cyclic and acyclic systems separately and also differentiates between activated 
and inactivated heterocyclic systems.

For a detailed analysis, fragment spaces from WDI [6] and from the ZINC database [7] were derived by 
both sets of rules. These datasets were characterized with respect to the number of generated fragments, 
connection points and size of the fragments. Finally, identical fragments which occur in both datasets have 
been compiled to generate an optimal fragment space consisting of approximately 5000 fragments.

The performance of these sets (generated by RECAP and BRICS) were evaluated by means of multiple 
FTree-FS searches using very large and diverse query sets. The BRICS-generated fragment space was able 
to  exactly rebuild  more  than  the  double  amount  of  query molecules  in  comparison with the  RECAP-
generated fragment space. Thus, the better performing BRICS-generated fragment space have been further 
enriched with fragments from ZINC having a reasonably high similarity to the WDI fragments. This led to 
two larger fragment spaces showing further improvements with respect to exact rebuilding of the query 

In conclusion, our analysis underlines that the performance of a fragment space derived from ‘druglike’ 
molecules can be improved, using fragments which are originally derived from vendor catalogues. Thus, it 
seems that a high-performance set of fragments does not have to be derived solely from databases of drug 
molecules.  Based on our findings three new fragment sets have been compiled, with different optimized 
performances  in  retrieving  random sets  of  queries  from different  sources  We also  plan to  make them 
publicly available in the near future.  These can be used for further fragment-based searches to identify 
chemical probes for a given protein binding assay. 

1. Hajduk, P. J.; Greer, J., A decade of fragment-based drug design: strategic advances and lessons 
learned. Nat Rev Drug Discov 2007, 6, (3), 211-9.

2. Pärn, J.; Degen, J.; Rarey, M., Exploring fragment spaces under multiple physicochemical 
constraints. J Comput Aided Mol Des 2007, 21, (6), 327-340.

3. Rarey, M.; Stahl, M., Similarity searching in large combinatorial chemistry spaces. J Comput  
Aided Mol Des 2001, 15, (6), 497-520.

4. Degen, J.; Rarey, M., FlexNovo: structure-based searching in large fragment spaces. 
ChemMedChem 2006, 1, (8), 854-68.

5. Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M., RECAP--retrosynthetic combinatorial 
analysis procedure: a powerful new technique for identifying privileged molecular fragments with 
useful applications in combinatorial chemistry. J Chem Inf Comput Sci 1998, 38, (3), 511-22.

6. World Drug Index, Version 2004, Thomson: Philadelphia PA, 2004.
7. Irwin, J. J.; Shoichet, B. K., ZINC--a free database of commercially available compounds for 

virtual screening. J Chem Inf Model 2005, 45, (1), 177-82.

P-9 : Going on SARfari in the protein kinase data jungle
J. Günther, Bayer Schering Pharma, Berlin, Germany
Focusing drug discovery on protein families can enable quite a number of synergies between individual 
projects, provided that appropriate tools are in place to analyse all relevant data in the context of the target 
family.  In particular, interpretation of SAR data in view of the similarities and differences between the 
individual targets can guide the way to obtaining the right compounds with the desired selectivity profiles. 
At BSP, we developed an integrated chemogenomics workbench focused on protein kinases, called Kinase 
SARfari. It incorporates and links kinase sequence, structure, compounds and screening data. Both in-house 
data and data from the literature, as found in Biofocus DPI’s StARLITe database, are included.  

Apart from giving a general overview on the data organisation in the database and highlighting some of the 
applications, the talk will introduce a novel methodology for picking nearest neighbours to a given target in 
the family. Identification of the targets with which cross-reactivities are most likely to be expected allows 
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for the early set-up of relevant counter-screens. Moreover, drug-like ligands known to hit a close neighbour 
provide interesting starting points for a new lead-optimisation program. Accordingly, the approach we chose 
focuses on similarities in the recognition of small molecule inhibitor structures rather than on phylogenetic 
relationships between targets. To this end, we exploited the wealth of 3D data that is available for protein 
kinase targets, while making sure the method is applicable to any set of kinases, independent of whether 
their 3D structures have been determined or not. The physicochemical distance measure we developed to 
describe the binding site similarity of two protein kinases has been shown to correlate with the average 
difference in IC50 values obtained for these targets in our in-house kinase selectivity panel. 

1. Chan, E.; StARLITe – A Chemogenomics Knowledge Base. Abstract book of 7th International  
Conference on Chemical Structures; Noordwijkerhout, 2005.

P-10 : A probabilistic approach to classifying metabolic stability
A. ter Laak1, T Schroeter 2, A. Schwaighofer 2, S. Mika2, P Lienau1, A. Reichel1, Müller, K-R2, N. Heinrich1

1Bayer Schering Pharma AG, Müllerstrasse 178, 13342 Berlin, Germany
2Fraunhofer FIRST, Intelligent Data Analysis (IDA), Kekuléstraße 7, 12489 Berlin, Germany
Metabolic stability is an important property for drug candidates. Optimally,it should be taken into account 
already in the in silico phase of the drug design process.  Yet,  general  purpose predictive tools for this 
endpoint are inherently difficult to obtain. 

We present a machine learning approach to predicting metabolic stability, that is tailored to compounds 
from the drug development process at Bayer Schering Pharma AG. Our modelling is based on existing 
measurements of the percentage of each compound remaining after incubation with liver microsomes for 30 
minutes. We built independent modelsfor4different species ( human, male mouse, female mouse, male rat ), 
with 1000 to 2100 measurements per species. From this data, we develop Bayesian classification models to 
predict the probability of a compound being metabolically stable. 

A particular advantage of the chosen approach is that it implicitly takes the “domain of applicability” into 
account. For compounds outside the domain of applicability, the model output is 0.5, indicating that it is not 
possible to tell whether the compound is stable or not. 

The  developed  models  were  validated  on  recent  project  data  (200  to  700  compounds,  depending  on 
species), showing that the predictions are highly accurate. In particular, we could show that the accuracy of 
predictions increases when excluding compounds with a predicted probability around 0.5, that is, those that 
are outside the domain of applicability. 

Figure 1. ROC-Curves for validating the developed models on data from recent projects that was not used 
for  model building. Left:  Model  for female mouse.  258 unambiguous validation measurements,  156 of 
which  are  in  the  domain  of  applicability.  Right:  Model  for  male  rat.  183  unambiguous  validation 
measurement, 89 of which are in the domain of applicability. 
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P-11 : MCS clustering - A hierarchical clustering approach for large data sets
Alexander Böcker , Boehringer Ingelheim (Canada) Ltd., Laval, Canada
A new clustering algorithm has been implemented that is able to group large data sets with more than 
500,000 molecules according to their chemotypes. The algorithm pre-clusters a data set using a fingerprint 
version of the hierarchical k-means algorithm.1,2 Chemotypes are extracted from the terminal clusters using 
a maximum common substructure (MCS) approach.3 Molecules forming a chemotype have to share a pre-
defined number of rings, atoms and non-carbon heavy atoms. Each chemotype is represented by a MCS. 
Similar chemotypes and singletons are then fused to larger chemotypes. Singletons that cannot be assigned 
to  any  chemotype  are  finally  grouped  based  on  the  proportion  of  overlap  between  the  molecules. 
Representatives from each chemotype and singletons are used in a second round of the hierarchical k-means 
algorithm to provide a final hierarchical grouping. Results  are reported to an interactive graphical  user 
interface which allows preliminary conclusions to be drawn about the structure activity relationship of the 
molecules. An example application is shown for reverse transcriptase inhibitors in the MDDR database.4 

The algorithm allows the analysis of  uHTS and virtual  screening results  with improved efficiency and 
quality. 

1. Böcker, A.; Derksen, S.; Schmidt, E.; Teckentrup, A.; Schneider, G. A Hierarchical Clustering 
Approach for Large Compound Libraries. J. Chem. Inf. Model. 2005, 45, 807-815.

2. Böcker, A.; Schneider G,; Teckentrup, A.; Schneider, G. NIPALSTREE A new Hierarchical 
Clustering Approach for Large Compound Libraries and Its Application to Virtual Screening. J. 
Chem. Inf. Model. 2006, 46, 2220-2229.

3. Stahl, M.; Mauser, H.; Database Clustering with a Combination of Fingerprint and Maximum 
Common Substructure Methods. J. Chem. Inf. Comput. Sci. 2005, 45, 542-548.

4. MDL Information System Inc., San Leandro, USA. http://www.mdl.com/

P-12 : Comparison of different approaches for cytochrome P450 modeling
P Czodrowski, C Tautermann, T Fox, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der  
Riss, Germany
The superfamily of cytochrome P450s (CYP) is involved in the metabolism of drugs in the human body. 
Understanding this complex process is of utmost relevance for the drug discovery process. Satisfactory 
results  can be obtained by established ligand-based models.  However,  structure-based models have the 
advantage that they allow to visually explore crucial interactions to a certain CYP and to support the drug 
design process. Structure-based approaches have become accessible recently due to the availability of CYP 
crystal structures. We will show results from ligand-based approaches and compare these with structure-
based models and elucidate the differences. 

P-13 : Mapping of activity class characteristic substructures extracted from random 
fragment populations
E. Lounkine, J. Batista, J. Bajorath, University of Bonn, Bonn, Germany
Random molecular fragment populations generated by a novel method termed MolBlaster have been found 
to  contain  activity  class  related  information  suitable  for  molecular  similarity  assessment  and  virtual 
screening.1,2 Based on fragment co-occurrence in different molecules and activity classes, these populations 
can be organized in hierarchies that revealed subsets characteristic for defined activity classes3.

These findings led to the question of whether a chemically intuitive, structure-based rationalization of the 
origin of these activity class characteristic substructures (ACCS) could be found. A simplified approach to 
extract ACCS from activity class fragment populations was designed based on filtering of activity class 
fragment populations on the background of inactive molecules.

ACCS were mapped onto active compounds and an atom-based match rate metric was defined yielding a 
molecular map of ACCS overlap for each individual active molecule. Systematic analysis of more than 
1.000 compounds spanning 45 activity classes revealed the formation of molecular core regions of high 
ACCS overlap. Cores of ten different overlap stringency levels were defined based on atom match rate 
binning (Figure 1).
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Molecular cores were found to delineate well-defined, limited molecular regions that correspond to areas of 
ACCS origin. Furthermore, using ACCS as structural keys for fingerprinting, molecules belonging to an 
activity class could be clustered and stringent cores were found to be representative of intra-activity class 
clusters (Figure 2).

Our  results  suggest  that  molecular  cores  accurately  define  molecular  regions  rich  in  activity  class 
characteristic information4. 

1. Batista, J; Godden, J. W.; Bajorath, J. Assessment of molecular similarity from the analysis of 
randomly generated structural fragment populations. J. Chem. Inf. Model. 2006, 46, 1937-1944.

2. Batista, J.; Bajorath, J. Chemical database mining through entropy-based molecular similarity 
assessment of randomly generated structural fragment populations. J. Chem. Inf. Model. 2007, 47, 
59-68.

3. Batista, J.; Bajorath, J. Mining of randomly generated molecular fragment populations uncovers 
activity-specific fragment hierarchies. J. Chem. Inf. Model. 2007, 47, 1405-1413.

4. Lounkine, E.; Batista, J.; Bajorath, J. Mapping of activity-specific fragment pathways isolated 
from random fragment populations reveals the formation of coherent molecular cores. J. Chem. 
Inf. Model. 2007, 47, 2113-2119

Not matched
Core90

Core60

Core30

Figure 1. Core definition example. Different core levels can be distinguished based on atom match 
rates, which reflect ACCS overlap. Core90 (red) spans atoms with a match rate >90%, core60 (red and 
green) spans atoms with a match rate >60% and Core30 (red, green, blue) atoms with a match rate 
>30%. Regions that were not matched by ACCS are shown in black.
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Figure 2.  ACCS fingerprint and clustering. For 30 serotonin receptor ligands,  ACCS fingerprint 
based clustering is shown together with representative cores (encircled) and exemplary molecules from 
each cluster.
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P-14 : In s ili c o  prediction of efflux substrates classification
L. Zhang, P. V. Balimane,  S. R. Johnson, S. Chong, Bristol-Myers Squibb, New Jersey, USA.
An in silico Efflux substrate classification model has been developed based on in vitro bidirectional Caco-2 
cell  permeability  measured  at  3mM  concentration  of  test  compounds,  and  seven  physicochemical 
descriptors.   The model suggests that efflux substrates tend to contain electron deficient aromatic rings, are 
highly branched, and most contain tertiary nitrogen.  This model demonstrated ~80 % predictability of non-
substrates and ~84% substrates from a training set of 172 compounds. For a validation set of 70 compounds 
the predictability was ~75% for non-substrates and ~76% for substrates. The model has the potential to be 
used as a filter for library designs to identify potential efflux substrates in early discovery.

P-15 : Digging deep for GOLD – How buriedness may be used to discriminate between 
actives and inactives in docking
N. M. O’Boyle 1, S. C. Brewerton 2, R. Taylor 1

1 Cambridge Crystallographic Data Centre, Cambridge, U.K.
2 Astex Therapeutics, Ltd., Cambridge, U.K.
When docking software is used for virtual screening, the practical problem is to correctly rank the true 
ligands (actives) with respect to non-binders (inactives). A recent large-scale docking study by Warren et 
al.1 has shown that this is still a difficult problem. One reason for the difficulty in ranking actives with 
respect to inactives is the scoring functions used in docking are typically trained only with positive data, 
that is, information relating to known binders. Negative data, or information relating to inactive molecules 
or inactive poses, is rarely included.

We describe the  introduction and  training of  a  new term in the scoring function used by the docking 
software GOLD.2,3 The new term scales hydrogen bond, metal and lipophilic interactions based on the depth 
in the active site at which they occur. Depth was measured using the receptor density, the number of protein 
heavy atoms within 8Ǻ of the point.

Parameters in the new term were optimised using negative data (poses of 99 inactive molecules) derived for 
the 85 proteins in the Astex Diverse Set (Hartshorn et al.4). The resulting scoring function gave a substantial 
improvement in the average rank of the active molecules (Figure 1).

Figure 1 – A histogram of the improvement in the rank of each active when the new term in scoring 
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function is used. The ranks of each active in the training set were measured relative to 99 inactives.

1. Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, 
M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; 
Head, M. S. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 
49, 5912-5931.

2. Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm 
with a description of desolvation. J. Mol. Biol. 1995, 245, 43-53.

3. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic 
algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727-748.

4. Hartshorn, M. J.; Verdonk, M. L.; Chessari, G.; Brewerton, S. C.; Mooij, W. T. M.; Mortenson, P. 
N.; Murray, C. W. Diverse, high-quality test set for the validation of protein-ligand docking 
performance. J. Med. Chem. 2007, 50, 726-741.

P-16 : Representation, searching and enumeration of generic structures – from molecules 
towards patents
S Csepregi, N Mate, S Dorant, E Biro, T Csizmazia, F Csizmadia, ChemAxon Ltd., Budapest, Hungary
Cheminformatics systems usually focus primarily on handling specific molecules and reactions. However, 
generic (Markush) structures are also indispensable in various areas, like combinatorial library design or 
chemical patent applications for the description of compound classes.

The presentation will  discuss  how an  existing molecule  drawing tool  (Marvin)  and  chemical  database 
engine (JChem Base/Cartridge) are extended to handle generic features  (R-group definitions,  atom and 
bond lists and link nodes). Markush structures can be drawn and visualized in the Marvin sketcher and 
viewer, registered in the database and their library space is searchable without the enumeration of library 
members. Different enumeration methods allow the analysis of Markush structures and their enumerated 
libraries. These methods include full, partial and random enumerations as well as calculation of the library 
size with arbitrary precision.

Patent documents often involve further generic features, for example position and homology variation and 
bridged R-group definitions. The representation of these features will be discussed, as well  as a future 
extension of the system towards full patent handling. 

Figure 1.  An example Markush structure containing atom lists,  R-groups and link nodes. This generic 
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structure represents 4.1x1011molecules.

P-17 : Hierarchical clustering of chemical structures by maximum common substructures
M. Vargyas, F. Csizmadia, ChemAxon Ltd., Budapest, Hungary
Cluster analysis has been shown to be successful in the categorization of physico-chemical and biological 
properties of compounds.   However,  conventional  approaches to clustering molecular structures,  where 
chemical graphs are transformed into sequences of numbers, seldom meet chemists' expectations.

Graph based techniques that cluster compounds with respect to common structural motifs are gaining in 
popularity  as  these  can  better  mimic  human  categorization.   One  such  graph  based  method,  called 
LibraryMCS, which clusters compounds according to their maximum common substructures (MCS) in a 
hierarchical manner is presented.  Unlike some other graph based clustering methods, LibraryMCS neither 
involves a similarity based pre-clustering step nor relies on predefined fragments.

Recent evaluation by different research groups indicated that LibraryMCS was capable of producing high 
quality  clusters  agreeing  with  human  categorization  within  practicable  time  (approximately  1000 
structures). 

The presentation will recount and demonstrate typical usages of LibraryMCS: virtual HTS hit set profiling, 
R-group  decomposition  by  learned  scaffolds,  perception  of  novel  scaffolds,  reverse  engineering  of 
combinatorial libraries, diversity assessment of large chemical library and compound acquisition.
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Figure 1.  Performance comparison of  three clustering methods.   Randomly selected subset  of  druglike 
molecules from the Zinc database were clustered.

P-18 : Molecular framework based analysis of large chemical spaces
Anthony J. Trippe, Alan H. Lipkus, Chemical Abstracts Service, Columbus, USA
Since first introduced by Bemis and Murcko in 19961, molecular frameworks have proven to be a useful 
method for systematically organizing chemical structures and for analyzing the diversity of large substance 
collections.  This presentation will focus on three analytical studies utilizing molecular frameworks.  An 
analysis of the CAS Registry file has been conducted and a Power Law distribution amongst ringed organic 
substances  has  been  discovered.   A new  method  for  visualizing  chemical  space  utilizing  molecular 
frameworks  and  a  force-directed  placement  algorithm  has  been  developed  and  finally  a  system  for 
interactively  exploring  chemical  space  in  conjunction  with  molecular  properties  including  therapeutic 
bioactivity and biomolecule target association will be presented.

1. Bemis, G. W.; Murcko, M. A.; The Properties of Known Drugs. 1. Molecular Frameworks J. Med.  
Chem.. 1996, 39, 2887-2893.
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P-19 : Towards Automated Searching of data in Internet Chemical Databases
Xiaoxia Li, Xiaolong Yuan, Zengcai Liu, Li Guo, State Key Lab of Multiphase Complex System, Institute of  
Process Engineering, Chinese Academy of Sciences, Beijing, China
Public accessible chemical databases are valuable resources on Internet. To find the data on Web, first you 
should be aware if such data is available and where to get it.  To search for possible data sources, general 
search engines like Google as well as comprehensive web directories of chemistry resources with list of 
chemical databases such as ChIN1 that indexes more than 200 freely accessible chemical databases can be 
used.

Because of the diversity of chemicals and their properties, the coverage of compounds and property items 
varies in different chemical databases.  To search data  for a chemical, it is  very often that one  needs to 
search all  possible database web sites one by one manually. The data in chemical  databases cannot be 
indexed and searched by traditional search engines based on hyperlink analysis, because the Web pages 
containing the targeted data are dynamically generated by the database severs to respond to a query, which 
does not exist before the query and won’t be kept on the server after the query, so cannot be crawled by 
crawlers of search engines following hyperlinks. Thus the Web databases are collectively called Deep Web,2 

the  data  collection  as  a  whole  in  varies  chemical  databases  is  called  Chemistry  Deep  Web  herein 
accordingly. To create a searching tool for Chemistry Deep Web may not only overcome the limitation of 
current search engines in searching data for chemicals on Internet but also to make it  possible for data 
integration from different sources that may be further used in computational applications. 

To our knowledge, the ChemFinder of Cambridgesoft3 is probably the only useful tool that helps searching 
the Chemistry Deep Web by automatically submitting a data query to different chemical databases. 

Figure. 1 Chemical data extraction based on XML language in ChemDB Portal

This presentation will report an approach in developing ChemDB Portal that aims at searching the data in 
various Web-based chemistry databases by one query. ChemDB Portal is implemented by combining HTTP, 
Java and XML technology.4,5 In ChemDB Portal, a query is created and submitted to different web based 
chemical databases on Internet, the HTML documents with the target data returned from these sites are first 
transformed into XHTML by Tidy, then the target data can be extracted by a data extraction template in 
XSLT document into a XML document, which can be further mapped into database for XML based retrieval 
(see Figure 1). 
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Figure 2. Flow chart of ChemDB Portal system with JSP Model2

How to create a data extraction template for the target data is the key to this XML based approach, which is 
not only tedious but also a challenging job to create it manually. A semi-automated tool called XE_ChemD 
that helps create data extraction templates for the chemistry Deep Web has been created. XE_ChemD gets a 
HTML document by given URL and normalize it to XHTML which is parsed to a XML tree at the same 
time. After the target data in the source tree are chosen, the  candidate  XPath expressions that forms the 
template can be automatically generated based on the context of the target data in terms of their dependence 
on content, structural, or formatting features.

The data in chemical databases indexed in ChemDB Portal can be searched by a query with identifications 
of a compound such as CAS registration number, formula, names or structure (see Figure 2). Searching 8 
databases simultaneously by one query to ChemDB Portal is now possible that demonstrates its potential to 
be a search engine dedicated to chemistry data in Deep Web in future.

Acknowledgement:  Thanks for the support  of National  Science Foundation of China (NSFC20673119, 
NSFC90612015, NSFC20221603). 
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P-20 : Chemotype bias in virtual screening: the elephant in the room
M Mackey, T Cheeseright, J Melville, S Rose, A Vinter, Cresset BMD, Welwyn Garden City,UK
The analysis of virtual screening methods is complicated by the “chemotype problem”: the sets of actives 
used  are  often  present  as  clusters  of  highly similar  molecules.  Failure  to  correct  for  this  can  lead  to 
spuriously high enrichment rates being performed. For example, if a large proportion of the actives come 
from a congeneric series, then a 2D fingerprint-based search using a molecule from that series will appear 
to perform exceptionally well, while in reality providing little useful information.

Very few literature assessments of virtual screening studies have attempted such a correction. These all err 
either in the direction of downweighting clustered actives too much1, or by inadvertently applying a bias 
which can make random results appear to be highly significant.1,2,3 In addition, the commonly used metrics 
used to assess virtual  screens (enrichment factors,  ROC, BEDROC etc) all  have flaws: either they are 
insensitive to performance on the early part of the retrieval curve or they are oversensitive to the precise 
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number of actives and inactives used.2 We present a modification of the BEDROC metric called BAROC 
which is intuitive, concentrates on early performance, is interpretable, and is insensitive to the size of the 
dataset, and suggest its use as the standard metric for measuring early enrichment in VS studies.

The application of the chemotype correction to BAROC leads to the CC-BAROC metric (Figure 1).
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Figure 1. m is the number of chemotypes, km is number of actives assigned to chemotype i, ij is the false 
positive of the jth active in the ith chemotype, and wi is a weighting factor depending on the correlation 
between the VS scoring method and the clustering method

Applying CC-BAROC to literature data sets4,5 reveals that ignoring chemotype bias often leads to erroneous 
conclusions  about  the  efficacy  of  VS  methods,  and  suggests  that  many published  VS  studies  greatly 
overstate the effectiveness of VS techniques.

1. Clark, R. D., Webster-Clark, D. J., J. Comput. Aided Mol. Des., in press, DOI 
10.1007/s10822-008-9181-z

2. Good, A. C. et al., J. Mol. Graph. Model., 2003, 22, 31-40
3. Warren, G. L. et al, J. Med. Chem., 2006, 49, 5912-5931
4. N. Huang, B. Shoichet, J.J. Irwin; J. Med. Chem. 2006, 49, 6789-6801
5. Jain, A. N.,  J. Comput. Aided Mol. Des., in press, DOI 10.1007/s10822-007-9151-x

P-21 : Rapid property profiling and similarity calculations in large virtual libraries
J. Barnard, G. Downs, Digital Chemistry Ltd., Leeds, UK

Extremely large virtual compound libraries, containing up to 1012 or even 1015 different molecules, may be 
used in drug discovery, and challenge even the fastest virtual high-throughput screening (VHTS) analyses. 
Even using Markush structure-based property-calculation techniques1, production of property profiles for 
simple  drug-like  characteristics  such  as  the  Lipinksi  properties  can  be  prohibitively slow.  Appropriate 
sampling  of  library  members  can  permit  much  faster  analyses,  and  factors  affecting  the  accuracy  of 
property  distribution  profiles  based  on  such  sampling  are  discussed.  Direct  analysis  of  the  Markush 
structure can also be used to calculate upper and lower bounds on the range of values for a particular 
property, without the need to enumerate individual values.

Exhaustive  comparisons  of  individual  library members  against  a  target  molecule,  to  identify  the  most 
similar, are also too time-consuming to be used on very large libraries. An approximate similarity search 
algorithm has been developed, which allows selection of molecules from a library that are highly similar to 
a specified target, though not guaranteed to be the most similar.  The sets of molecules selected by this 
algorithm are compared to those identified by exhaustive similarity search.

1. Barnard, J. M.; Downs, G. M.; von Scholley-Pfab, A.; Brown, R.D.  Use of Markush structure 
analysis techniques for descriptor generation and clustering of large combinatorial libraries. J. Mol. 
Graph. Modelling, 2000, 18, 452-463. 

P-22 : Opportunities for Integrating Markush Patent Searching with Drug Discovery
J. Barnard, M. Wright, Digital Chemistry Ltd., Leeds, UK
Information about existing chemical compounds is regularly used in designing chemical libraries for new 
drug discovery.  The information is normally derived from a diverse range of specific structure databases, 
including internal, bought-in, and public ones, which are managed using Oracle RDBMS data cartridges. 
Integrated  systems  incorporate  similarity searching,  physicochemical  property profiling,  structure-based 
cluster analysis etc. across a variety of databases with a common user interface.  There is clear potential for 
utilizing information about the chemical structures in patents in the drug discovery process.  This could 
allow the avoidance of areas of chemistry already covered by patents, identification of un-patented areas of 
chemical space, and also analysis of the different classes of chemical structure being patented in particular 
therapeutic areas.1

◄ 82 ►



Eighth International Conference on Chemical Structures

Though some limited use is made of databases of specific structures from patent claims, searching of the 
Markush structures currently remains the province of dedicated on-line systems with proprietary databases. 
Some Oracle cartridges have recently been extended to handle Markush representations of un-enumerated 
combinatorial libraries alongside discrete molecules. These provide a possible basis for extension to handle 
the  more  complex  Markush  structures  found  in  patents.   The  issues  involved  in  this  extension,  both 
technical and commercial, are discussed.

1. Calcagno, M. An investigation into analyzing patents by chemical structure using Thomson’s 
Derwent World Patent Index codes. World Patent Information 2008, in press: 
doi: 0.1016/j.wpi.2007.10.007

P-23 : A mathematically more precise taxonomy and nomenclature for polymers:  (1) 
Replacing the heuristics embodied by the words “polymer” and “monomer” with 
mathematically delineatable terms, (2)  Canonically segregating that aggregation of atoms 
and bonds which forms “monomers” in 3-space
Seymour Benjamin Elk, Elk Technical Associates; New Milford, New Jersey; USA
In order to formulate a useful system of taxonomy and nomenclature that includes all presently known 
aggregations, as well as allowing for the inclusion of newly discovered chemical entities, one needs a much 
higher degree of precision than is presently associated with either the word “polymer” or its building block, 
“monomer”.  Such a canon must consistently, and unambiguously, prescribe precisely which aggregation of 
atoms and bonds have the mathematical ideal associated with an infinitely repeating entity in a finite world 
─ including the ability to canonically mark the beginning and end of that repeating aggregation.  In other 
words, in lieu of the present heuristics that is conjured up by the use of these two “words”, a mathematically 
more precise taxonomy and nomenclature is presented.  Special attention is focused on the premise that the 
“monomer” be limited to the ideal of congruence of modules in an n-dimensional domain, that is infinite in 
some or all of these n dimensions.  This is augmented by creating an expanded line of demarcation for that 
nebulous concept of “few” in such a domain, which leads to a concomitant differentiation between refined 
ideals referred to “oligimers” vs. “oligomers”.  (In place of these two words, which historically have been 
absolutely synonymous in common parlance,  a  precise,  different,  denotation for each of  these terms is 
promulgated.)   A distinguishing feature of the newly proposed definitions is  the ability to formulate a 
consistent system of taxonomy, based on dimension, that, not only canonically assigns an ordered sequence 
of atoms and bonds which specifies which atoms and bonds (or parts thereof) comprise the monomer, but 
which  also  incorporates  the  orientation  of  these  moieties.   The  nomenclature  developed  in  a  previous 
monograph (“A New Unifying Biparametric Nomenclature that Spans All of Chemistry”, Elsevier 2004) 
that was used in order to canonically “nomenclate” finite length molecules is expanded and, in selected 
instances, reformulated so as to retain consistency when applied to unlimited repetition of the monomer. 
Additionally, the canonical assignment of nomenclature to that aggregation of atoms and bonds which lack 
the “regularity” to meet the proposed limitation to the definition of “polymer” (therein called “multimer”) is 
likewise expanded from its original definition. The implications of this set of re-definitions is illustrated for 
important  classes  of  newly  formulated  “polymers”  such  as  a  recently  formulated  cobalt-polypyrrole 
composite catalyst, in which polymers that are inherently three-dimensional are depicted as though they 
were intrinsically coplanar, and for that class of “PIMs” (polymers of intrinsic microporisity). 

P-24 : Indirect drug design using MD for flexible structure alignment application to HIV-1 
protease inhibitors
Alok Juneja1, Milan Hodozcek2, Henning Riedesel1, Ernst Walter Knapp1

1Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
2National Institute of Chemistry, Ljubljana, Slovenia
The rational drug design is one of the major challenges in structural and computational biology. Most of the 
known theoretical approaches on drug design are based on knowledge of the structures of the biological 
targets  and its  active  sites  where  the drug binds.  Such  approaches  use  conventional  force  fields  from 
molecular  dynamics  simulations  as  well  as  empirical  force  fields  derived  from data  bases  containing 
structures of different  drugs bound to different  targets where by complex modelling procedures a  drug 
molecule is built into the binding site of the target molecule. The concept of indirect drug design tries to 
circumvent these hurdles. This computational approach is suitable to model drugs, if the knowledge on their 
binding sites is absent, assuming that drugs binding in the same pocket have common properties, which can 
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be elucidated by appropriate similarity measures. Hence, by exploring the similarities between drugs that 
bind to the same target, we may also obtain information on the conformation of the drug in the binding 
pocket. 

We used the maximum OVERLAP method (implemented in CHARMM-version 29a1) that can perform 
flexible  structure  alignment  (FSA) of  drug molecules  on the  basis  of  volume,  charge  and electrostatic 
potential.  As  a  test  case,  we  have  considered  44  co-crystallized  structures  of  HIV-1  protease  (HPR) 
inhibitors that are available in the PDB. FSA has been carried out between randomly generated structures of 
HPR inhibitors, to superimpose their structures optimally. During this structure optimization, the inhibitors 
exchange information they have about the binding site and assist each other to attain the conformations that 
show maximum similarity amongst  them. The conformations of  inhibitors  obtained after  FSA are then 
compared with their respective crystal structures. Apparently, the drug conformations modelled by FSA are 
close to the conformations that the drugs acquire to fit in the binding site of the crystal structure. By an 
extensive search of structure alignments we succeeded to assign the inhibitors to 4 different clusters, which 
is a hallmark of different binding modes in the same binding site. Our clustering approach based on the 
similarity measure was related to the structure data, where clustering has been done looking at hydrogen 
bonding pattern between inhibitor and target. Also, here four clusters are observed.

According to our results  for the test  case of HPR inhibitors,  the introduced procedure of indirect  drug 
design  looks  promising.  We  demonstrated  that  it  can  solve  the  problem  to  find  the  most  probable 
conformation of a drug in the binding pocket without knowledge on the binding site. In a nutshell, this 
indirect  drug design approach  will  not  only assist  in  designing new drugs  but  may also be helpful  to 
optimise lead compounds in an efficient way.

P-25 : Optimizing drug classification by feature selection:  To bind or not to bind that is the 
question 
Ernst-Walter Knapp, Henning Riedese, Freie Universität Berlin, Berlin, Germany
Typical scenarios in drug design are to start from a database of molecules characterized as being active or 
inactive with respect to a specific target. The task is to use this information to determine the activity for a 
set  of  potential  drug  molecules.  If  drug  activities  are  quantified  (for  instance  in  terms  of  association 
constants), a regression scheme interpolating the activities can be applied. Otherwise classification methods 
apply. In 2006, COEPRA [Comparative Evaluation of Prediction Algorithms] a contest for regression and 
classification of drugs was created [http://www.coepra.org/]. COEPRA works similar as CASP, the contest 
for protein structure prediction. This initiative turned out to be most useful for the research community that 
develops  and  applies  drug  classification  algorithms.  For  the  first  time  a  wide  spectrum of  prediction 
algorithms  was  put  to  a  test  on  equal  footing.  It  allowed  learning  from  success  and  failures  of  all 
participating groups world wide. 

In this contribution, we will consider the four classification samples from COEPRA and go beyond what we 
have applied there. Each of the four samples consists of a training (learning) and a test (prediction) set of 
nonapeptides, which are described by two different types of feature vectors: 180 component sequence based 
vectors and  5787 component chemoinformatic fingerprint based vectors. We use an approach based on a 
scoring function, which can be employed for classification and regression. The scoring function is linear in 
parameter space but can have linear and quadratic terms in feature space. Thus, it defines a quadratic hyper-
surface in feature space, which for classification serves as separatrix and for regression as interpolating 
regression surface. 

Since the scoring function is linear in the unknown parameters the support vector machine, or a least square 
optimization approach can be used to determine the parameters. The later leads to a linear equation system, 
whose  coefficient  matrix  elements  are  constituted  by  pair  correlations  of  the  different  features.  In 
preliminary work, this approach was used to classify peptide binding to the  major  histocompatibility 
complex 1. 

Often  the  feature  space  generated  by  chemoinformatic  fingerprint  methods  is  much  too  large.  Some 
negative consequences are (i)  too many parameters leading to over-fitting,  (ii)  poor performance using 
suboptimal  or  even  conflicting  features,  and  (iii)  unnecessary  long  computation  times.  Therefore,  we 
performed feature selection with a genetic algorithm resulting in very small optimized feature sets. For the 
four  COEPRA examples  there  are  considerably  less  then  ten  optimized  features  necessary  yielding 
performances, which are equal or better than achieved by the best contributor. 
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To optimize the performance of prediction furthermore, we investigated the similarity of each individual 
molecule from the test  set  with the molecules  of the training set  and derived weights  for each pair of 
molecules, which are used for the learning procedure. In this way, we use a prediction scheme, which is 
tuned for  each molecule  of  the prediction set  individually resulting in  additional  improvements  of  the 
prediction performance. 

1. Riedesel, H.; B. Kolbeck, B.; Schmetzer, O.; Knapp, E.W. Peptide Binding at Class I Major 
Histocompatibility Complex Scored with Linear Functions and Support Vector 
Machines, Genome Informatics 2004, 15, 198–212. 

P-26 : Understanding Selective CDK4 Inhibition Through Molecular Dynamics
N.M. Mascarenhas, N. Ghoshal, Indian Institute of Chemical Biology, Kolkata, India
Objective: CDK4 is a bonafide cancer target [1] and understanding the critical protein-ligand interactions 
for developing potential inhibitors is of paramount importance. We were interested in understanding the 
difference between the modes of inhibition of two very similar ligands and bring to light with the aid of 
molecular dynamics the differences in protein-ligand interactions responsible for selectivity. 

Scheme: Two ligands, lig16, displaying equal  potency towards CDK2 and CDK4, and lig17 exhibiting 
selective inhibition towards CDK4 [2] were considered (Figure 1, Table 1). A homology model of CDK4 
was constructed and both ligands were docked into the active site using GOLD (Table 2). The binding site 
was then immersed in a 30Å water sphere from the center of the ligand to mimic the aqueous environment. 
Amino acid residues within 15 Å away from the center of the ligand were kept flexible during the entire 
simulation.  The  simulations  were  performed  using  CFF91forcefield  of  Discover  in  InsightII  [3]  for  a 
duration of 1 ns. 

Figure 1. Structures of lig16 and lig17

Table 1. Biological activity of lig16 and lig17.
                        IC50 (nM)

CDK4 CDK2
Lig16 2 43
Lig17 16 >5000

Results:  (i) A good homology model of CDK4 was constructed (90.1 % residues in core region Figure 2) 
(ii) Lig16 and lig17 showed different mode of inhibition within ATP pocket  of CDK4 and CDK2. (iii) 
Residue His95 was found to be critical in offering selectivity. (iv) Both ligands (Lig16 and Lig17) were 
stabilized by strong Columbic interactions with CDK4.

Table 2. Results of GOLD docking
CDK4

Lig16 Lig17

Chemscore 33.939 33.549
H-Bonding 
[ Residue (no of H-bonds) ]

V96(2), 
T102(1)

H95(1),V96(2)
,
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T102(1) 

Figure  2.  Phi-Psi  plots  of  the  modeled  CDK4 obtained  by Procheck.  Two residues  in  the  generously 
allowed regions Arg159 & Ala79 and two in the disallowed regions Asp298 & Val176. These residues lie 
far away from the active site.

References
1. Landis, M.W., Pawlyk, B.S., Li, T., Sicinski, P. and Hinds, P.W., Cyclin D1-dependent kinase 

activity in murine development and mammary tumorigenesis.  Cancer Cell, 2006, 9, 13-22.
2. Toogood, P.L,  Harvey, P.J., Harvey, P.J., Repine, J.T., Sheehan, D.J.,  VanderWel, S.N., Zhou, 

Hairong, Keller, P.R., McNamara, D.J., Sherry, D., Zhu, T., Brodfuehrer, J., Choi, C., Barvian, 
M.R., Fry, D.W., Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. 
Med. Chem., 2005, 48, 2388-2406.

3. A product of Accelrys Inc.; http://www.accelrys.com.

P-27 : Extracting chemical CYP proteins interactions from literature using natural language 
processing methods
D Jiao, D Wild,  School of Informatics, Indiana University at Bloomington, Bloomington USA
This  poster  describes  the  development  of  an  information  extraction  system  which  maps  interactions 
between chemicals and CYP proteins from existing literature, using machine learning and natural language 
processing methods. The interaction between CYP proteins and chemicals is important in drug discovery 
and  development.  In  this  system,  abstracts  from articles  related  to  CYP and  chemical  interactions  are 
preprocessed using named entity recognition methods to identify chemical names and CYP names, with the 
help  of  dictionaries  generated  from  biological  and  chemical  ontologies.  Chemical  structures  are  also 
attached to chemical names for future processing. The texts are then parsed by a syntactic parser to create a 
dependency graph in which grammatical relationships between constituents of the sentences are generated. 
Then interactions between CYP and chemicals are extracted by identifying certain keywords, together with 
the protein and chemical names based on the dependency graph. The extracted information, including the 
chemical compounds, their structures, the proteins, and the interactions between chemicals and proteins are 
stored in a database for retrieval and further analysis. In this poster, the training process to build certain 
components of the system, problems encountered during the system creation, and the evaluation of the 
system will be discussed in detail. 

References:
1. Corbett, P.; Murray-Rust, P. High-Throughput Identification of Chemistry in Life Science Texts. 
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Computational Life Sciences II. 2006, 107-118.
2. Clegg, A. B.; Shepherd, A. J. Benchmarking natural-language parsers for biological applications 

using dependency graphs. BMC Bioinformatics 2007 8, 24+.
3. Feng, C.; Yamashita, F.; Hashida, M. Automated Extraction of Information from the Literature on 

Chemical-CYP3A4 Interactions. J Chem Inf Model 2007 47 (6), 2449 -2455.
4. Kulick, S.; Bies, A.; Liberman, M.; Mandel, M. ; McDonald, R.; Palmer, M.; Schein, A.; Ungar, L.. 

Integrated Annotation for Biomedical Information Extraction. HLT/NAACL, 2004.

P-28 : An infrastructure for data mining public chemical & biological information
David J. Wild, Rajarshi Guha, Indiana University School of Informatics, Bloomington, Indiana, USA
At Indiana University School of Informatics,  we are exploring several projects aimed at increasing the 
accessibility and usability of the increasing volumes of chemical and biological information that are readily 
available  on  the  web,  in  public  databases,  and  in  accessible  documents.  In  this  presentation,  we  will 
describe our progress with and results for each of the projects and we will detail our vision for how these 
projects might together enable better data mining of public information in drug discovery projects. The 
projects that will be described include: public information access using aggregate compound information 
web  services;  automatic  generation  of  workflows  of  web  services  using  semantic  web  techniques; 
calculation of chemical  similarity between web documents;  mining of information in chemistry journal 
articles; and network models to integrate compound, protein and assay information. 

P-29 : Binding affinity prediction of distinct inhibitors of group-1 and group-2 
Neuraminidases (NAs): ArgusLab4/AScore protocol
M. L. Mihajlovic 1, 2, P. M. Mitrasinovic 2, *
1 Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
2 Institute for Multidisciplinary Research, Belgrade, Serbia
* Correspondence to: petar.mitrasinovic@cms.bg.ac.yu
Due to a recent pandemic threat  by the worldwide spread of H5N1 avian influenza,  the World Health 
Organization has shown its profound concerns regarding the possibility of having the virus spread among 
humans soon. Reports about the virus resistance to two approved anti-influenza drugs, oseltamivir (Tamiflu) 
and  zanamivir  (  Relenza),  as  well  as  the  lack  of  adequate  vaccine  have  raised the  urgent  question of 
developing new anti-viral drugs (1).

The design of new NA inhibitors is a dynamic field of research. Because of often insufficient structural 
infromation that may be exploited for structure-based design, computational methods are currently a viable 
partner with experiment (2).

By  using  the  crystal  structures  of  known  inhibitors  bound  to  group-1  and  group-2  NAs,  the 
ArgusLab4/AScore/ShapeDock (GaDock)-docking protocol (3) was shown to indentify the correct binding 
modes of all inhibitors in their own protein/ligand crystal structures. In order to study the dependence of 
binding mode prediction  on small  changes  in  protein  crystal  structure,  132 experiments  (11  inhibitors 
docked in 12 protein structures) for group-2 NAs and 88 docking experiments (8 inhibitors docked in 11 
protein  structures)  for  group-1  NAs  were  performed.  In  a  total  of  132  docking  experiments, 
ArgusLab4/AScore/ShapeDock  (GaDock)  identified  the  corect  binding  modes  of  116  protein/ligand 
complexes  of  group-2  NAs.  This  outcome  shows  that  ArgusLab4/AScore/ShapeDock  (GaDock) 
significantly outperforms the Dock4/PMF approach (4). In addition, 80 binding modes of 88 protein/ligand 
complexes of group-1 NAs were correctly identified.

Our  study suggests  that  the  ArgusLab4/AScore/ShapeDock docking protocol,  as  a  very consistent  and 
reproducible  algorithm,  can  be  employed  for  the  determination  of  reliable  binding  affinities  of  NA 
inhibitors, thus providing a promising base for the future design of novel anti-viral drugs. 

1. Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; 
Gamblin, S. J.; Skehel J. J. The Structure of H5N1 Avian Influenza Neuraminidase Suggests New 
Opportunities for Drug Design Nature 2006, 443, 45-49.

2. Sangma, C.; Hannongbua, S. Structural Information and Computational Methods Used in Design 
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of Neuraminidase Inhibitors Current Computer-Aided Drug Design 2007, 2, 113-132.
3. Thompson, M. A. ArgusLab 4.0.1. Planaria Software LLC, Seattle, WA, http://www.arguslab.com.
4. Muegge, I. The Effect of Small  Changes in Protein Structure on Predicted Binding Modes of 

known Inhibitors of Influenza Virus Neuraminidase: PMF Scoring in Dock4 Med. Chem. Res. 
1999, 9, 490-500.

P-30 : Prediction of novel drug targets in the metazoan parasite schistosoma mansoni
F. Oellien1, C. R. Caffrey2, A. Rohwer1, R. J. Marhöfer1, S. Braschi2, G. Oliveira3, J. H. McKerrow2, P. M.  
Selzer1

1Intervet Innovation GmbH, Schwabenheim, Germany
2Sandler Center for Basic Research in Parasitics, University of California San Francisco, San Francisco,  
USA
3Laboratory of Cellular and Molecular Parasitology,Centro de Pesquisas René Rachou, Belo Horizonte,  
Brazil
Schistosomiasis is  a prevalent  and chronic helmintic disease in tropical  regions.  Treatment and control 
relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically 
relevant drug resistance emerge and spread.  Therefore, to identify potential target proteins for new avenues 
of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of 
Schistosoma  mansoni  as  compared  to  the  proteomes  of  two  model  organisms,  the  nematode, 
Caenorhabditis elegans and the fruitfly, Drosophila melanogaster.  Using the genome comparison software 
Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which 
gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, 
impairment of motility), i.e., are essential genes/proteins.
Finally 35 S. mansoni proteins were identified for which druggable protein homologs exist in the literature 
and 18 of these were homologous to proteins with 3D structures including co-crystallized ligands with 
which structure-based drug design approaches can be prosecuted.

P-31 : Performance of different machine learning methods
U. Koch1, S.A.H. Spieser1, K. Eitner1,2, D. Plewczynski3

1 IRBM (Merck Research Laboratories Rome), Rome, Italy
2 Adam Mickiewicz University, Faculty of Chemistry, Poznań, Poland
3 Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw,  
Poland
The performance of  different  classification methods in the context  of  ligand based virtual  screening is 
evaluated1,2. Five different biological targets were chosen for this comparison. It will be shown that some 
methods  perform  particularly  well  in  avoiding  false  negatives,  others  in  avoiding  false  positives. 
Application  to  the  analysis  of  patents  and  ligand  based  virtual  screening  will  be  demonstrated.  The 
performance of these methods in terms of finding new scaffolds and the effect of combining lists obtained 
from different methods will be discussed.

1. Plewczynski, D.; Spieser, S.A.; Koch, U. Assessing different classification methods for virtual 
screening J. Chem. Inf. Model. 2006, 46,1098-106.

2. Plewczynski, D.; von Grotthuss, M.; Spieser, S.A.; Rychlewski, L.; Wyrwicz, L.S.; Ginalski, K.; 
Koch U. Target specific compound identification using a support vector machine Comb. Chem. 
High Throughput Screen. 2007,10, 189-96 

P-32 : Assessing and exploiting non-additivity in a structure-activity relationship
J. van Drie, John H Van Drie Research LLC, Andover, MA, USA
Virtually all of our analyses of structure-activity-relationships make an implicit assumption of additivity, 
e.g. if adding an acetyl to template X produces a 10-fold improvement in affinity, then adding an acetyl to 
template Y should produce a similar 10-fold improvement in affinity.  This additivity assumption is not only 
deeply buried in the intuitive approaches of medicinal chemists, it is also implicit in many of the modeling 
approaches we use, most prominently in the calculation of statistical potentials, and in docking and scoring. 
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Ken Dill1 has noted that the assumption of additivity is sometimes called the “4th law of thermodynamics”, 
and suggests that this assumption may underlie our inability to accurately predict binding affinities, etc.

We present a simple method for assessing the degree of additivity in an SAR, and show that some SAR’s 
are highly additive, some are not.  Our computational methods tend to work quite well when things are 
additive, but non-additivity poses special challenges to drug design.  We will show how to exploit non-
additivity,  and  will  explore  the  implications  of  non-additivity  to  all  aspects  of  computer-aided  drug 
discovery.   The SAR of hepatitis  C viral  protease will  be highlighted as  a  prominent  example of  one 
displaying a high degree of non-additivity; how non-additivity was exploited in the discovery of clinical 
candidates targeting HCVP will be described2.

1. Dill, K.A.  Additivity principles in biochemistry J Biol. Chem., 1997, 272:701. 
2. Perni, R.B. et al., Inhibitors of hepatitis C virus NS3.4A protease. Part 3: P2 proline variants. 

Bioorg Med Chem Lett. 2004 14:1939.

P-33 : CLiDE Pro: A chemical OCR tool
A. Valko 1, P. Johnson 2

1 Keymodule Ltd., Leeds, UK
2 University of Leeds, Leeds, UK
Depictions of two-dimensional chemical structures published in the literature are stored as bitmap images in 
most electronic sources of chemical information such as reports, journals and patents. Although the original 
chemical  structures  are  usually  created  using  chemical  drawing  programs  which  generate  complete 
structural information, this information is lost during the publication process and if required, is normally 
regenerated by redrawing the structure with a computer program, which is time-consuming and prone to 
errors.

CLiDE Pro is a chemical OCR software tool aimed at automatic extraction of chemical information from 
either the printed chemistry literature, or from the equivalent electronic pdf version. CLiDE Pro is the latest 
incarnation of software to emerge from the long-term CLiDE (Chemical Literature Data Extraction) project 
[1-3].  Chemical  OCR  involves  three  main  problems:  (a)  identification  of  chemical  images  within  a 
document,  (b)  compilation of  chemical  graphs of  individual  molecules  from chemical  images,  and (c) 
interpretation  of  complex  objects  such  as  generic  molecules  and  reaction  schemes  using  the  retrieved 
chemical graphs. The structure recognition methods implemented in CLiDE Pro will be presented. Structure 
features which frequently cause problems such as crossing bonds, lines found in various chemical entities 
such  as  single  bonds  attached  to  triple  bonds,  dashed  bonds  and  parts  of  atom  labels  commonly 
misclassified as lines (e.g. I and Cl) will be discussed together with our solutions to these problems. A key 
component of the presentation will be CLiDE Pro's approach to the interpretation of generic structures.

The chemical OCR tool which has 100% accuracy in all situations has yet to be developed, and indeed is 
unlikely to be developed in the foreseeable future. This exactly parallels the situation for text OCR, where 
despite decades of research, accuracy of recognition still  falls a little short of 100% and requires some 
manual  editing,  but  is  still  very  useful.  If  chemical  OCR  can  reach  similar  levels  of  accuracy  then 
automated mining of the chemical literature will become a powerful and cost-effective process.

1. Ibison, P.; Jacquot, M.; Kam, F.; Neville, A. G.; Simpson, R. W.; Tonnelier, C.; Venczel, T; 
Johnson, A. P. Chemical Literature Data Extraction: The CLiDE Project. J. Chem. Inf. Comput.  
Sci. 1993, 33(3), 338-344.

2. Ibison, P.; Kam, F.; Simpson, R. W.; Tonnelier, C.; Venczel, T; Johnson, A. P. Chemical Structure 
Recognition and Generic Text in the CLiDE Project. In Proceedings on Online Information 92; 
London, England, 1992.

3. Simon, A.; Johnson, A. P. Recent Advances in the CLiDE Project: Logical Layout Analysis of 
Chemical Documents. J. Chem. Inf. Comput. Sci. 1997, 37(1), 109-116.
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P-34 : Molecular subgraph mining for analyzing ligand activity classes
Julio E. Peironcely 1, Eelke van der Horst 1, Adriaan P. IJzerman 1, Michael Emmerich 2, Andreas Bender 1 
1 Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
2 Leiden Institute for Advanced Computer Science, University of Leiden, The Netherlands
Protein  sequence  or  overall  structural  similarities  are  often  employed  to  categorize  the  similarity  of 
receptors, but this approach might not be ideal from the chemist’s perspective. It can happen that chemically 
similar ligands interact with proteins without any obvious sequence similarity. Relating receptors by the 
similarity of their ligands can provide relationships that may be missed if we only study the sequence of the 
targets.  In  this  study we grouped  targets  by finding frequent  substructures  in  their  ligands  employing 
different graph mining approaches. Knowing these frequencies allowed us to discover substructures that are 
useful to effectively separate two families, i.e. when they are frequent in one family and infrequent in the 
others. We used these frequencies to build a phylogenetic tree to visualize the distance at which the target 
families  are related according to the similarities  of  their  ligands.  We analyzed activity classes  that  are 
similar from the ligand-side, despite having a small sequence similarity, and assume these similarities to be 
relevant in the context of drug side effect predictions. On the other hand, our study provides tools to detect 
which fragments increase the specificity of a ligand, reducing promiscuity and off-target interactions. 

P-35 : Frequent substructure mining of GPCR ligands
E. van der Horst, A. Bender, A. Ijzerman, Division of Medicinal Chemistry, Leiden-Amsterdam Center for 
Drug Research, Leiden University, Leiden, The Netherlands
In this study, we conducted frequent substructure mining to find the structural features that discriminate 
between ligands that  either  do or do not  bind to G protein-coupled receptors  (GPCRs).  Finding which 
substructures are rare and which are common in GPCR ligands will help in the design of new ligands and 
for prioritizing compounds for screening. Besides the normal 2D structure notation, three other chemical 
representations were used. The first 'elaborate' representation used a special type for aromatic bonds, the 
second also added a special type for any aromatic atom, and the third representation used a special notation 
for planar, not necessarily aromatic, structures. In all but the normal representation, wildcards were used for 
halogens and aliphatic heteroatoms with an extra label indicating the atom type. A set of 16k GPCR ligands 
was compared against  a  roughly equal  number from a screening set  of  compounds (Chembridge).  For 
analysis of  the results,  two decision trees were constructed,  one for  the most-common substructure for 
GPCR  ligands  and  one  for  the  most-common  substructure  in  the  screening  set.  The  alkylamine 
substructures were most discriminating for GPCR ligands as compared to the Chembridge set. This reflects 
the presence of aminergic receptor ligands in the GPCR dataset. Carboxamide substructures were most 
common in the Chembridge dataset. This is probably due to particular reaction types used to construct the 
screening  library.  The  ‘normal’representation  mode  led  to  the  most  significant  substructure  for  GPCR 
ligands;  the  aromatic  bonds  representation  yielded  the  most  significant  substructure  for  the  screening 
compounds.  In  conclusion,  frequent  substructure  mining  is  a  useful  approach  for  characterizing 
heterogeneous ligand datasets. 

P-36 : Characterization of the inhibition of HIV-1 reverse transcriptase by non-nucleoside 
inhibitors and proteochemometric models which are able to predict compound activity 
against particular target mutants
Gerard van Westen a, J. Wegner b, A. Bender a, A. IJzermana, H van Vlijmenb

a Leiden / Amsterdam Center for Drug Research, Leiden University, Netherlands
b Tibotec BVBA, Mechelen, Belgium
HIV-RT has traditionally been a valuable target in anti-HIV drug design. NNRTIs are a class of inhibitors 
very specific for HIV-1 RT, however (cross) resistance forms an increasing problem in the treatment of HIV 
patients with these drugs.1 In order to minimize the onset of resistance and design drugs that retain activity 
even  in  the  presence  of  several  mutations,  a  detailed  understanding  of  the  interaction  mechanism  of 
NNRTIs and the mutations leading to resistance is required. 

Presented here is a characterization of the NNRTI binding pocket on RT and the mechanism leading to 
inhibition of the polymerase protein. It was found that the disturbed catalytic site theory 2 is the most likely 
cause  of  polymerase  function  inhibition.  Furthermore,  using several  approaches,  the  entry channel  for 
NNRTIs into the binding pocket was considered. It was found that there is a high probability that the entry 
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channel for NNRTIs is not formed by the solvent accessible channel3 but by the movement of one of the 
two sheets making up the binding pocket.2, 3

Using  a  group  of  36  crystal  structures,  a  field-based  5D  QSAR  process  was  implemented  including 
modeling  of  mutant  structures,  conformational  analysis,  induced  fit  minimization,  and  calculation  of 
interaction energies and consensus interaction fields.  This approach allowed characterization of NNRTI 
resistance and prediction of the effect of point mutations on the interaction between NNRTIs and RT. The 
interaction energies and consensus interaction fields support lead-optimization chemistry.  Furthermore it 
allows  rationalization  and  confirmation  of  resistance  hypotheses  in  literature.  In  total,  432  different 
structures divided over 18 drug classes were analyzed. 

Finally a simple proteochemometric model was created based on an internal data set containing interaction 
data between a series of 455 compounds and 6 different mutants of HIV-1 RT. Using several classification 
techniques,  the  performance  varied  between  60  and  80  % correct  prediction.  Two  models  were  built, 
predicting interaction between the compounds and the entire mutant panel and predicting interaction of all 
compounds within each sequence.

We conclude that the applied SAR approaches confirm to a large degree the known resistance patterns in 
literature, but are less effective  for mutations causing backbone movements. Especially these cases will be 
refined in future research to help understand NNRTI resistance mechanisms.

1. Sallie, R., Replicative homeostasis: a fundamental mechanism mediating selective viral replication 
and escape mutation. Virol J 2005, 2, 10.

2. Balzarini, J., Current status of the non-nucleoside reverse transcriptase inhibitors of human 
immunodeficiency virus type 1. Curr Top Med Chem 2004, 4, (9), 921-944.

3. Rodriguez-Barrios, F.; Balzarini, J.; Gago, F., The molecular basis of resilience to the effect of the 
Lys103Asn mutation in non-nucleoside HIV-1 reverse transcriptase inhibitors studied by targeted 
molecular dynamics simulations. J Am Chem Soc 2005, 127, (20), 7570-7578.

P-37 : Consensus modeling of chemical biodegradation pathways
ML Patel, MD Hobbs, PN Judson, MA Ott, M Ulyatt, JD Vessey, Lhasa Limited, Leeds, United Kingdom
As part of the NoMiracle integrated European research project exploring novel methods and tools to better 
evaluate chemical risks, we investigated whether a consensus model approach could be developed to advise 
on biodegradation pathways by reasoning about the results from different in silico prediction systems and 
databases.

A working prototype ‘Mira’ has been created that is able to query two biodegradation prediction systems 
(CATABOL and MEPPS) and a database of known biodegradation pathways (included in CATABOL) about 
a compound of interest and reason about the results returned.  Mira is able to provide an assessment of both 
the biodegradability of a chemical and the structure of its biodegradants.  Each prediction is associated with 
an overall level of likelihood and is also assigned a level of confidence based on the user’s confidence in 
each of the underlying systems.

The reasoning methodology used within Mira addresses a number of challenges common to consensus 
modeling, including approaches to the combination of qualitative and quantitative outcomes.  In addition, 
consideration is  also given to varying confidence in,  and the extent  of concordance between,  different 
prediction systems.

P-38 : Scaffold Hunter: Exploiting holes in chemical space
S. Wetzel1, K. Klein2, A. Schuffenhauer3, P. Ertl3, P. Mutzel2, H. Waldmann1

1Max-Planck-Institute for Molecular Physiology, Dortmund and Chemical Biology, Technical University of  
Dortmund, Germany
2 Chair of Algorithm Engineering (Ls11), Department of Computer Science, Technical University 
Dortmund, Germany
3 Novartis Institute for Biomedical Research, Basel, Switzerland
“Space”,  as  Douglas  Adams  famously  said  “is  big.  You  just  won't  believe  how  vastly,  hugely,  mind-
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bogglingly big it is.”1 So navigating chemical space is quite an effort and still everyone seeks “To boldly go 
where no man has gone before.”2 How can one know where the promising parts of chemcial space are 
where no man has gone before?

We developed  a hierarchical scaffold classification strategy3,4 to chart chemical spaces. Our approach is 
based on Murcko scaffolds and a rule set which will create a scaffold tree. The resulting tree diagrams 
where the nodes represent scaffold structures are very intuitive to chemists. In general they allow a quick 
orientation in the structure space depicted. Features like colour coding according to properties and the like 
further increase the information content without reducing clarity.

The  Scaffold  Hunter  program  interactively  displays  the  tree  diagrams  generated  by  the  scaffold  tree 
algorithm and thus facilitates navigation in and exploitation of chemical space. It allows to quickly identify 
“holes” in the structure space analyzed and to link them to bioactivity. Thus promising starting points for 
library design can be easily identified.

Scaffold Hunter will enable chemists to directly work with the results of hierarchical classifications in an 
intuitive  and  easy way -  independent  of  the  underlying  algorithm.  It  is  in  use  for  hitlist  triaging  and 
compound management but can also serve as a tool to navigate and analyze chemical structure space.

1. Adams, D. Hitchhikers Guide to the Galaxy, Del Rey, Reissue Edition 1995.
2. From the title theme of the original StarTrek science fiction television series
3. Koch, M.A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; 

Waldmann, H. Charting Biologically relevant chemical space: A structural classification of natural 
products (SCONP), PNAS 2005, 102, 17272-17277.

4. Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M.A.; Waldmann, H. The Scaffold Tree - 
Visualization of the Scaffold Universe by Hierarchical Scaffold Classification. J. Chem. Inf.  
Model. 2007, 47, 47-58.

P-39 : Dynamic web application for drug design research
J. MacCuish 1, M. Chapman1, N. MacCuish1, J. Bradley2, J. Blankley3

1 Mesa Analytics & Computing, LLC, Santa Fe, NM, USA
2 Drexel University, Philadelphia, PA, USA
3Pfizer (retired), Ann Arbor, MI, USA
WebFlowNets, a development framework for the construction of dynamic web applications, is presented in 
the  context  of  eLearning  and  research.  The  dynamic  Web  application,  WebFlowDD,  built  with 
WebFlowNets,  will  be  described.  WebFlowDD  provides  researchers  with  workflows  in  drug  design 
utilizing a variety of freeware and Web-services.  WebFlowDD demonstrates the broader implications of the 
WebFlowNets framework for molecular modeling, drug design, and QSAR.

P-40 : Parallel tiered clustering for large data sets using a modified Taylor’s algorithm
J. MacCuish, N. MacCuish, M. Chapman, Mesa Analytics & Computing, Inc., Santa Fe, New Mexico, USA
Clustering large sets has many applications in drug discovery, among them compound acquisition decisions 
and combinatorial  library diversification.  Molecular fingerprints (2D) and molecular shape conformers 
(3D) from PubChem are the basic descriptors comprising the large sets utilized in this study.  A parallel 
tiered clustering algorithm, implementing a modified Taylor’s algorithm, will be described as an efficient 
method for  analyzing datasets of  such large scale.   Results  will  be presented in SAESAR (Shape And 
Electrostatics Structure Activity Relationships).

P-41 : Ligand-based models for the isoform specificity of Cytochrome P450 substrates
L. Terfloth 1, B. Bienfait 1, J. Gasteiger 1,2

1 Molecular Networks GmbH, Erlangen,Germany
2 Computer-Chemie-Centrum and Institute of Organic Chemistry, University of Erlangen-Nuremberg,  
Erlangen, Germany
In silico prediction of ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties is 
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expected to detect and eliminate compounds with inappropriate pharmacokinetic properties at an early stage 
of the drug discovery process. A central step in the ADMET process is drug metabolism. Metabolic stability, 
drug toxicity, and drug-drug interactions have to be considered.

Oxidation reactions mediated by cytochrome P450 isoforms play a crucial role in phase I of the human 
metabolism of xenobiotics. Here, we report on the isoform specificity for CYP3A4, CYP2D6, and CYP2C9 
substrates.[1]  The  influence  of  the  descriptors  used  for  structure  representation  and  the  impact  of  the 
modeling method on the predictability of the models will be discussed. A thorough CV (cross-validation) 
scheme is presented to assess the reliability of the models. Furthermore, the prediction of a more diverse 
and larger external validation data set with an accuracy of up to 83% underlines the validity of the models.
It will be shown that the random selection of a test set can be rather misleading to assess the predictability 
of a classification model (Figure 1).

Figure 1: Distribution of the predictability for 1000 randomly selected test data sets.

A classification model for the isoform specificity is implemented in the application isoCYP.[2,3]

1. Terfloth, L.; Bienfait, B.; Gasteiger, J. Ligand-Based Models for the Isoform Specificity of 
Cytochrome P450 3A4, 2D6, and 2C9 Substrates. J. Chem. Inf. Model. 2007, 47, 1688-1701.

2. The software package isoCYP is available from Molecular Networks GmbH, Erlangen, Germany. 
http://www.molecular-networks.com (accessed Feb 24, 2008).

3. A Web service of isoCYP is available from Molecular Networks GmbH, Erlangen, Germany. 
http://www.molecular-networks.com/online_demos/cyp450 (accessed Feb 24, 2008).

P-42 : Metabolomics approach for determining growth-specific metabolites based on Fourier 
transform ion cyclotron resonance mass spectrometry
Hiroki Takahashi, Yoko Shinbo, Md.Altaf-Ul-Amin, Ken Kurokawa, Shigehiko Kanaya, Graduate School of  
Information Sciences, Nara Institute of Science and Technology, Nara, Japan
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS) is the best MS technology for 
obtaining exact mass measurements owing to its great resolution and accuracy, and several outstanding FT-
ICR/MS-based metabolomics have been reported. Development of a general scheme of FT-ICR/MS-based 
metabolic profiling, with the aid of its potential for the high-resolution measuring power together with ion-
signal intensity information, should thus make a significant contribution to metabolomics studies. To attain 
the  purpose  and  to  understand  the  cell  system  based  on  the  components  of  metabolites,  we  apply 
chemometrics  and  bioinformatics  approach  to  FT-ICR/MS  data.  Among  a  variety  of  metabolomics 
strategies,  FT-ICR/MS offers  a  unique  opportunity  in  non-targeted  metabolomics  studies  owing  to  its 
extreme  accuracy  (below  1  ppm)  in  the  mass  measurement.  Thus,  chemical  formulas  and  molecular 
identities of metabolites can be predicted with the aid of high precision mass spectrometry (MS) data and 
can also be easily linked to reported metabolites.

Metabolomics researches currently confront a problem that high-through put data-acquisition technologies 
including chromatography-coupled mass spectrometry (MS) and FT-ICR/MS have facilitated simultaneous 
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detection and quantification of a large number of metabolite-derived peaks without metabolite assignment. 
The  problem  in  annotation  of  metabolites  is  that  there  is  only  a  piece  of  information  about  peaks 
corresponding to precise molecular weight for metabolite-derived ions in MS. Annotation process of ions as 
metabolites is most important for interpreting cellular condition by metabolite composition. To attain this, 
we propose a procedure of metabolite annotation using the data obtained from FT-ICR/MS by grouping ions 
originated from identical  metabolites  by a correlation analysis.  The procedure mainly consists  of  three 
steps; data acquisition and constructing data matrix (Step 1), classification of ions into metabolite-derivative 
groups (Step 2), and annotation of ions as metabolites using chemical and biochemical knowledge (Step 3). 
In  Step  2,  ions  can  be  classified  into  metabolite-derivative  groups  by  a  graph  clustering  algorithm 
combining with a correlation analysis. This procedure makes it possible to annotate ions as metabolites in 
high-quality, and to interpret the cellular condition of Escherichia coli by metabolite composition of cells. 
We searched 174 ions using KNApSAcK (http://kanaya.naist.jp/KNApSAcK/), and obtained 163 metabolite 
candidates  from the  search  of  the  entire  metabolite  inventory  in  the  database.  Based  on  the  species-
metabolite relationship and MS/MS analyises, we were finally able to assign 33% of 220 detected ions to 
candidate metabolites. In  this study,  the percentage of ions annotated to metabolite candidates is  much 
higher than that in case of plant reported by Nakamura et al (10% of peaks in Arabidopsis thaliana).

Using PLS regression we constructed a linear relation between OD600 values and metabolite profiles. High 
correlation between predicted and observed OD600 values certifies the correctness of the linear model. Our 
analyses reveal that  global  cyclopropane fatty acid formation of phosphatidylglycerols occurs as  E. coli 
enters stationary phase from exponential phase. The results indicate that non-targeted metabolomics based 
on direct-infusion FT-ICR/MS is useful for analyzing the responses of biological systems to a variety of 
changes. Our integrated methodology is applicable to metabolic studies involving other organisms.

1. Nakamura, Y.; Kimura, A.; Saga, H.; Oikawa, A.; Shinbo, Y.; Kai, K.; Sakurai, N.; Suzuki, H.; 
Kitayama, M.; Shibata, D.; Kanaya, S.; Ohta, D., Differential metabolomics unraveling light/dark 
regulation of metabolic activities in Arabidopsis cell culture. Planta 2007, 227, (1), 57-66

P-43 : Clustering peptidases employing structural features of their inhibitors
M. Milik 1, A. Bender 1,2, M. Glick 1

1 Novartis Institutes for Biomedical Research, Cambridge, USA
2 current address: Division of Medicinal Chemistry, Leiden University, Leiden, The Netherlands
Presented is a method for classification of enzyme proteins basing on structures of their small-molecule 
inhibitors. The goal is to provide a protein target classification method which is orthogonal in its concept to 
the classification based on protein sequence similarity, and which may provide additional input for focused 
molecular library design and lead finding procedures.

The feasibility of the method was tested on the subset of data from the WOMBAT database [1]. Compounds 
defined in this database as “active” against peptidase targets was extracted and used to define an activity-
based fingerprint.  The compounds were  clustered according to  their  2D structure similarity to  remove 
redundancy and generate more robust classification. In the follow, the activity-based binary fingerprint was 
created for every selected peptidase target. The length of the fingerprint vector was equal to the number of 
structural clusters. The value on the position ‘n’ in the fingerprint vector was set to ‘0’ if no compound from 
the structural cluster number ‘n’ inhibits the given peptidase; in the opposite case the value was set to ‘1’.

This fingerprint was then used to build a phylogenetic-like tree for peptidases, as it is presented in the 
Figure 1 (left side). For comparison, on the same figure we show the phylogenic tree for the same set of 
proteins built  on the basis of their sequence similarity (Figure 1, right side).  Table 1 gives more detail 
description of the branches identified in the activity-based tree. The presented results show that our method 
may give an additional input into early analysis of candidate lead molecules, for example, by hinting of 
their putative off-target activity and toxicity problems. These kinds of problems are difficult to evaluate 
based only on protein target sequence or substrate analysis.  
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Figure 1. Phylogenetic-like trees for selected peptidase enzymes. The left one is based on the activity data, 
as it is defined in the WOMBAT database; the right tree is based on CLUSTALW [2] multiple alignment of 
the  protein  sequences.  The  peptidases  are  labeled  by  their  Enzyme  Classification  codes.  The  Roman 
numbers enumerate activity-based clusters presented with more details in Table 1. The figure was prepared 
using PhyloDraw package [3].

Table 1. List of the peptidases used in the presented study, with their activity-based clustering deduced from 
the branching of the activity fingerprint tree from Figure 1 (left tree). The selected peptidases are provided 
with their Enzyme Commission number and peptidase family name – both extracted from SwissProt [4] 
database. While some of the clusters follow the EC classification up to the sub-subclass level, the other ones 
are more diversified  and  contain peptidases  with different  action mechanisms.  More  detail  analysis  of 
structural and chemical meaning of these clusters will be presented.   

EC # Enzyme Name Pept.
1

Fami-
ly

EC # Enzyme Name Pept.
1

Fami-
ly

Branch I Branch II
3.4.11.

6
Aminopeptidase B M1 3.4.22.

1
Cathepsin B C1

3.4.14.
10

Tripeptidyl peptidase 
II

S8 3.4.22.
15

Cathepsin L C1

3.4.17.
11

Glutamate carboxypep-
tidase

M20A 3.4.22.
16

Cathepsin H C1

3.4.21.
26

Prolyl oligopeptidase S9A 3.4.22.
27

Cathepsin S C1

3.4.22.
28

Picornain 3C C3 3.4.22.
38

Cathepsin K C1

3.4.24.
27

Thermolysin M4 3.4.22.
52

Calpain-1 C2

3.4.25.
1

Branch III Branch IV
3.4.23.

1
Pepsin A A1 3.4.11.

1
Leucyl aminopeptidase M17

3.4.23.
5

Cathepsin D A1 3.4.11.
2

Membrane alanyl aminopep-
tidase

M1

3.4.23.
15

Renin A1 3.4.14.
2

Dipeptidyl peptidase II S28

3.4.23.
16

HIV-1 retropepsin A2 3.4.14.
5

Dipeptidyl peptidase IV S9B

3.4.23.
38

Plasmepsin I A1 3.4.22.
5

Fruit bromelain 
(transfered entry: 

3.4.22.33)

C1

3.4.23.
39

Plasmepsin II A1 3.4.24.
68

Tentoxilysin M27

3.4.23.
45

Memapsin 1 A1 3.4.24.
69

Bontoxilysin M27

3.4.23. Mamepsin 2 A1 3.4.24. Anthrax lethal factor en- M34
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46 83 dopept.
Branch V Branch VI

3.4.21.
1

Chymotrypsin S1 3.4.21.
4

Trypsin S1

3.4.21.
20

Cathepsin C S1 3.4.21.
5

Thrombin S1

3.4.21.
36

Pancreatic elastase S1 3.4.21.
6

Coagulation factor Xa S1

3.4.21.
37

Leukocyte elastase S1 3.4.21.
7

Plasmin S1

3.4.21.
39

Chymase S1 3.4.21.
21

Coagulation factor VIIa S1

3.4.21.
59

Tryptase S1 3.4.21.
22

Coagulation factor IXa S1

3.4.21.
97

Assemblin S21 3.4.21.
34

Plasma kallikrein S1

3.4.21.
35

Tissue kallikrein S1

3.4.21.
68

T-plasminogen activator S1

3.4.21.
73

U-plasminogen activator S1

Branch VII Branch VIII
3.4.15.

1
Peptidyl dipeptidase A M2 3.4.24.

3
Microbial collagenase M9

3.4.17.
1

Carboxypeptidase A M14 3.4.24.
7

Interstitial collagenase M10B

3.4.17.
2

Carboxypeptidase B M14 3.4.24.
17

Stromelysin 1 M10B

3.4.17.
3

Lysine carboxypepti-
dase

M14 3.4.24.
23

Matrilysin M10B

3.4.17.
12

Carboxypeptidase M M14 3.4.24.
24

Gelatinase A M10B

3.4.17.
21

Glutamate carboxypep-
tidase 

M28 3.4.24.
34

Neutrophil collagenase M10B

3.4.21.
77

Semenogelase S1 3.4.24.
35

Gelatinase B M10B

3.4.24.
11

Neprilysin M13

3.4.24.
71

Endothelin-converting 
enz.

M13

1. Peptidase family according to SwissProt [4] database

1. Olah M.; Mracec, M.; Ostopovici, L.; Rad, R.; Bora, A.; Hadaruga, N.; Olah, I.; Banda, M.; 
Simon, Z.; Mracec, M.; Oprea, T. I. WOMBAT: World of Molecular Bioactivity, in 
Chemoinformatics. In Drug Discovery; Oprea. T. I. (Ed), Wiley-VCH, New York, 2004, pp. 
223-239.

2. Chenna, R.; Sugawara, H.; Koike,T.; Lopez, R.; Gibson, T. J.; Higgins, D. G.; Thompson, J. D.; 
Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003, 31, 
3497-500

3. Jeong-Hyeon Choi, Ho-Youl Jung, Hye-Sun Kim, Hwan-Gue Cho. PhyloDraw: A Phylogenetic 
Tree Drawing System, Bioinformatics, 2000, 16, 1054-1058.

4. Bairoch A.; Apweiler R.; Wu C.H., Barker W.C.; Boeckmann B.; Ferro S.; Gasteiger E.; Huang H.; 
Lopez R.; Magrane M.; Martin M.J.; Natale D.A.; O'Donovan C.; Redaschi N.; Yeh L.S. The 
Universal Protein Resource (UniProt). Nucleic Acids Res. 2005, 33:D, 154-159.

P-44 : Prediction of cell permeability
Paul Selzer 1, Peter Ertl 1, Daniela Gabriel 1, Christian N. Parker1, Meir Glick 2, Mariusz Milik 2

1 Novartis Institutes for BioMedical Research, Basel, Switzerland
2 Novartis Institutes for BioMedical Research Inc., Cambridge MA, USA
High  content  imaging  allows  one  to  analyze  biological  processes  at  the  sub-cellular  level,  providing 
valuable contributions to hit finding. However, this assay format can be limited in terms of throughput due 
to  difficulties  in  assay protocol  and reagent  cost.  Therefore,  there  is  a  need to  screen focused sets  of 
compounds instead of randomly screening the full set of available compounds . This highlights the need for 
reliable and robust methods to predict cell permeability that help to concentrate the screening resources on 
those compounds that have a higher probability of being cell permeable.
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To support this goal an in-house expert system for the prediction of the cell permeability of small molecules 
has been developed. The system was developed by the application of several machine learning techniques 
to this problem leading to a combination of two complementary approaches:

1. Bayesian Model
The model has been developed with data resulting from cell based screens providing a binary 
classification (cell permeable vs. non cell permeable) as output. The chemical structures were 
encoded as Pipeline Pilot fingerprints. The experimental data have been divided into training and 
test set (4:1). Applying the model to the test set yielded a 9.5 fold enrichment (compared to 
random) cell permeable compounds in a virtual screen.

2. Random Forest Model
This model was built on Caco2 assay data. The output of the model is the permeation coefficient P 
which is then binned to provide a binary classification (highly permeable vs. medium and low 
permeable). The model was validated in a pseudo prospective study – meaning that it has been 
built with compounds that have been screened earlier in time and tested against compounds that 
have been screened later. This experiment has been repeated several times with different time-point 
thresholds yielding ROC curve AUCs of 0.8.

Both methods were combined to provide a consensus score to rank compounds according to their  cell 
permeability  potential.  Currently  the  system  is  being  validated  to  analyze  it’s  applicability  for  the 
productive screening set selection process. 

P-45 : Validation using the RCSB: Good idea or bad idea?
Paul C. Hawkins , Gregory L. Warren, A. Geoffrey Skillman, OpenEye Scientific Software, Santa Fe, USA
Protein-ligand co-complexes from the RCSB database have been used in many studies on the quality of 
docking and conformer generation. However, due to the poor quality of some of the structures, many of 
their  conclusions are invalid.  This  paper  will  discuss  pitfalls  associated with using structures from the 
RCSB for comparison or validation purposes. These pitfalls include local problems, such as poor quality fits 
to electron density (of ligand or protein), highly strained ligand structures and global issues such as lack of 
consideration of experimental error in the structural data. While nominal resolution has been frequently 
used for identifying good quality structures from the RCSB, much better assessments of quality can be 
obtained from global measures such as the diffraction-component precision index (DPI) and local measures 
including  the  real-space  correlation  coefficient.  Consideration  of  these  measures  is  mandatory  when 
assembling a reliable set of structures for validation. Many of the problems associated with using ligand 
structures from the RCSB are eliminated when using small molecule crystal structures from the CCSD, as 
there is a much greater degree of precision in these structures.

With these issues in mind, datasets for validation of conformer generation applications derived from both 
the RCSB and the CCSD will be presented and the performance of a selection of methods on these datasets 
will be discussed using a number of different metrics.

P-46 : Automated generation of fragment-based rules for mutagenicity prediction
O.G. Othersen1, R. Wehrens1, L. Buydens1, L. Ridder2, M. Wagener2

1 Analytical Chemistry, Institute for Molecules and Materials (IMM), Radboud University Nijmegen,  
Nijmegen, The Netherlands
2 Molecular Design & Informatics Department, Organon, part of Schering-Plough, Oss, The Netherlands
Prediction  of  mutagenicity is  an  area  of  interest  in  pharmaceutical  research  as  genotoxicity of  a  drug 
candidate is detrimental in development. Since mutagenicity is directly related to the chemical properties of 
a  compound,  i.e.  its  reactivity  and  affinity  towards  DNA,  it  is  generally  believed  that  prediction  of 
mutagenicity on the basis  of  chemical  structure should be feasible  at  a  reasonable accuracy.  However, 
several  recent  reviews1-3 indicate  that  actual  commercial  packages  for  the  prediction  of  mutagenicity 
perform not very well on drug-like compounds as the programs are not trained on these compound classes 
and the difficulty of describing non-covalent DNA interactions.

An automated  and  systematic  method to  derive  molecular  fragments  related  to  mutagenicity has  been 
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developed. This approach allows to merge related specific mutagenic fragments into more general alerts, to 
incorporate the chemical context into the alert description (i.e. R-groups) and to refine alerts through logical 
combination  with  more  specific  fragments.  The  graphical  representation  of  fragments  and  their 
interrelationships facilitates the analysis of the structural data and allows to assess the quality and relevance 
of the derived alerts. Furthermore, this method is not limited to mutagenicity and may be used to find alerts 
and structural dependencies within other binary classified data.

The  performance  of  the  method is  illustrated  using  sets  of  structures  with  experimentally  determined 
genotoxic potential and compared to other state-of-the art mutagenicity prediction methods.

1. Snyder, R.D.; Ewing, D.; Hendry, L.B. DNA intercalative potential of marketed drugs testing 
positive in in vitro cytogenetics assays. Mutation Research, 2006, 609, 47–59.

2. Snyder, R.D.; Pearl, G.S.; Mandakas, G.; Choy, W.N.; Goodsaid, F.; Rosenblum, I.Y. Evaluation of 
DNA intercalation potential of pharmaceuticals and other chemicals by cell-based and three-
dimensional computational approaches. Environ. Mol. Mutagen., 2004, 43, 143-158.

3. Cariello, N.F. ; Wilson, J.D.; Britt, B.H.; Wedd, D.J.; Burlinson, B.; Gombar, V. Comparison of the 
computer programs DEREK and TOPKAT to predict bacterial mutagenicity  Mutagenesis, 2002, 
17(4), 321-329.

P-47 : The detection of new active site conformations using molecular dynamics and 
rotamer assignments.
G. Schaftenaar, B. Vroling, Computational Drug Discovery Group, Radboud University Nijmegen,  
Nijmegen, The Netherlands
Protein  flexibility  is  an  important,  but  often  neglected  aspect  of  the  drug  development  process.  The 
flexibility of the binding pocket residues of the peroxisome proliferator-activated receptor was investigated 
using a novel molecular dynamics (MD) protocol. A comparison is made between a standard MD protocol, 
using water probes in the binding pocket, and a novel protocol, using hydrophobic probes. The ligand-
complexed protein is  simulated and used as  a reference by comparing it  to the obtained results  of the 
hydrophobic and water probes trajectories. It  is hypothesized that  due to the hydrophobic nature of the 
natural ligands, the MD simulation using hydrophobic probes would result in a more accurate description of 
the binding pocket dynamics compared to the water probes trajectory.

The raw MD data is described by rotameric conformations, which results in sequence-like descriptions of 
active site conformations. Clustering and multi-dimensional scaling were used to validate the hypothesis. It 
was  found  that  the  use  of  a  hydrophobic  water  model  increases  the  sampling  of  ligand-like  pocket 
conformations.  The  conversion  of  MD data  to  rotameric  sequences  allows  for  easy data  analysis  and 
intuitive visualizations.

1. Vroling, B, Schaftenaar, G.. The detection of new active site conformations using molecular 
dynamics and rotamer assignments. , to be submitted to J. Comput. Aided Mol. Des.

P-48 : Automated extraction of kinase hinge-binding fragments from the protein data bank
D. Wood 1, S. Nabuurs 1, J. de Vlieg1, M. Wagener2

1 Computational Drug Discovery Group, Radboud University, Nijmegen, Netherlands
2 Department of Molecular Design and Informatics, Organon NV, Oss, Netherlands
Protein  kinases  are  key  components  in  signal  transduction  pathways.  As  abnormal  kinase  activity  is 
observed in a wide range of diseases, inhibition of protein kinases has become an area of significant interest 
to the pharmaceutical industry [1].  An important mechanism for kinase inhibition involves targeting the 
ATP  binding  pocket  with  small,  ATP-competitive  compounds.  These  compounds  form  a  common 
interaction with the highly conserved hinge region of the protein kinase structures. 

A method was developed to automatically extract the substructures that bind to the hinge residues from the 
protein kinase entries of the Protein Data Bank. These substructures are bioisosteric in nature [2] and can be 
used to make substructural replacements to obtain new screening candidates from lead compounds. The 
substructures were collated and presented as a catalogue to assist computational chemists at Organon in the 
development of new kinase inhibitors.
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1. Scapin, G. Structural biology in drug design: selective protein kinase inhibitors. Drug Discovery 
Today. 2002, 7(11), 601-611

2. Wagener, M.; Lommerse, J. P. M. The quest for bioisosteric replacements. J. Chem. Inf. Model. 
2006 46, 677-685

P-49 : Get the best from substructure mining
J. Kazius, Research For Charity Foundation, Utrecht, the Netherlands
All  cheminformatics  approaches  neglect  most  of  the  chemical  information  that  is  present  in  a  set  of 
compounds.  As  no  descriptor  set  can  capture  all  biologically  important  features,  valuable  chemical 
knowledge can thus stay hidden from the process  of  hypothesis-based drug design.  One example of  a 
straightforward structure-activity relationship (SAR) is a substructure that predisposes compounds towards 
reduced or enhanced biological activity. 

Substructure miners provide rapid access to a substantial repertoire of chemical descriptors that otherwise 
remains hidden: substructures. Substructure mining is therefore at least complementary to other methods of 
chemical data mining. Simply put, substructure mining consists of a focussed, but exhaustive,  series of 
substructure searches. 

This study explains problems that can now be solved through substructure mining.  AweSuM is the new 
Awesome  Substructure  Mining software from Curios-IT and it  is  designed to efficiently learn the most 
interesting  substructures.  Several  chemical  datasets  were  mined  (including  those  from  HTS)  [1]:  we 
examine the resulting pharmacophores and scaffolds along with their biological  and statistical relevance. 
For  instance,  an  automatically  extracted  pharmacophore  for  hERG channel  blockade  shows predictive 
power and validates published chemical knowledge. Other datasets were analysed to identify scaffolds that 
affect  binding  affinity  toward  G  Protein-Coupled  Receptors  (GPCRs).  These  results  demonstrate  that 
AweSuM extracts useful SAR knowledge from the vast space of substructure descriptors. More specifically, 
AweSuM reveals scaffolds that summarise the chemical content of datasets and key substructures (such as 
toxicophores or pharmacophores) that predict biological activities.

1. Wheeler, D. L.; Barrett, T.; Benson, D.A.; Bryant, S. H.; Canese, K.; Chetvernin, V., et al. 
Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 
2008, 36, D13-21. 

P-50 : The RSC's project prospect: Identification and reuse of chemistry in publications 
Colin Batchelor, RSC Publishing, Royal Society of Chemistry, Cambridge, UK
The RSC's Project Prospect, launched in early 2007, incorporates chemical structures and ontology terms 
into journal articles, and provides additional information on the compounds found to help the reader better 
understand the article and find related material. Uniquely, this structural information is also published in our 
RSS feeds. These continuing developments aim to extend further the markup of compounds using open 
standards and to promote new ways of publishing and finding structural data to improve the accessibility of 
chemistry. We will share our thinking on the future of structural information within chemistry publications.

P-51 : In silico studies on p63 as a new drug-target protein
A. Karawajczyk , G. Schaftenaar, RUMC/CMBI, Nijmegen, The Netherlands
p63 protein is a key regulator of ectodermal, orofacial and limb development [1]. Mutants of this protein are 
involved  in  the  development  of  rare  skin  diseases  such  as  EEC  syndrome  (Ectrodactyly-ectodermal 
dysplasia–clefting), Hay-Wells syndrome (AEC), Limb-mammary syndrome (LMS) and ADULT syndrome 
(Fig. 1). Clinical distinction among these syndromes is sustained both by the degree of expressivity of each 
disorder and by the occurrence of unique characteristic. The mutations associated with related disorders 
have been characterized and they are located in different domains of the protein (Fig. 2) [2]. Five protein 
motifs can be distinguished: a transactivation domain (TA), a DNA binding domain (DBD), oligomerisation 
domain (ISO), a sterile alpha motif domain (SAM), and transinactivation domain (TI). Finding a way to 
restore the function of p63 is one of the greatest challenges faced by scientists today.
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The structure of the p63 is not known yet, however it shares a high sequence homology with the tumor 
suppressor p53. Based on that fact the homology model of the DNA binding domain is build and optimized. 
Furthermore, it was found that small molecules like PRIMA, MIRA and STIMA are capable of reactivating 
a wide range of mutant forms of p53 [3]. Again by analogy it is believed that they can also interact with p63 
with  the  same  effect.  The  binding  site,  the  binding  forces  and  the  mechanism  of  action  are  to  be 
determinated.

We will  present  the results  of  the recent  studies  on the structural  properties  of  p63 mutants  that  may 
contribute to rational drug design. Additionally, the docking study has indicated the possible binding places 
for MIRA and PRIMA that steers an identification of pharmacophores of potential drugs.

Figure 1 The illustration of EEC, SHFM, and ADULT syndromes.

Figure 2 Mutation in p63 domains causing different diseases. The colors of indicated mutations correspond 
to the list of syndromes in the right top corner of the figure.

1. Mikkola, M. L. p63 in skin appendage development. Cell Cycles 2007, 6, 285-290; Aberdam D., 
Gambaro K., Rostagno P., Aberdam E., Rouleau M. Key role of p63 in BMP-4-induced epidermal 
commitment of embryonic stem cells. Cell Cycles 2007, 6, 291-294

2. Rinne T., Brunner H. G., Bokhoven van H. p63-associated disorders.  Cell Cycles 2007, 6, 262-268
3. Selivanova, G., Wiman K. G. Reactivation of mutant p53: molecular mechanism and therapeutic 

potential. Oncogene. 2007, 26, 2243-2254.

P-52 : QSAR modelling of antineoplastic activities using NIH roadmap data
A. Zakharo, A. Lagunin, D. Filimonov and V. Poroikov, Institute of Biomedical Chemistry, Russian Academy 
of Medical Sciences, Moscow, Russia
A new database of diverse chemical structures and their biological activities is being developed by National 
Center  for  Biotechnology Information at  NIH.  The database,  called  PubChem, contains  both structural 
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information  from  scientific  literature  as  well  as  screening  and  probe  data  from  Molecular  Libraries 
Screening  Center  Network.  We  selected  more  than  3200  compounds  with  more  than  8  atineoplastic 
activities from PubChem for Quantitative Structure-Activity Relationships (QSAR) analysis by GUSAR 
program. QSAR models for several antineoplastic activities (Cytotoxicity of p53ts Cells at the Permissive 
Temperature,  Activators  of  CRE-BLA:  S1P2 Purchased  Analogues,  Agonists  of  the  S1P2 Receptor  of 
Purchased  Analogues,  Tumor  Hsp90  Inhibitors,  Inhibitors  of  HPGD  (15-Hydroxyprostaglandin 
Dehydrogenase) and others) were obtained with reasonable accuracy (R2 obtained by GUSAR was more 
then 0.60). They were validated by leave-one-out cross-validation procedure and on external test sets. Q2 

obtained by GUSAR exceeded 0.50. We calculated RMStest for assessment of accuracy of test set prediction. 
RMStest was less than 0.40 within the domain applicability of model for all activities.

Acknowledgements. The study is supported by FP6-grant LSHB-CT-2007-037590 (Net2Drug).

P-53 : GUSAR: new approach for multiple QSAR
A. Zakharov, A. Lagunin, D. Filimonov and V. Poroikov, Institute of Biomedical Chemistry, Russian 
Academy of Medical Sciences, Moscow, Russia
We proposed a new QSAR method based on QNA (Quantitative Neighbourhoods of Atoms) descriptors and 
self-consistent regression that was realized in computer program GUSAR. It predicts the quantitative values 
of biological activity of chemical compounds on the basis of their structural formulae. The method uses 
universal descriptors and does not require selecting the most relevant descriptors like in the classic 2D 
QSAR. The method does  not  require also selection of  model  on the basis of  Q2 values.  GUSAR was 
compared with several widely used methods including CoMFA, CoMSIA, GRID, HQSAR, EVA and 2D 
QSAR.  Nine evaluation  sets  with  data  on  toxicity,  metabolism,  ligand-enzyme  and  ligand-receptor 
interactions were used for assessment of GUSAR predictive abilities. It was shown the GUSAR accuracy 
was  comparable  or  better  than  the  accuracy  of  other  QSAR  methods  both  on  heterogeneous  (CDK 
inhibitors,  DHFR  inhibitors,  ACE  inhibitors)  and  homogeneous  (Vibrio  fischeri,  Chlorella  vulgaris, 
Tetrahymena  pyriformis, 5-HT1A serotonin  receptor  ligands,  estrogen  receptor  ligands and  CYP2A5 
inhibitors) data sets. It was shown that Q2 obtained by GUSAR for these sets varied from 0.67 to 0.87 and 
R2

test varied from 0.53 to 0.95. GUSAR showed reasonable prediction ability and robustness in leave-20%-
out  cross-validation procedure.  Average  R2 prediction accuracy for  different  test  sets  in  leave-20%-out 
cross-validation procedure was 0.714 and varied from 0.53 to 0.89. Thus, GUSAR can be widely applied to 
different routine QSAR tasks, for building models and prediction different quantitative characteristics for 
many activities simultaneously.

Acknowledgements. This work is supported by European Commission under FP6-‘Life sciences, genomics 
and biotechnology for health’ contract LSHB-CT-2007-037590 ‘Net2Drug’.

P-54 : Fast empirical estimates of quantum mechanical descriptors for QSAR/QSPR 
modeling
R. Fraczkiewicz , M. Waldman, J. Crison, W.S. Woltosz, Simulations Plus, Inc., Lancaster, CA, U.S.A.
A sizable number of published studies suggest that molecular descriptors derived from quantum chemical 
calculations  can  yield  effective  QSAR/QSPR models,  in  particular  related  to  chemical  reactivity.   For 
example, Gross, et al, have determined that partial atomic charges derived from Natural Population Analysis 
(NPA) of DFT wavefunctions have a superior predictive power of aqueous ionization constants of phenols 
and anilines [1].  Quantum mechanical descriptors have also been found useful in predicting toxicity [2], 
drug metabolism [3], and intestinal absorption [4] – these are mere examples of wide applications of these 
descriptors.  Unfortunately, implementation of sufficient quality quantum mechanical descriptors in Ultra 
High Throughput (UHT, >200,000 compounds/hour) QSAR/QSPR models for drug candidate screening is 
seriously limited by time consuming  ab initio calculations where a single molecule processing can take 
hours, or even days.

We  decided  to  overcome  this  difficulty  by  creating  ultra-fast  empirical  estimates  of  certain  quantum 
mechanical descriptors (sigma and pi partial atomic charges, pi system HOMO/LUMO energies, chemical 
hardness and electronegativity, and Fukui reactivity indices) at the atomic and molecular level by fitting 
high quality  ab initio electron densities calculated for a dataset of almost 700 organic molecules.  This 
dataset, containing neutral as well as formally charged molecules, was composed with maximum diversity 
of  individual  atomic  environments  in  mind.  All  molecular  geometries  were  optimized  at  the 
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B3LYP/6-311G** level, followed by extraction of approximately 13000 sigma and pi partial atomic charges 
with the aid of the NPA and Natural Bond Orbital (NBO) schemes.  One part of the data set (11000) was 
used to train a new empirical model for very fast estimation of the atomic charges; the remainder (2000) 
was  sequestered  as  an  external  validation  set.   Two  separate  empirical  models,  both  using  only  2D 
molecular structures on input, were created: one for sigma, the other for pi subsystems.  Sigma and pi 
electron densities on atoms were estimated with an excellent quality: for both models the root-mean-square-
error (RMSE) on external test set was close to 0.05 electron units. 

The  importance  and  usefulness  of  thus  derived  estimated  quantum  mechanical  descriptors  were 
subsequently  demonstrated  on  a  wide  array  of  QSPR  models  related  to  Absorption,  Distribution, 
Metabolism, Excretion and Toxicity (ADMET) properties of molecules built by our group.

1. Gross, K. C.; Seybold, P. G.; Hadad, C. M. Comparison of Different Atomic Charge Schemes for 
Predicting pKa Variations in Substituted Anilines and Phenols. Int. J. Quantum Chem.  2002, 90, 
445-458.

2. Benigni, R.; Giuliani, A.; Franke, R.; Gruska, A. Quantitative Structure-Activity Relationships of 
Mutagenic and Carcinogenic Aromatic Amines. Chem. Rev. 2000, 100, 3697-3714.

3. Singh, S. B.; Shen, L. Q.; Walker, M. J.; Sheridan, R. P. A Model for Predicting Likely Sites of 
CYP3A4-mediated Metabolism on Drug-like Molecules. J. Med. Chem. 2003, 46, 1330.

4. Jones, R.; Connolly, P. C.; Klamt, A.; Diedenhofen, M. Use of Surface Charges from DFT 
Calculations to Predict Intestinal Absorption. J. Chem. Inf. Model., 2005, 45, 1337-1342.

5. Reed, A. E.; Weinstock, R. B.; Weinhold, F. A. Natural population analysis. J. Chem. Phys. 1985, 
83, 735-746.

P-55 : The representation, registration, and retrieval of substances with incompletely 
defined chemical structures
K Taylor, B Christie, D Grier, B Leland, J Nourse, Symyx Technologies Inc, San Ramon, USA
A new bond type is described that embodies a one to many relationship. This allows the description of 
structures that  have indeterminate positional  substitution, such structures are commonly encountered in 
metabolite determination studies,  natural  product chemistry,  and analytical chemistry in general. It  also 
allows the description of structures that involve pi-bonding, for example metallocenes. When coupled with 
a new extension to formula definition, this bond type allows the description of generic structures with a 
level of variability that exceeds the capabilities of existing technologies

Fully characterized chemical entities that have chemical structures whose atoms and bonds conform to the 
valence  bond  model,  for  example  aspirin,  present  few  difficulties  for  chemical  registration  systems. 
Frequently during the research process the structures of substances are incompletely characterized. This 
paper describes and illustrates an extension to Symyx’s chemical representation; a new style of chemical 
bond  that  enables  the  registration  and  retrieval  of  structures  with  unknown  positional  substitution  In 
addition, this bond type, allows a general structure to be defined for many industrial chemicals, and it has 
the characteristics required to define structures with pi-bonded ligands.

P-56 : Exploring synthetically accessible chemical space
K Taylor, J Durant, R Hillard, Symyx Technologies Inc, San Ramom, USA
A KNIME (www.knime.org) workflow is presented that takes a generic reaction, parses out the generic 
reactants and searches databases of known substances, for example Symyx Available Chemicals Directory, 
PubChem,  or  Symyx  Compound  Index.  The  potential  reactants  are  filtered  to  remove  those  that  are 
isotopically labeled,  de-salted,  and  enumerated.  The  products  are  de-duplicated  using Symyx’s  NEMA 
technology, and filtered for drug likeness, to provide a virtual library that may be further analyzed synthetic 
opportunity.

P-57 : Development and visualization of the drug-likeness model
M. Arakawa, T. Miyao, K. Funatsu, The University of Tokyo, Tokyo, Japan
In  the field of drug design,  virtual  screening is  widely used for  discovering novel  lead candidates.  By 
exploring  virtual  library,  compounds  having  certain  activities  for  target  enzyme  would  be  found  out 
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efficiently.  One of  the most  important  factors  for  the success  of  virtual  screening is  quality of  virtual 
libraries.  Thus  the  reliable  methodologies  to  construct  high  quality  libraries  have  been  expected.  It  is 
desired that  chemical  structures  in virtual  library exhibit  drug-like properties  in  order  to avoid ADME 
problems in the later phase of drug development process. Thus statistical model for estimating drug-likeness 
of chemical structures has been required in order to build high quality virtual library.

The first object of this study is to construct a model for estimating drug-likeness from chemical structures. 
Drug  and  non-drug  molecules  have  been  taken  from the  database  of  CMC (comprehensive  medicinal 
chemistry) and ACD (available chemicals directory), respectively, and used to construct the drug-likeness 
model.  Chemical  descriptors  were  calculated  with  DRAGON  5.4,  and  the  drug-likeness  model  was 
constructed by using SVR (support vector regression) method with Gaussian kernel.

Another object of this study is to visualize the drug-likeness model. The SOM (self organizing map) and 
GTM  (generative  topographic  mapping) [1] methods  have  been adopted  to  map  multi-dimensional 
descriptor space to two-dimensional map. In this visualization, smooth mapping is preferable because more 
complex 2D map is difficult to use in drug design process. However, estimation method of the smoothness 
of multidimensional  mapping  has  not  been  established,  so  we  propose  novel  criteria  named  RMS of 
midpoint (RMSM). RMSM is calculated as RMS of mapping error of all midpoints instead of the original 
data points. As a result of calculation of RMSM of SOM and GTM, we concluded that GTM is able to give 
slightly better nonlinear mapping than SOM. The 2D maps obtained by SOM and GTM are shown in Figure 
1.

 (A) SOM (B) GTM

Figure 1 two-dimensional maps of drug-like (red) and non-drug-like (blue) compound.

1. C. M. Bishop, M. Svensén, C. K. I. Williams, Neural Computation, 10, 215-234, 1998.

P-58 : Reverse analysis and multi-objective optimization of predictive models for polymer 
properties
S. Goto, M. Arakawa, K. Funatsu, The University of Tokyo, Tokyo, Japan
The glass transition temperature (Tg) is one of the most important properties of polymers. The Tg determines 
the usage  of  polymers  because it  is  strongly related to  physical  properties.  In  industrial  field,  a  lot  of 
polymer  syntheses  are  tried  under  various  conditions  in  order  to  accomplish  target  values  of  polymer 
properties. If we can accurately estimate the Tg, we can decrease the number of useless experimental trials. 
However, it is difficult to predict the Tg because it is affected by many factors, such as the amount and the 
kind of monomer and catalyst.

In  general,  there  are  two  ways  to  estimate  the  Tg,  theoretical  calculation  and  statistical  calculation. 
Theoretical calculation, such as molecular simulation [1], enables us to estimate the Tg with higher accuracy 
but takes  a long time. On the other hand,  statistical  calculation, such as quantitative structure-property 
relationship (QSPR) analysis, is suitable for designing monomer composition and structure. C. Camacho-
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Zuniga and F. A. Ruiz-Trevino proposed a model between the Tg and repeating units of polymers [2].
In  this  study,  we  built  partial  least  squares  (PLS)  models  between  Tg’s  and  molecular  descriptors  of 
monomers or values of monomer composition. PLS is one of the linear regression methods and PLS model 
is  more  chemically  understandable  than  that  of  non-linear  methods.  In  order  to  calculate  molecular 
descriptors, we used general group contribution method and DRAGON [3]. By the same procedure, we 
built the predictive models concerning other properties.

As an application of our models, we can design not only monomer composition but also new monomer 
structure.  When  a  functional  polymer  is  developed,  there  are  usually  plural  target  values  of  polymer 
properties.  In  such  a  case,  reverse  analysis  of  the  models  by  multi-objective  optimization  method  is 
required.  With the models using the values of  monomer composition as  explanatory variables,  we can 
propose the candidates of monomer compositions of the polymers which might give the target properties. 
With the models using the kind and number of atomic groups as explanatory variables, we can get the sets 
of atomic groups. By constructing them, we can generate the candidate structures of monomers for the 
polymers which might give the target properties. New structures of the monomers might be included in 
them. At the end, with the models using DRAGON as explanatory variables, we can verify the validity of 
the above design for new polymers.

1. Nakanishi, K. Physical Property Prediction based on Molecular Simulation for Simple Model 
Fluids J. Chem. Eng. Japan, 1995, 28, 1-7

2. Camacho-Zuniga, C.; Ruiz-Trevino, F. A. A New Group Contribution Scheme To Estimate the 
Glass Transition Temperature for Polymers and Diluents Ind. Eng. Chem. Res., 2003, 42, 
1530-1534. 

3. Talete srl. DRAGON for Windows (Software for Molecular Descriptor Calculations). Version 5.4 - 
2006 - http://www.talete.mi.it/

P-59 : Development of a new regression analysis method using independent component 
analysis
Hiromasa Kaneko, Masamoto Arakawa, Kimito Funatsu, The University of Tokyo, Tokyo, Japan
Multivariate techniques such as multiple linear regression (MLR), principal component regression (PCR), 
and partial least squares (PLS) are powerful tools for handling several problems in chemoinformatics. It is 
possible  to  construct  an accurate  model  by using these methods,  for  example,  PLS, but  is  difficult  to 
construct a predictive model. As for a problem we often face, there is the possibility of statistical problems 
occurring, such as overfitting.

It  is  important  to  indicate  the  magnitude  of  contribution of  each  variable  to  a  model.  However,  it  is 
dangerous  to simply consider  regression  coefficients  as  important  for  each variable  because  there  are 
correlations in explanatory variables. Thus, it is desirable that a prediction model be constructed that has 
high predictive power and that is easy to interpret in various fields of science.

In our  study, independent component analysis (ICA) [1] and regression analysis are combined to extract 
significant components and construct a model that has high predictive power and that is easy to interpret. 
ICA is a method that extracts mutually independent components from explanatory variables, and is used in 
many fields such as signal processing. Through making full use of the high-order statistical characteristics 
of  the  source,  that  is,  the fourth-order  central  moment,  ICA can  effectively  resolve  the independent 
components from the measured mixed signals without any additional information about the source signals. 
A relationship between the independent components and an objective variable is constructed by the least-
squares method. This method is named ICA-MLR [2].

We verified the superiority of ICA-MLR over PLS with simulation data and tried to apply this method to a 
quantitative structure-property relationship (QSPR) analysis of aqueous solubility. We constructed models 
between aqueous solubilities based on the experimental data for 1290 molecules [3] and 173 molecular 
descriptors. PLS and genetic algorithm PLS (GAPLS) models were constructed for a comparison of ICA-
MLR. R2, Q2, and Rpred

2 values of the PLS model are 0.836, 0.819, and 0.848, respectively. These values of 
the  ICA-MLR  model  are  0.937,  0.868,  and  0.894,  respectively. ICA-MLR achieved  higher  predictive 
accuracy than PLS. ICA-MLR could extract effective components from explanatory variables and construct 
the regression model with high predictive accuracy. In addition, the information of regression coefficients 
bICA-MLR indicates the magnitude of contribution of each descriptor in the analysis of aqueous solubility.
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1. Comon, P. Independent component analysis, A new concept? Signal Process. 1994, 36, 287-314.
2. Kaneko H, Arakawa M, Funatsu K. Development of a New Regression Analysis Method Using 

Independent Component Analysis. J. Chem. Inf. Model. 2008, in press.
3. Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME Evaluation in Drug Discovery. 4. Prediction of 

Aqueous Solubility Based on Atom Contribution Approach. J. Chem. Inf. Comput. Sci. 2004, 44, 
266-275.

P-60 : Rule induction of the site of metabolism by human cytochromes P450 by data-mining 
M. Koyama, M. Arakawa, K. Funatsu, The University of Tokyo, Tokyo, Japan
It is indispensable to investigate ADMET(absorption, distribution, metabolism, elimination, and toxicity) 
properties  in  the  drug  discovery  process.  Generally,  examinations  of  metabolism  take  a  long  time  in 
ADMET test process. Therefore, the method for predicting metabolite of a drug is strongly needed. In order 
to predict it, we have to reveal several selectivities such as isoform specifity, regioselectivity, and so on. In 
this study, we focus on the regioselectivity, which is the selectivity of the position where metabolic reaction 
preferentially occurred in a molecule by enzymes.

R. P Sheridan reported QSAR-based regioselectivity models for cytochromes P450 3A4, 2D6 and 2C9, 
which had higher predictive power than their mechanistic model [1]. Descriptors used in their models were 
those which describe the local environment around each nonhydrogen atom in each molecule. In this study, 
we applied data-mining methods to their datasets of 3A4, 2D6, and 2C9. Data-mining is often defined as 
“non-trivial process of indentifying valid, novel, potentially useful, and ultimately understandable patterns 
in  the  data”.  With  this  method,  we  could  not  only  build  prediction  models  but  also  induce  rules  of 
regioselectivity. Chemically understandable rules give chemists insight not only “what” is the metabolite of 
a drug but also “why” the metabolite was produced from a drug. And thus data-mining is considered to be 
efficient approach to solve regioselectivity.

We used  several  data-mining  methods,  such  as  C4.5,  Ripper,  ensemble  learning,  and  Inductive  Logic 
Programing(ILP).C4.5 and Ripper are one of the most popular classifying methods and often give easily 
interpretable classification rules. 

Ensemble  learning is  the  method of  combining several  learning machines  such as  C4.5.  It  has  higher 
predictive power than using single learning machine in many cases. But it also has a weak point that the 
results of it  are often hard to translate into rules. So far, several ensemble learning methods have been 
developed such as bagging, boosting, stacking and so on, and we examined some of them.

Inductive Logic Programing(ILP) is also the methodlogy of data-mining but differs somewhat from the 
others. First, ILP uses a language much closer to one used normally by chemists and therefore is considered 
to more likely yield chemically understandable rules than other methods. Second, ILP can learn from the 
background knowledge and thus induce rules from datasets hard to express a single table. There have been 
developed various useful ILP systems such as Aleph, Progol, Foil and so on, and we used Progol system 
[2]. 

We used methods as above and compared each other. As for 2C9, the best predictive model was ensemble 
learning model, 86 % of atoms to be considered as metabolized sites were correct. But we couldn’t extract 
any rules from the model. On the other hand, we obtained several chemically understandable rules by C4.5, 
Ripper, and ILP. In this poster we show the some of them, considering the chemical meanings. 

1. Robert P. Sheridan; Kenneth R. Korzekwa Empirical Regioselectivity Models for Human 
Cytochromes P450 3A4, 2D6, 2C9. J. Med. Chem. 2007, 50, 3173-3184.

2. S.Muggleton Inverse entailment and progol. New Generation Computing. 1995, 13, 245-286
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P-61 : Dynamic interplay between chemotype, similarity and docking studies: Towards a 
virtual screening approach for protein kinase B inhibitors
J. L. Medina-Franco1, K. Martínez-Mayorga,1 M. Giulianotti,1 T. Scior,2 Y. Yu,3 C. Pinilla4, R. Houghten1,4

1 Torrey Pines Institute for Molecular Studies, Fort Pierce, Florida, USA
2 Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de 
Puebla, Puebla, México
3 College of Pharmaceutical Science, Zijin Campus, Zhejiang University, Hangzhou, China
4 Torrey Pines Institute for Molecular Studies, San Diego, California, USA
Protein kinase B (PKB), also named Akt, is a serine/threonine kinase that plays a key role in the regulation 
of a number of important events such as cell survival, proliferation and growth. Over expression of PKB is 
associated with several types of cancer.1 In this work we present a systematic classification of known PKBβ 
(AKT2) inhibitors stored in a public database2 using a number of chemoinformatics and docking methods 
including 2D- and 3D-similarity-based classification and a chemotype-based classification.3 2D- and 3D-
similarity  studies  were  performed  using  structural  fingerprints  and  the  Rapid  Overlay  of  Chemical 
Structures (ROCS) approach, respectively. Docking-based classification of the known inhibitors using the 
Fast Rigid Exhaustive Docking (FRED) program and Genetic Optimization for Ligand Docking (GOLD) 
led to a promising fast virtual screening strategy for identifying PKBβ inhibitors in compound databases.

Using the similarity and docking approaches described above we screened a large collection with more than 
100 thousand compounds. For docking, multiple crystallographic structures of PKBβ were used1 and for 
similarity studies several known PKBβ inhibitors were employed as queries. Here we discuss the results of 
the virtual screening including an analysis of the relationship between 2D- and 3D-similarity measures and 
docking scores. A chemotype-based analysis of docking results revealed potential scaffolds for structural 
modification.

1. Davies, T. G. et. al. A Structural Comparison of Inhibitor Binding to PKB, PKA and PKA-PKB 
Cimera. J. Mol. Biol. 2007, 367, 882-894. b) Saxty, G. et. al. Identification of Inhibitors of Protein 
Kinase B Using Fragment-Based Lead Discovery. J. Med. Chem. 2007, 50, 2293-2296.

2. Scior, J. T.; Bernard, P.; Medina-Franco, J. L.; Maggiora, G. M. Large Compound Databases for 
Structure-Activity Relationships Studies in Drug Discovery. Mini-Rev. Med. Chem. 2007, 7, 
851-860.

3. Medina-Franco, J. L.; Petit, J.; Maggiora, G. M. Hierarchical Strategy for Identifying Active 
Chemotype Classes in Compound Databases. Chem. Biol. Drug. Des. 2006, 67, 395-408.

P-62 : Multi-fusion similarity maps for comparing the chemical space of combinatorial 
libraries
J. Medina-Franco1, G. Maggiora2, M. Giulianotti1, J. Rios1, C. Pinilla3, R. Houghten1,3

1 Torrey Pines Institute for Molecular Studies, Fort Pierce, Florida , USA
2 College of Pharmacy & BIO5 Institute, University of Arizona, Tucson, Arizona, USA
3 Torrey Pines Institute for Molecular Studies, San Diego, California 92121, USA
A low-dimensional method for graphically depicting and characterizing relationships among molecules in 
high-dimensional chemical spaces is described.1  The method is based on the use of multiple fusion-based 
similarity measures.2  Specifically, max-fusion and mean-fusion similarity measures are used to construct 
multi-fusion similarity maps that  characterize  the  relationship  of  a  set  of  “test”  molecules  to  a  set  of 
“reference”  molecules,  but  other  types  of  fusion-based  similarity  measures,  such  as  median-fusion 
similarity, can also be used (Figure 1).  The reference set is very general and can be made of molecules 
from, for example, the set of test molecules itself (the self-referencing case), molecules from a small library 
or large compound collection, or from molecules that are active in a given assay or group of assays. The use 
of multiple fusion similarity measures tends to provide more information than single fusion-based measures 
including,  importantly,  information  on  the  nature  of  the  chemical-space  neighborhoods  surrounding 
reference-set molecules.
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Figure 1. General form of a multi-fusion similarity map.

In this work a general discussion is presented on how to interpret multi-fusion similarity maps, and several 
examples  are  given  that  illustrate  how  these  maps  can  be  used   to  compare  compound  libraries  or 
collections,3 to select compounds for screening or acquisition, and to identify new active molecules using 
ligand-based  virtual  screening.  Specific  applications  to  visually  characterize  the  chemical  space  of 
combinatorial  libraries4 are  presented  (Figure  2).  Although  the  methodology described  in  this  work  is 
focused on applications to small molecules, it can be applied to any sets of objects (e.g., proteins) for which 
a similarity measure can be determined computationally or otherwise. 

1421

1421_maccs_avg

Figure 2. Multi-fusion similarity map comparing combinatorial libraries4 represented in different colors.

1. Medina-Franco, J. L.; Maggiora, G. M.; Giulianotti, M. A.; Pinilla, C.; Houghten, R. A. A 
Similarity-based data-fusion approach to the visual characterization and comparison of compound 
databases. Chem. Biol. Drug. Des. 2007, 70, 393-412.

2. Ginn, C. M. R., Willett, P., Bradshaw, J. Combination of molecular similarity measures using data 
fusion. Perspect. Drug Discov. Design 2000, 20, 1-16.

3. Scior, J. T.; Bernard, P.; Medina-Franco, J. L.; Maggiora, G. M. Large Compound Databases for 
Structure-Activity Relationships Studies in Drug Discovery. Mini-Rev. Med. Chem. 2007, 7, 
851-860.

4. Houghten, R. A.; Pinilla, C.; Appel, J. R.; Giulianotti, M. A.; Nefzi, A.; Ostresh, J. M.; Dooley, C. 
T.; Maggiora, G. M.; Medina Franco, J. L.; Brunner, D.; Schneider, J. Mixture-based Synthetic 
Combinatorial Libraries: Direct in vivo Testing, Scaffold Ranking, and Enhanced Deconvolution 
Using Computational Approaches. J. Comb. Chem. 2008, 10, 3-9.
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P-63 : The effect of structural redundancy on virtual screen performance
Robert D. Clark, Tripos International, St. Louis MO, USA
Large-scale combinatorial synthesis and high-throughput screening (HTS) once held out the promise of 
making prediction of biological activity on the basis of chemical structure a matter of purely historical 
interest, but this scenario has not been realized.  Instead, in silico screens (virtual HTS, or vHTS) have 
become  critically  important  for  determining  which  possible  focused  libraries  should  be  pursued,  for 
subsequently  identifying important lead series that may have been missed by biological screening, and for 
identifying the structural series necessary for establishing useful quantitative structure-activity relationships 
(QSARs).   Several  different  kinds of virtual  screen are now in use,  each serving a somewhat different 
purpose in lead discovery and optimization.  The primary use of substructural and topological similarity 
searching is to identify analogues for follow-on synthesis or purchase.  Docking, pharmacophoric and shape 
similarity methods, in contrast, are used to identify potential lead- and scaffold hops, bringing in novel 
alternative  chemistries  to  serve  as  a  hedge  against  development  issues  with  ADME,  pharmacokinetic 
properties or ADME that can affect entire structural classes.

It is tempting to search for a “philosopher’s stone” of vHTS that can solve all problems for all targets, but 
the reality is that  different methods are suitable for different  targets and will continue to be so for the 
foreseeable future.  Hence researchers need to be able to compare the performance of different methods in 
different contexts and against different targets.  The area under the receiver operating characteristic curve 
(ROC AUC) has many good statistical properties and has seen considerable use, particularly in connection 
with docking and scoring.  

An ROC analysis entails plotting the recovery rate for true positives against that for false positives across a 
large set of reference compounds made up of compounds known to be active against the target in question 
as well as decoys that are known to be (or, more often, that are presumed to be) inactive.  Unfortunately, the 
data  sets  used  for  carrying  out  such  evaluations  are  almost  always  drawn from compound collections 
accumulated over many years.  The composition of such collections reflects many historical influences, 
including incidental development series and bias due to particular offensive and defensive patent strategies 
employed over the years.  They are more or less structurally “clumpy” as a result, especially when they 
have  been  compiled  across  diverse  research  programs (public  databases)  or  as  a  result  of  merger  and 
acquisition activities (pharmaceutical databases).  

Such clumpiness can seriously skew retrospective ROC AUC analyses, misleading researchers as to which 
in silico screen is likely to give the best prospective performance [1].  Two methods have recently been 
proposed for addressing such biases: using the semilogarithmic integral rather than the linear one (pROC 
AUC) and down-weighting the true positive rate for “hits” that are overly similar to other actives [2].  This 
talk  will  center  on various  applications and how the relationship between the searching and clustering 
methods used affects the statistics produced.

1. Good, A.C.; Hermsmeier, M.A.; Hindle SA.  J. Comput.-Aided Mol. Des. 2004, 18, 529-536.
2. Clark, R.D.; Webster-Clark, D.J.  J. Comput.-Aided Mol. Des. 2008, in press; Online First DOI 

10.1007/s10822-008-9181-z.

P-64 : Topomer CoMFA for rapid optimization
Bernd Wendt, Tripos International, Munich, Germany
Recently the Topomer CoMFA method[1] was released as a 3D-QSAR tool that automates the creation of 
models for predicting the biological activity or property of compounds. Since its inception in 2001 the tool 
had  been  in  productive  use  at  Tripos’ chemistry research  center  to  drive  collaborative  drug  discovery 
projects. Over the last 2 years the tool was evaluated in technological previews at several pharmaceutical 
companies.  The  presentation  will  cover  the  lessons  learned  from prospective  as  well  as  retrospective 
studies. 

One of the critical parameters identified in the analysis of QSAR models is the composition of the series. 
Work on a set of 16 published QSAR datasets resulted in the development of a new procedure for 3D-
QSAR analysis. Quantitative Series Enhancement Analysis (QSEA)[2] will be proposed for determination 
whether compounds belong to an emerging structure-activity relationship and which compounds can be 
predicted within reliable limits.

◄ 108 ►



Eighth International Conference on Chemical Structures

An important aspect of 3D-QSAR models is its application for virtual screening where the purpose is to 
identify compounds with superior properties through database searching. The combined use of Topomer 
Search and Topomer CoMFA will be presented on the basis of retrospective studies.

1. Cramer, R.D.. Topomer CoMFA: A Design Methodology for Rapid Lead Optimization. J. Med.  
Chem. 2003; 46; p 374-388. 

2. Wendt, B. ; Cramer R.D. Quantitative Series Enrichment Analysis: A novel procedure for 3D-
QSAR Analysis. J. Comp. Aid. Des. 2008, in press.

P-65 : Development of an a priori ionic liquid design tool.  Integration of a novel COSMO-RS 
molecular descriptor on neural networks 
J. Palomar1, J. S. Torrecilla,2 V. R. Ferro,1 F. Rodríguez.2

1Sección de Ingeniería Química, Universidad Autónoma de Madrid, Spain
2Departamento de Ingeniería Química, Universidad Complutense de Madrid, Madrid, Spain
An innovative computational approach is proposed to design ionic liquids directly on the computer, based 
on a new a priori molecular descriptor of ionic liquids (ILs) derived from quantum chemical COSMO-RS 
methodology.1 Several previous studies have shown that COSMO-RS performs fast and accurate statistical 
thermodynamic calculations using only quantum chemical information of the molecular structures modeling 
the IL compounds.2 We recently showed the capability of COSMO-RS method to predict accurate specific 
density of representative series of imidazolium based ILs.3 In addition, we suggested the possibility of new 
interesting  applications  of  COSMO-RS methodology.  Thus,  in  this  work,  it  is  probed  that  the  charge 
distribution on the polarity scale given by COSMO-RS can be used to characterize the chemical nature of 
both cation and anion of the IL structures, using simple molecular models in the calculations. As result, a 
novel a priori quantum-chemical parameter, Sσ-profile, is defined for forty five imidazolium based ILs, as a 
quantitative numerical  indicator  of their  electronic structures  and molecular  sizes.  Subsequently,  neural 
networks (NNs) are successfully applied to establish relationship between the electronic information given 
by Sσ-profile molecular descriptor and a set of IL properties of pure and mixture fluids, including density, 
solubility and partition coefficients. As consequence, we develop here an a priori computational tool for 
screening ILs with required properties simultaneously, using COSMO-RS predictions to NN design and 
optimization.  The  performance  of  this  computational  approach  was  demonstrated  following a  classical 
quantitative structure-property relationship (QSPR) scheme, which is the main aim of this work.  In this 
study,  two  very  simple  molecular  models  for  obtaining  Sσ-Profile  were  validated.  When  ion-paired 
structures (CA model) are used in calculations, a more reliable description of the intermolecular interactions 
in  pure  IL fluid  is  obtained.  However,  a  model  of  independent  ions  (C+A model)  presents  the  clear 
advantage of a reasonable reliability at much less computational cost.  

1. Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug 
Design, 1st Edition; Elsevier: Amsterdam, 2005.

2. Diedenhofen, M.; Klamt, A.; Marsh, K.; Schäfere, A. Prediction of the vapor pressure and 
vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide 
ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 4653-4656.

3. Palomar, J.; Ferro, V. R.; Torrecilla, J. S.; Rodríguez, F. Density and Molar Volume Predictions 
Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design. Ind. Eng. Chem. Res. 2007, 
46, 6041-6048.

P-66 : Radial scan of the electrostatic potential of RNA double helices. An application on 
tRNA acceptor stems
R. Marín, W. Agudelo, E. Daza, Theoretical Chemistry Group, National University of Colombia, Bogotá D. 
C, Colombia
We have developed a methodology to characterize and compare quantitatively the Molecular Electrostatic 
Potential (MEP) induced by the more exposed atoms in the minor and major grooves of the RNA double 
helices. This method is general and is also applicable to other RNA or DNA double helix systems where 
minor and/or major grooves must be characterized electrostatically. By means of a radial MEP scan, the 
MEP associated with each base pair in the minor and major grooves can be characterized by a set of MEP 
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values  organized in a  n-tuple for each groove (Vminor = [Vi,…,Vn]  and  Vmajor = [Vj,…,Vm]  ),  that  can be 
compared  through an  Euclidean  distance  (see  Fig.  1).  Our  biochemical  interests  in  developing such  a 
method is to understand the highly specific recognition between tRNAs and aminoacyl tRNA synthetases 
(aaRS), needed for the genetic code translation. We believe that the discrimination among several tRNAs is 
mainly directed by electrostatic interactions with the enzyme. As application cases, we took the recognition 
base pairs present in the first base pairs of the tRNAAla and tRNAThr  acceptor stems1-4. The MEP similarity 
measure computed from the Euclidean distance between n-tuples, allowed us to obtain classifications (using 
hierarchical  clustering)  that  showed  good  correlation  with  the  aminoacylation  activity,  i.e.  base  pairs 
classified as similar showed similar activities.

When the resulting  n-tuples of the radial MEP scan are plotted as  V vs.  θ, the obtained graphics give a 
deeper understanding of the electrostatic patterns of the grooves. For the tRNAAla variants, the V vs. θ plots 
revealed clear correlations between the MEP profile and the aminoacylation activity for three different base 
pair positions. The results for the tRNAThr also showed a good correlation with the activity, but in addition, 
we compare our results with crystallographic data. As the ThrRS-tRNAThr complex geometry is available at 
the Protein Data Bank5, we show how the possible electrostatic interactions with the enzyme, expected from 
the MEP profiles, are in agreement with the X-ray crystal structure. These findings agree with the notion of 
electrostatic  complementarity or  electrostatic  lock,  which  suggests  that  a  more  complete  key-and-lock 
model to recreate enzyme-substrate interaction has to consider the electrostatic fit as well as the geometrical 
fit, since the enzyme has to find its electrostatic counterpart in the binding site in order to allow maximum 
interaction between molecules5. They also support the idea that recognition elements present in some tRNA 
positions allow discrimination among tRNAs, acting as “electrostatic keys” that must fit in the “electrostatic 
lock” placed at the enzyme recognition sites. These results go beyond the purely geometric explanations 
commonly suggested when studying the tRNA-aaRS recognition problem. 

1. Beuning, P. J.; Gulotta, M.; Musier-Forsyth, K. Atomic Group Mutagenesis Reveals Major Groove 
Fine Interactions of tRNA Synthetase with an RNA Helix. J. Am. Chem. Soc. 1997, 119, 8397–
8402.

2. Beuning, P. J.; Nagan, M. C.; Cramer, C. J.; Musier-Forsyth, K.; Gelpi, J.-L.; Bashford, D. 
Efficient Aminoacylation of the tRNAAla Acceptor Stem: Dependence on the 2:71 Base Pair. RNA, 
2002, 8, 659–670.

3. Nagan, M. C.; Kerimo, S. S.; Musier-Forsyth, K.; Cramer, C. J. Wild-Type RNA MicrohelixAla and 
3:70 Variants: Molecular Dynamics Analysis of Local Helical Structure and Tightly Bound Water. 
J. Am. Chem. Soc. 1999, 121, 7310–7317.

4. Hasegawa, T.; Miyano, M.; Himeno, H.; Sano, Y.; Kimura, K.; Shimizu, M. Identity Determinants 
of E. coli Threonine tRNA. Biochem. Biophys. Res. Commun. 1992, 184, 478-484.

5. Sankaranarayanan, R.; Dock-Bregeon, A.-C.; Romby, P.; Caillet, J.;  Springer, M.; Rees, B.; 
Ehresmann, C.; Ehresmann, B.; Moras, D. The Structure of Threonyl-tRNA Synthetase-tRNAThr 

Complex Enlightens Its Repressor Activity and Reveals an Essential Zinc Ion in the Active Site. 
Cell, 1999, 97, 371-391.

6. Náray-Szabó, G. Quantum Chemical Calculation of the Enzime-Ligand Interaction Energy for 
Trypsin Inhibition by Benzamidines. J. Am. Chem. Soc. 1984, 106, 4584–4589. 
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Figure 1. Radial MEP scan performed around a base pair. Potential values are computed every 1 degree 
according to the green interval.

P-67 : A graph theoretical approach to compare molecular electrostatic potentials
R. Marín, N. Aguirre, E. Daza, Theoretical Chemistry Group, National University of Colombia, Bogotá D.  
C, Colombia
In  this paper we introduce a similarity measure based on negative molecular isopotential  surfaces.  We 
propose to represent the MEP through a graph, more precisely, by a weighted rooted tree that encodes some 
geometrical information and topological relations of successive isopotential surfaces. Trees are compared 
through an edit distance1 from which a normalized similarity measure is derived. This alternative approach 
overcomes the difficulties of molecular alignment and avoids the definition of some particular descriptors to 
represent the MEP field or the molecule itself, being these its major advantages2. We have also implemented 
this method in the program TARIS: Tree Analysis and Representation of Isopotential Surfaces, which may 
be downloaded at http://taris.sourceforge.net.

As application examples we have performed the similarity study over two different sets of molecules. We 
took  46  small  organic  molecules,  which  represent  eight  different  functional  groups  (acids,  alcohols, 
aldehydes, amines, amides, ethers, esters and ketones). The classification by similarity using hierarchical 
clustering gave rise to a clear partition of molecules according to their chemical function, i.e. eight groups 
were obtained, each one of them corresponding to one functional group (Fig. 1a). Only three molecules 
were misclassified. In the second example, we studied the well known set of the 31 steroids commonly used 
as  a  reference  point  in  several  papers3.  Structure-Activity  Relationships  (SAR),  built  by  hierarchical 
clustering, showed a clear partition of the set in high, intermediate and low activities (Fig. 1b). Quantitative 
Structure-Activity Relationships (QSARs) were built by means of Partial Least Squares regressions. Similar 
or better results were obtained when compared with the most widely used methods in literature2.

1. Zhang, K.; Shasha, D. Simple Fast Algorithms for the Editing Distance between Trees and Related 
Problems. SIAM J. Comput. 1989, 18, 1245-1262.

2. Marín, R. M.; Aguirre, N. F.; Daza E. E. Graph Theoretical Similarity Approach to Compare 
Molecular Electrostatic Potentials. J. Chem. Inf. Model. 2008, 48, 109-118.

3. Robert, D.; Amat, L.; Carbó-Dorca, R. Three-Dimensional Quantitative-Activity Relationships 
from Tuned Molecular Quantum Similarity Measures: Prediction of the Corticosteroid-Binding 
Globulin Binding Affinity for a Steroid Family. J. Chem. Inf. Comput. Sci. 1999, 39, 333-344.
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Figure 1. (a) Dendrogram obtained from the similarity matrix for the 46 organic molecules using average 
linkage. (b) Dendrogram obtained from the 31 steroids similarity matrix. The logK values corresponding to 
their activities are in parentheses.

P-68 : Engineering polymer informatics: Towards the computer-aided design of polymers
N. Adams, N. England, D. Jessop, P. Murray-Rust, Unilever Centre for Molecular Science Informatics,  
University Chemical Laboratory, Department  of Chemistry, University of Cambridge, Cambridge, United 
Kingdom
Polymers  are  an  important  and  ubiquitous  class  of  materials  and  can  be  found  in  a  wide  variety  of 
applications, ranging from home and personal care products to polymer pharmaceuticals. Due to changes in 
the way in which polymer science is being carried out (experimentation is increasingly driven by high-
throughput and combinatorial approaches, combined with the development of novel synthesis techniques),1 
it is becoming increasingly data-driven and is, therefore, in need of good informatics support. Unfortunately 
polymer informatics is almost non-existent, due to the intrinsic nature of polymers themselves: polymers 
are ensembles of macromolecules, all which have slightly different structures, which, in turn introduces a 
certain amount of fuzziness into the description of these systems and causes traditional metaphors, such as 
the connection table to break down.

To address this situation, we have developed Polymer Markup Language (PML)2,3 as  an extension to 
Chemical Markup Language (CML).4 Polymer Markup Language is an extensible language, designed to 
support  the  (structural)  representation  of  polymers  and  polymer-related  information.  It  is  semantically 
completely explicit and allows polymers to be represented at various levels of certainty. As an example, it is 
possible to represent an ill-defined system such as a phenol/formaldehyde resin in exactly the same way in 
which a well-defined polymer such as poly(styrene) could be represented. This is achieved through coarse-
graining  the  description  of  the  polymer,  while  preserving  the  possibility  for  mapping  the  coarse 
representation onto an atomistic description: in the case of poly(styrene), we are be able to expand the 
representation into a connection table, whereas this difficult for the phenol/formaldehyde system. At the 
level  of  PML,  however,  the  descriptions  are  consistent,  which,  in  turn  allows  for  the  comparison  of 
polymers  at  different  levels of  certainty.  As such,  Polymer Markup Language also provides  a  level  of 
normalization. Furthermore, the language allows a wide variety of annotations, such as group contributions, 
measures of reactivity and probability, which can be used to model competing reactive centres.

Furthermore,  we  are  also  currently  engaged  in  the  development  of  a  domain  ontology  for  polymers. 
Ontologies  are data models representing a domain,  in  our  case polymers,  and are used to  reason over 
objects  in  the  domain  and  the  relationships  between  them.  Ontologies  are  valuable  for  structured 
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comparative  searching  of  knowledge,  document  classification,  knowledge  sharing  between information 
systems and the development of machine generated hypotheses.

1. Meier, M. A. R., Schubert, U. S.; Selected Successful Approaches in Combinatorial Materials 
Research, Soft Matter, 2006, 2, 371-376

2. Adams, N., Murray-Rust, P.; Engineering Polymer Informatics: Towards the Computer-Aided 
Design of Polymers, Macromol Rapid Commun., 2008, in press

3. http://www.dspace.cam.ac.uk/handle/1810/194888
4. Murray-Rust, P., Rzepa, H.; Chemical Markup, XML and the World-Wide Web. 1. Basic 

Principles, J. Chem. Inf. Comp. Sci., 1999, 39, 928-942 : 

P-69 : Information extraction from the polymer literature
L. Hawizy, N. Adams , J. Downing, P. Murray-Rust, Unilever Centre for Molecular Science Informatics,  
University Chemical Laboratory, Department  of Chemistry, University of Cambridge, Cambridge, United 
Kingdom
Polymers  are  an  important  and  ubiquitous  class  of  materials  and  can  be  found  in  a  wide  variety  of 
applications, ranging from home and personal care products to polymer pharmaceuticals. Due to changes in 
the way in which polymer science is being carried out (experimentation is increasingly driven by high-
throughput and combinatorial approaches, combined with the development of novel synthesis techniques),1 

it is becoming increasingly data-driven and is, therefore, in need of good informatics support. Unfortunately 
polymer informatics is almost non-existent, due to the intrinsic nature of polymers themselves: polymers 
are ensembles of macromolecules, all which have slightly different structures, which, in turn introduces a 
certain amount of fuzziness into the description of these systems and causes traditional metaphors, such as 
the connection table to break down.

To address this situation, we have previously developed Polymer Markup Language (PML)2 as an extension 
to Chemical Markup Language (CML).3 The combined use of PML and CML allows a wide variety of 
polymer  information  to  be  represented.  Here  we  present  an  approach  to  the  automated  extraction  of 
synthesis  information  from  the  polymer  literature  and  the  representation  of  this  information  using  a 
combination  of  CML,  PML  and  RDF,4 with  the  main  aim  of  developing  repositories  of  polymer 
information. We show that chemical reaction information and sequences can be extracted from experimental 
sections of papers  with good results  using a number of different  techniques.  This can be as simple as 
“following the bold numbers” (i.e. numbers identifying reactants and products) in a reaction and creating 
“reactant-yields-product” graphs. Alternatively, we show how natural language  processing techniques can 
be  applied to  extract  not  only reaction information,  but  also characterization and other  materials  data. 
Extracted information is then stored in a repository in a semantically rich way and can, in the future, be 
used for the development of novel representations of chemical reaction information, aspects of laboratory 
automation as well as polymer synthesis expert systems.

1. Meier, M. A. R., Schubert, U. S.; Selected Successful Approaches in Combinatorial Materials 
Research, Soft Matter, 2006, 2, 371-376

2. Adams, N., Murray-Rust, P.; Engineering Polymer Informatics: Towards the Computer-Aided 
Design of Polymers, Macromol Rapid Commun., 2008, in press

3. Murray-Rust, P., Rzepa, H.; Chemical Markup, XML and the World-Wide Web. 1. Basic 
Principles, J. Chem. Inf. Comp. Sci., 1999, 39, 928-942

4. World, Wide Web Consortium, RDF Primer, 2004, http://www.w3.org/TR/rdf-primer/

P-70 : MeFc and  large chemical data sets
H. Y. Mussa, R.C. Glen, Unilever Centre for Molecular Informatics, Department of Chemistry, University of  
Cambridge, Cambridge, U.K
The recognition of patterns is fundamental to many analyses of chemical data. Recognition of patterns in 
the use of molecular similarity in drug discovery is a classic example.  Neural Networks (NN) are typical 
examples of  machine learning algorithms where the pattern recognition problem can be reduced to finding/
approximating a mapping function );( kkk wxhy =  that might be able to relate kx  (the input) with 
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ky  (the  output)  in  a  given  sample  N
kkk yx 1)},{( =

 by  estimating  w (parameters)  through 
learning/training. Over  the  years  NN  have  been  an  invaluable  tool  for  data  analysis.  The  algorithm 
possesses excellent modelling and approximating capabilities provided that the appropriate training/learning 
technique  is  employed.  Training  NN  with  the  Extended  Kalman  Filter  (EKF)  scheme  gives  excellent 
performance, but EKF requires the updating of large covariance matrices. This renders the EKF training 
approach computationally impractical even for networks of moderate size [1, 2, 3]. 

In order to address this problem Shah et al.  [3], and Puskorieus and Feldkamap [4] proposed a family of 
decoupled forms of EKF. The essence of these authors’ solution to the memory and CPU-time problem is to 
approximate the appropriate covariance matrix (with a block diagonal one) by dividing the synaptic weights 
into mutually exclusive groups, and retaining information between only weights within a group. However, 
owing to the  ad hoc nature of the decoupling (discarding information heuristically), deterioration in the 
quality of resultant NN models is understandably inevitable as pointed out in Refs.[1,3]. Recently we have 
proposed an extended Kalman filter training technique, MeFc (Memory efficient Fully coupled Extended 
Kalman  Filter  Scheme)  that  a)  leaves  all  the  NN  nodes  connected  b)  has  computational  costs 
similar/cheaper to/than that of the decoupling approach and c) achieves accuracy similar to that of the EKF 
algorithm.  

In this paper we would like to present both the method and its performance on realistic chemical data sets. 

1. Haykin, S. Neural Networks: A Comprehensive Foundation (2nd edition), Prentice Hall, 1998. 
2. L.Wu, L.  in:Proc. IEEE Int.Conf. on Speech and Signal Processing 1, MIT Press, Glasgow 1989.
3. Shah, S.; Palmiere, F.; and Datum, M. Neural Networks 1992, 5, 779.
4. Puskorius, G. V.;  and Feldkamp, L.A.  in IJCNN-91-Seatle International Joint Conference on 

Neural Networks 1 pp.771, Seatle (1991).

P-71 : Kernel based least squares and large data sets
H. Y. Mussa, R.C. Glen, Unilever Centre for Molecular Informatics, Department of Chemistry, University of  
Cambridge, Cambridge, U.K
Kernel  based methods (KBM) are arguably the best  data analysis technique currently available.  Unlike 
Neural  Networks  in  which,  besides  a  global  minimum,  several  local  minima  exist,  a  Kernel  based 
fitting/classifying problem is a convex optimization problem with a single minimum. However, finding this 
minimum (and in doing so yielding optimal parameters of a given observational model) in practice requires 
the manipulation, such as inversion, of large matrices. 

This has been challenging even when the number of data points is just over a few thousands [1,2].  

The well established direct methods for updating, or inverting huge matrices fail due to  the expense of a 
large increase in core-memory storage and CPU-time cost, even for moderate size problems. The root of the 
problem is that direct methods have O(N2) core memory storage requirement and the CPU-time scales as 
O(N 3), where N  is the dimension of the matrix (the number of data points, here). Despite the advances in 
computer power, ``conventional" computers can only solve relatively small problems (N ≈ 104   to 105). 

In this paper we would like to present a computationally efficient training scheme for KBM for obtaining 
the global minimum. Some preliminary results on chemical data sets will also be presented.  

1. Chua,K. S. Pattern Recognition Letters  2003, 24,75.
2. Mangasarian, O. L.; and Musicant, D. R.  J. Mach. Learn. Res. 2001, 1, 161 

P-72 : Molecular spam: Use of a modified spam filter for classification of bioactive 
molecules and drug target prediction
F. Nigsch, J.B.O. Mitchell, Unilever Centre for Molecular Science Informatics, Department of Chemistry,  
Cambridge, UK
Spam filtering on the internet is a challenging task in order to identify those messages that are legitimate 
and  contain  useful  information,  considering  that  90%  of  all  global  email  traffic  may  be  spam. 
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Computational methods used to support drug discovery are faced with similar problems: Which out of tens 
of  thousands of possible  molecules  will  show a similar  biological  activity to a  handful  of  known and 
promising examples?

To discriminate between biologically active and inactive molecules from large in silico virtual libraries, we 
have converted a highly accurate spam filter. The adaptations introduced allow us to use the method for the 
prediction of  the likely protein targets  of  druglike organic  molecules,  and for  the identification of  the 
molecular fragments giving rise to each observed bioactivity.

Our results reveal an error rate of below 4% on a dataset of 8,500 molecules in 11 classes, including HIV 
protease inhibitors,  protein kinase C inhibitors and GPCR-binding ligands.  Addition of 95,000 inactive 
molecules as decoys (“molecular spam”) results in a decrease in accuracy to just below 90%. We have 
followed this up with an even more challenging experiment, in which we show that our method can predict 
the correct protein target, from almost 200 possibilities, for 70% of 43,000 molecules.

A straightforward identification of important molecular fragments contributing to the bioactivity of each 
class is possible due to the nature of the underlying algorithm. [1] The method may therefore be employed 
to gain structural insights, and we show how this can be used to colour-code molecules in a chemically 
intuitive way, displaying the propensity of each fragment to confer a given bioactivity.

1. Littlestone, N. Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold 
Algorithm. Machine Learning 1988, 2, 285–318. 

P-73 : SPECTRa-T: Machine-based data extraction and semantic searching of chemistry e-
theses
J Townsend 1, J Downing 1, M Harvey 2, P Morgan 3, P Murray-Rust 1, H Rzepa 2, D Stewart1, A Tonge 1

1 Unilever Centre for Molecular Science Informatics, Cambridge, UK
2 Imperial College, London, UK
3 Cambridge University Library, Cambridge, UK
Chemical theses typically contain a wealth of experimental data which is currently untapped. Data such as 
chemical names, spectra and spectral assignments are not routinely captured and exposed to search tools, 
and are typically stored without being subjected to appropriate preservation techniques which would enable 
data re-use. The SPECTRa-T (Submission, Preservation & Exposure of Chemistry Teaching & Research 
Data from Theses) project has developed text- and data-mining tools to extract named chemical entities 
(NCEs)  and  chemical  objects  (COs)  e.g.  spectral  assignments  and  physical  chemistry properties,  from 
electronic  theses  (e-theses);  where  appropriate  COs  are  associated  with  a  particular  NCE  (figure  1). 
Semantic Web standards for searching data have been developed by the W3C and are being increasingly 
adopted  by  research  and  development  laboratories  in  the  pharmaceutical  industry  [1].  The  extracted 
information is  deposited in  a  persistent  Resource  Description Framework  [2]  (RDF) triple-store  which 
enables users to conduct semantic searches. The level of sophistication of such searches far exceeds that of 
a normal free-text search and RDF is more easily extensible then SQL databases.

SPECTRa-T uses OSCAR [3] to identify the NCEs and COs which requires the documents to be converted 
to SciXML [4]. Portable Document Format (PDF) is the  de facto  format for the majority of repository 
deposition and we initially developed software to extract NCEs from PDF e-theses. We show that the loss of 
formatting introduced by conversion to PDF makes it impossible for machines to construct semantically 
rich SciXML from e-theses. Although machines can identify NCEs and COs the loss of formatting prevents 
any  associations  between  them.  We also  show that  a  significant  number  of  false-positives  and  false-
negatives may be identified as a result of data corruption.
 
Office  Open  XML [5] (OOXML)  is  a  XML-based  file  format  specification  for  electronic  documents 
developed by Microsoft. We demonstrate that it is possible to construct semantically rich SciXML from 
OOXML which enables significant further processing – such as the automatic reconstruction of reaction 
pathways in RDF (figure 2) as well as associating COs to NCEs. The COs currently identified are: NMR 
(proton and carbon) and IR  spectra,  (high-resolution) mass  spectrum, melting/boiling points,  elemental 
analysis, optical rotation, Rf values, physical description and yield.  All COs are parsed to CML [6] as which 
allows automated validation of the data and placed in a repository. OOXML also allows chemical diagrams 
and reaction pathways embedded in the document to be retrieved as binary objects which are converted to 
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CML and stored.

1. Mullin, R.; The Big Picture, Chem. Eng. News. 2007, 40, 13-17.
2. Resource Description Framework (RDF), http://www.w3.org/RDF/  
3. Batchelor, C. R.; Corbett, P. T.; Semantic enrichment of journal articles using chemical named 

entity recognition. In Assoc. Comp. Linguistics Companion Volume 2007 45-48. 
4. Copestake, A.; Corbett, P.; Murray-Rust, P.; Rupp, C. J.; Siddharthan, A.;  Teufel, S.; Waldron, B.; 

An Architecture for Language Processing for Scientific Texts, Proc. UK e-Science. Prog. AHM 
2006. 

5. Introducing the Office (2007) Open XML File Formats, http://msdn2.microsoft.com/en-
us/library/aa338205.aspx

6. P. Murray-Rust, P.; Rzepa, H. S.; Wright, M.; Development of Chemical Markup Language (CML) 
as a System for Handling Complex Chemical Content, New J. Chem., 2001, 25, 618-634.

Figure 1: Overview of the SPECTRa-T data-mining architecture

Figure 2: A part of the automatically generated reaction pathway from an organic PhD thesis
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P-74 : Creating chemo- & bioinformatics workflows: Further developments within the CDK-
Taverna project
Thomas Kuhn 1,2, , Achim Zielesny 2 and Christoph Steinbeck 1

1 Cologne University Bioinformatics Center (CUBIC), Cologne, Germany
2 University of Applied Sciences of Gelsenkirchen, Institute for Bioinformatics and Chemoinformatics,  
Recklinghausen, Germany
The CDK-Taverna project  aims at  building an open-source pipelining solution through combination of 
different open-source projects such as Taverna[1], the Chemistry Development Kit (CDK)[2] and Bioclipse[3]. 

Pipelining or workflow tools allow for the LegoTM-like, graphical assembly of I/O modules and algorithms 
into  a  complex  workflow  which  can  be  easily  deployed,  modified  and  tested  without  the  hassle  of 
implementing it into a monolithic application.
Current developments in CDK-Taverna focus on a soft computing framework which allows a flexible use of 
different methods from, for example, the WEKA[4] library. Here, properties of chemical substances may be 
calculated using descriptors from the QSAR / QSPR package of the Chemistry Development Kit (CDK). 

Further, a reaction enumeration algorithm for combinatorial chemistry based on existing methods of the 
Chemistry Development Kit is being developed. This algorithm allows for the enumeration of a reaction 
given that reactants and products are provided as “Markush” structures. 

1. Oinn T, Addis M, Ferris M, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock M, 
Wipat A and Li P. Taverna: A tool for the composition and enactment of bioinformatics workflows 
Bioinformatics Vol. 20(17) pp 3045-3054, 2004 

2. Steinbeck C, Han YQ, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry 
Development Kit (CDK): An open-source Java library for chemo- and bioinformatics. J Chem Inf 
Comput Sci 2003; 43: 493-500

3. Spjuth, O., Helmus, T., Willighagen, E. L., Kuhn, S., Eklund, M. et al. Bioclipse: An open rich 
client workbench for chemo- and bioinformatics, BMC Bioinformatics 2007

4. Witten I. H. and Frank E. Data Mining: Practical machine learning tools and techniques. 2nd 
Edition, Morgen Kaufmann, San Francisco, 2005

5. Hassan, M., Brown, R. B., Varma-O`Brien, Rogers, D. Cheminformatics analysis and learning in a 
data pipelining environment, Molecular Diversity 2006; 10: 283-299

P-75 : Protein-protein interactions as targets for drugs: A view from the binding site
Richard Jackson, Jonathan Fuller, Nicholas Burgoyne, Institute of Molecular and Cellular Biology, Faculty  
of Biological Sciences, University of Leeds, Leeds, UK
The ability to control protein-protein interactions therapeutically is of great current interest due to the many 
important  processes  involving these interactions.  We have taken a structural  informatics  perspective to 
analyse pockets on protein surfaces1,2, likely to correspond to binding ‘hot-spots’ according to properties 
thought  to  be  important  in  stabilizing  the  native  complex.  This  includes,  sequence  conservation  and 
measures  of  physical  properties  including hydrophobicity,  desolvation,  electrostatic  and  van  der  Waals 
potentials. The resulting differences between predicting binding-sites at protein–protein and protein–ligand 
interfaces are striking. Generally, the prediction accuracy for protein–protein interfaces is much lower3. 

We have further addressed the differences between proteins that bind marketed drugs and the proteins that 
are targeted by small molecule protein-protein interaction inhibitors. It  is observed that the former bind 
deeper  within  the  contact  surface  of  the  target  protein,  with  higher  ligand  efficiencies.  In  addition, 
conformational change on ligand binding plays an important role in the druggability of specific protein-
protein interaction targets. In line with some recent successes in this field our results suggest that drug 
discovery methods that target several pockets are likely to increase the chances of success in this new field 
of therapeutics.

1. Laurie, A.T., Jackson, R.M. Methods for the prediction of protein-ligand binding sites for 
structure-based drug design and virtual screening. Current Protein and Peptide Science 2006, 7, 
395-406. 

2. Laurie, A.T., Jackson, R.M. Q-SiteFinder: an energy-based method for the prediction of protein-
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ligand binding sites. Bioinformatics 2005, 21, 1908-1916.
3. Burgoyne, N.J., Jackson, R.M. Predicting protein interaction sites: Binding hot-spots in protein-

protein and protein-ligand interfaces. Bioinformatics 2006, 22, 1335-1342.

P-76 : Determinants for selectivity in map kinase inhibitors by computational simulations
Nikita Basant, Maria Christina Menziani, Department of Chemistry, University of Modena
P38 MAPKs (Mitogen Activated Protein Kinase) are currently among the most important target classes for 
drug development as they regulate signal transduction by phosphorylating tyrosine, threonine, and serine 
residues  in  key  proteins  involved  in  signal  pathways  featuring  relevance  in  many  diseases.1 The 
pathophysiological dysfunction of protein kinase signaling pathways underlies the molecular basis of many 
cancers and of several manifestations of cardiovascular disease, such as hypertrophy and other types of left 
ventricular remodeling, ischemia/reperfusion injury, angiogenesis, and atherogenesis.2

Over the past 10 years there has been a dramatic escalation in the development of kinase inhibitors for the 
treatment of many chronic disease and other conditions. Because all Protein Kinases use ATP as cofactor, 
they share a highly conserved ATP binding pocket, which is the molecular binding site of most inhibitors. 
Preferred interaction patterns of ligands with amino acid residues of proteins in and near the biding site 
cavity are of utmost importance for the prediction of binding modes and structural adaptations.

However different kinases regulate very closely related cellular events some of which may be vital for 
survival,  hence,  the selectivity of  inhibitors  for  kinase families  is  very critical  to  avoid unwanted side 
effects. Here we compare and analyze      “in silico” the binding interactions of the inhibitor in the binding 
pocket of the kinase proteins therefore determinants influencing selective binding of inhibitors for P38 and 
JNK3 classes of kinase proteins are being investigated.  A computational characterization of their unique 
binding interactions is discussed.

References:
1. Kung, C.; Shokat, K. M. Small-molecule kinase-inhibitor target assessment. ChemBioChem 2005, 

6, 523-526.
2. Cohen P. Protein kinases: the major drug targets of the twenty-first century? Nat Rev Drug Disc. 

2002, 1, 309–315.

P-77 : Fragment weighting schemes for similarity-based virtual screening: Use of 
occurrence weighting
S. Arif, J. Holliday, P. Willett, University of Sheffield, Sheffield, United Kingdom
The  calculation  of  molecular  similarity  using  2D  fingerprints  is  one  of  the  most  important  methods 
currently available for ligand-based virtual screening [1].  In a similarity search, the similarity is computed 
between a reference structure of known biological activity and each of the structures in a database.  The 
similarity is measured by identifying the substructures common to fingerprints of the two molecules that are 
being compared, then computing the value of a similarity coefficient, such as the Tanimoto coefficient, 
between the reference structure and the current database structure.  

A 2D fingerprint has traditionally been a binary vector that encodes the presence or absence of topological 
substructures in a molecule, but there is no reason why this should necessarily be the case.  Instead, it is 
possible to assign weights to fragments that describe their relative degree of importance in the molecules in 
which they occur.  There are various ways in which weighting can be carried out [2]: here, we compare 
occurrence-based representations (encoding how many times a fragment substructure occurs in a molecule) 
with incidence-based representations (encoding merely the presence or absence of a fragment substructure). 
Previous work has suggested that the former are to be preferred, but the few studies that have been carried 
out have all been quite limited in scope.  Here, we have used five different fragment weighting schemes: 
simple binary weighting (W1), the raw number of occurrences (W2), and then three variants of W2: the log 
(W3) and the square root (W4) of the occurrences and then a more complex variant that has been used to 
normalize the occurrence of words in text retrieval systems (W5) [3].  These weights have been applied to 
molecules  from  the  MDL Drug  Data  Report  (MDDR)  database  represented  by  molecular  holograms, 
vectors in which each element contains the number of times that a specific bit has been set by a fragment-
hashing scheme, and the resulting representations used in similarity searches for eleven MDDR activity 
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classes.  Future work that will have been completed by the time of the conference in June will have also 
used different types of fragment and different databases.  

Each of the five different weighting schemes can be applied to the reference structure and to each of the 
database  structures,  giving  a  total  of  25  possible  similarity  measures  for  the  searches:  here,  we  have 
considered all those 19 schemes that involve either W1 or W2.  Ten representative molecules were chosen 
from each activity class to be the reference structures for searching, and a note made of the number of 
actives retrieved in the top-5% of the ranking resulting from the similarity search; the results were then 
averaged over the ten reference structures for each activity class.  Initial results are shown in Table 1, where 
it will be seen that the best results are obtained when the reference structure and the database structures are 
both encoded using W2 or W3, a finding that is confirmed by Kendall’s W test of statistical significance. 
Our results to date hence suggest that the use of fragment occurrence data can significantly enhance the 
effectiveness of similarity-based virtual screening systems.

1. Willett, P. Similarity-Based Virtual Screening Using 2D Fingerprints.”  Drug Discov. Today, 2006, 
11, 1046-1053.

2. Willett, P.; Winterman, V. A Comparison of some Measures of Inter-Molecular Structural 
Similarity.  Quant. Struct.-Activ. Relat., 1986, 5, 18-25.

3. Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Proc.  
Manag., 1988, 24, 513-523.

Table 1.  Mean numbers (averaged over searches for ten different reference structures) of actives retrieved 
in the top-5% of
the ranked database in searches for eleven MDDR activity classes (denoted by abbreviated names in the top 
row of the table).  
The right-hand columns give the mean numbers of actives retrieved, and the mean ranks when the different 
similarity measures
are ranked in decreasing order of numbers of actives retrieved.  

Similarity 
measure1

Activity class Mean
5HT3 5HT1 5HT D2 REN ANG THR SUBP HIV COX PKC Actives Rank

M11 107.7 83.6 33.8 29.6 421.0 231.2 89.7 119.3 118.5 29.2 64.9 120.8 11.27
M12 83.0 48.4 24.4 19.6 316.3 270.0 73.1 122.4 92.7 21.5 90.8 105.7 13.8
M13 132.8 137.3 47.1 51.9 518.6 201.6 97.3 194.1 111.0 51.3 55.7 143.3 6.7
M14 102.3 70.3 31.3 25.7 368.4 253.2 83.2 118.1 104.4 24.0 80.1 114.6 12.6
M15 129.9 125.1 42.2 47.9 510.9 209.2 110.9 161.5 120.1 45.8 53.2 141.5 7.4
M21 145.9 95.8 36.9 33.2 111.3 84.0 88.2 19.4 37.7 45.1 20.6 65.2 12.7
M22 150.9 117.4 36.2 46.8 788.2 321.5 115.4 208.6 159.8 54.9 59.9 187.2 3.9
M23 133.0 123.6 37.1 45.1 338.7 120.2 89.2 97.3 55.1 58.2 37.9 103.0 10.6
M24 155.4 127.9 36.0 47.6 448.3 203.6 112.8 133.7 88.3 54.2 46.3 146.0 7.9
M25 133.1 85.4 35.4 31.0 78.7 49.0 65.4 13.2 23.6 43.8 17.4 52.4 14.8
M31 93.0 71.5 27.0 27.4 412.4 246.0 85.9 164.9 124.3 31.3 74.7 123.5 11.4
M32 69.9 53.7 21.0 23.7 244.1 237.6 75.7 198.9 105.2 16.3 86.3 103.2 13.6
M33 134.7 139.8 41.6 51.2 726.6 294.2 118.5 201.4 141.6 53.7 63.7 178.8 3.5
M41 144.4 117.1 38.7 40.9 494.2 254.3 116.5 124.2 118.1 50.4 41.4 140.0 7.4
M42 120.6 84.5 32.8 28.8 459.3 339.0 92.6 201.2 139.1 33.2 74.4 132.2 8.4
M44 139.2 107.0 39.6 40.2 659.5 330.0 111.4 204.0 144.9 45.5 56.7 170.7 5.4
M51 87.2 52.8 26.2 18.4 273.4 220.6 74.9 81.3 87.3 21.1 82.5 93.2 15.0
M52 94.6 46.7 20.9 17.0 269.1 251.4 73.9 152.1 84.4 21.0 102.6 103.1 14.5
M55 112.9 88.6 33.6 33.3 413.5 274.0 92.8 166.1 129.6 31.6 61.9 130.7 9.0

1Each  similarity  measure,  denoted  by  Mab,  describes  the  weight  applied  to  the  database  structures’ 
fingerprints (a) and the weight applied to the reference structure’s fingerprint (b ): thus M13, e.g., refers to 
the searches in which the database structures are coded using W1 (conventional binary weighting) and the 
reference structures are coded using W3 (the natural logarithm of the occurrence frequencies). 

P-78 : Effect of data standardization on the clustering of chemical structures
C.-W. Chu, J. Holliday, P. Willett, University of Sheffield, Sheffield, United Kingdom
The clustering of chemical structures is of importance in several areas of chemoinformatics [1].  A little-
discussed aspect of clustering is standardisation, the application of a mathematical transformation to each of 
the individual components of a multi-attribute descriptor so that all of the attributes make a comparable 
contribution to the measurement of similarity.  Here, we report a detailed comparison of the effectiveness of 
different standardisation methods when applied to chemical datasets.   
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Our experiments used two datasets: 10191 molecules from the MDDR database and 11607 molecules from 
the IDAlert database, with molecules being noted as active or inactive in eleven bioactivity classes.  The 
molecules  in  the  two  datasets  were  characterised  in  three  ways:  12  physicochemical  properties 
(PipelinePilot  software);  53  topological  indices  (Molconn-Z  software)  and  998-element  molecular 
holograms  (Unity software).   Each  of  the  three  characterisations  was  used  to  generate  eight  different 
representations, these being the raw data vectors and the vectors resulting from application of the seven 
different standardisation methods described in the review by Milligan and Cooper [2].  The eight resulting 
representations  for  each  descriptor-type  were  then  clustered  using  the  K-Means  and  Ward’s  methods 
(Digital Chemistry clustering software), generating classifications with 25, 50 or 100 clusters.  

The extent to which molecules with the same bioactivity occurred in the same clusters was determined in 
two  ways:  an  entropy  measure  based  on  the  distribution  of  actives  across  the  clusters  (with  a  good 
standardisation  method being  one  that  minimised  the  spread  of  actives);  and  a  measure  based  on  the 
numbers  of  inactive  molecules  occurring  in  clusters  that  contained  active  molecules  (with  a  good 
standardisation method being one that minimised the numbers of inactives in such clusters).  Each measure 
was calculated for each activity class and the results averaged over the eleven activity classes to quantify 
the effectiveness of a given standardisation method.   

The resulting mean values of each of the two measures were then used to rank the eight standardisation 
methods in order of decreasing effectiveness, for each of the two datasets, two clustering methods and three 
numbers of clusters.  The extent of the agreement between the rankings engendered by the three different 
characterisations was measured using the Kendall W test.  A significant degree of agreement at the 0.05 
level of statistical significance was obtained for none of the 12 analyses on the MDDR data, and for only 3 
of the 12 analyses on the IDAlert data.  This suggests that there is no consistent pattern when the various 
standardisation methods are ranked in order of decreasing effectiveness, and hence that there is no obvious 
performance benefit that is likely to be obtained from the use of any particular method.  

1. Downs, G. M.; Barnard, J. M. Clustering Methods and their Uses in Computational Chemistry. Rev. 
Comp. Chem., 2002, 18, 1-40.

2. Milligan, G. W.; Cooper, M. C. A Study of Standardization of Variables in Cluster Analysis. J. Classif., 
1988, 5, 181-204.

P-79 : Multiobjective optimisation of pharmacophore hypotheses: Bias towards low-energy 
conformations
V Gillet 1, E Gardiner 1, D Cosgrove 2, R Taylor3

1 University of Sheffield, Sheffield, UK
2 AstraZeneca, Alderley Park, UK
3 Cambridge Crystallographic Data Centre, Cambridge, UK
Pharmacophore elucidation is a difficult problem involving the determination of the interactions between a 
small molecule and a protein without knowledge of the 3D structure of the protein. Given several small 
molecules that are known to bind to the protein, the aim is to generate an alignment such that their common 
features are overlaid. However, it the absence of the receptor site, it is unlikely that the true pharmacophore 
can be determined unambiguously. Thus we have developed a Multi-Objective Genetic Algorithm (MOGA) 
with  the  aim  of  generating  multiple  feasible  pharmacophore  hypotheses  by  exploring  trade-offs  in 
conformational energy, volume overlay and number and quality of pharmacophore points [1,2]. In previous 
work we have demonstrated the ability of the MOGA to identify pharmacophores that are consistent with 
existing knowledge together  with alternative hypotheses  that,  in  the absence  of  knowledge of  the  true 
pharmacophore, are equally feasible. However, the search space for multiple potential pharmacophores can 
become very large and generally increases with the number of molecules being considered. In this work we 
have combined a clique-detection algorithm with the MOGA in order to limit the MOGA exploration to a 
feasible region of solution space to increase both the efficiency and effectiveness of the program. In a 
further enhancement we bias the search towards low-energy conformations using torsion angles obtained 
from surveys of  crystal  structures  [3].  We report  the results  of  these enhancements  in  terms of speed, 
solution quality and solution diversity on datasets of up to ten molecules. 

1. Cottrell, S.J.; Gillet, V.J. and Taylor, R. Incorporating Partial Matches within Multiobjective 
Pharmacophore Identification J. Comput-Aided Mol. Design, 2006, 20, 735-749.
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2. Cottrell, S.; Gillet, V.J.; Taylor R. and Wilton, D. Generation of Multiple Pharmacophore 
Hypotheses Using Multiobjective Optimisation Techniques J. Comput-Aided Mol. Design, 2004, 
18, 665-682.

3. Bruno, I.J.; Cole, J.C.; Kessler, M.; Luo, J.; Motherwell, S; Purkis, L.H.; Smith, B.R.; Taylor R. 
Retrieval of Crystallographically-Derived Molecular Geometry J. Chem. Inf. Comput. Sci., 2004, 
44, 2133 -2144.

P-80 : Weighted data fusion with turbo similarity searching to improve chemical similarity 
searching
J. Holliday 1, J. Chen 1, J. Bradshaw 2

1 University of Sheffield, Sheffield, United Kingdom
2 Daylight Chemical Information Systems, Inc., United Kingdom
Similarity searching is perhaps the simplest tool available for ligand-based virtual screening of chemical 
databases, requiring just a single known bioactive molecule, the reference or target structure, as the starting-
point for a database search. The most common similarity search involves the use of a simple association 
coefficient, normally the Tanimoto coefficient, with a 2D fragment bit-string representation of molecular 
structure.  More  recently,  data  fusion  in  similarity  searching  has  emerged  which  uses  more  than  one 
coefficient  to  evaluate  the  similarity between  the  target  structure  and  the  database  structures  [1-3].  In 
addition, using multiple reference structures with group fusion (or turbo similarity searching) has also been 
applied [4, 5] with considerable success.

In  this  presentation,  we  first  conclude  that  four  coefficients:  Forbes,  Simple  Matching,  Tanimoto  and 
Russell/Rao; are the most suitable coefficients to use in data fusion in the context of similarity searching 
due  to  the  complementary  nature  of  their  individual  performances.  We  then  implement  a  systematic 
approach to optimising the weightings applied to the four coefficients in data fusion process. The approach 
uses the turbo similarity search methodology in the training and testing stages. All three fusion-rules are 
studied: MIN, MAX and SUM.

We divided the MDL Drug Data Report database into two parts; one for training and one for testing. Using 
targets from selected active classes,  we conducted several  turbo similarity searches of the training set, 
varying the weights systematically and scored the weighting scheme by the proportion of active nearest 
neighbours. We then applied these optimum weights, using different targets from the active classes, to turbo 
searches of the test set. We also carried out turbo similarity searches using the industry standard Tanimoto 
coefficient on its own, for comparative purposes. The improvement rates over Tanimoto for the testing stage 
are shown in Table 1. These figures show a clear improvement in almost all cases over the Tanimoto. Once 
training has  been carried  out  for  an active class,  there  is  little  extra  computation cost  in  carrying out 
similarity searches of this type. In addition, the weights can be optimised further as more actives from each 
respective class are identified.

A selection of optimum weights for four of the classes tested is given in Table 2. This indicates that the 
targets from activity classes which comprise compounds which are generally larger in size than the database 
average show better performance when combinations involve the Tanimoto and Russell/Rao whilst,  for 
targets from classes which comprise smaller compounds, the Forbes and Simple Match are more effective.

1. Holliday, J. D.; Hu, C.-Y.; Willett, P. (2002). Grouping of coefficients for the calculation of inter-
molecular similarity and dissimilarity using 2D fragment bit-strings. Comb. Chem. High 
Throughput Screening, 5, 155-166.

2. Salim, N.; Holliday, J.D.; Willett, P. (2003). Combination of fingerprint-based similarity 
coefficients using data fusion. J. Chem. Inf. Comput. Sci. 43, 435-442.

3. Whittle, M.; Gillet, V. J.; Willett, P.; Alex, A.; Loesel, J. (2004). Enhancing the effectiveness of 
virtual screening by fusing nearest neighbor lists: A comparison of similarity coefficients. J. Chem. 
Inf. Comput. Sci. 44, 1840-1848.

4. Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer A. (2005). 
Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbour 
information. J. Med. Chem. 48, 7049-7054.

5. Hert, J., Willett, P., and Wilton, D. J. (2006). New methods for ligand-based virtual screening: use 
of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. 
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Inf. Model. 46, 462-470.

Table 1: Improvement rates over the Tanimoto coefficient at the testing stage

Fusion Method MIN MAX SUM
Avg. S.D. Avg. S.D. Avg. S.D.

Renin Inhibitor 7.70 4.72 7.60 4.75 9.30 3.34
Angiotensin II AT1 Antagonist 33.65 12.87 39.10 9.39 40.40 10.61
Thrombin Inhibitor 111.60 97.40 42.40 36.33 113.15 100.80
Substance P Antagonist 5.15 6.77 3.25 8.59 4.00 6.79
5HT3 Antagonist 35.40 68.06 15.70 13.64 22.80 21.02
5HT1A Agonist 61.90 50.02 33.60 19.29 48.30 31.77
5HT Reuptake Inhibitor 12.40 17.95 -0.30 14.38 0.75 27.07
HIV-1 Protease Inhibitor 270.90 436.05 80.15 96.34 13.90 15.53
D2 Antagonist 0.00 0.00 40.10 23.00 29.40 22.77
Coclooxygenase Inhibitor -2.40 14.09 23.00 25.82 7.70 6.69
Protein Kinase C Inhibitor 4.70 4.84 7.80 14.14 13.90 9.52
Overall Average 49.20 64.80 24.50 24.17 27.60 23.26

Table 2: Selection of optimum weights for various active classes

Fusion method/Class/Compount # For Wt SM Wt Tan Wt RusWt
TMIN/Renin Inhibitor/157104 0.0 0.0 0.4 0.6
TMAX/Renin Inhibitor/157104 0.0 0.0 0.5 0.5
TSUM/Renin Inhibitor/157104 0.0 0.0 0.75 0.25
TMIN/Thrombin Inhibitor/245228 0.0 0.0 0.4 0.6
TMAX/Thrombin Inhibitor/245228 0.0 0.0 0.25 0.75
TSUM/Thrombin Inhibitor/245228 0.0 0.0 0.25 0.75
TMIN/5HT1A Agonist/156667 0.5 0.0 0.5 0.0
TMAX/5HT1A Agonist/156667 0.25 0.25 0.5 0.0
TSUM/5HT1A Agonist/156667 0.0 0.75 0.25 0.0
TMIN/5HT Reuptake Inhibitor/272569 0.0 0.4 0.2 0.4
TMIN/5HT Reuptake Inhibitor/272569 0.25 0.75 0.0 0.0
TMIN/5HT Reuptake Inhibitor/272569 1.0 0.0 0.0 0.0

P-81 : Using wavelets to represent GRID fields in virtual screening 
R Martin 1, V Gillet 1, E Gardiner 1, S Senger 2

1 Dept. of Information Studies, University of Sheffield, Sheffield, UK
2 GlaxoSmithKline, Molecular Discovery Research, Computational and Structural Chemistry, Medicines  
Research Centre, Stevenage, UK
One of the most revealing three-dimensional descriptors available for analysis of small molecules is the 
molecular interaction potential (MIP). Perhaps the most commonly used of these is the GRID field 1, which 
is comprised of a discrete grid placed over the ligand for which potential interaction energies between the 
molecule and a probe group (e.g. water) are calculated at each vertex. A disadvantage of such a field is its 
large  size  and  hence  the  demanding  nature  of  the  computations  required.  One  way  in  which  this  is 
overcome is to extract features into a linear fingerprint (e.g. GRIND descriptors). However, this results in a 
loss of information and this requires the selection of an appropriate set of parameters. Here we use wavelets 
to encode the entire field in a holistic manner.

We show that the nonstandard Daubechies 4-tap wavelet transform (D4 WT) can be exploited to represent 
finely  sampled  GRID  maps  requiring  only  1%  of  the  storage  of  the  original  fields.  This  reduced 
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representation can be used without loss of accuracy in ligand-based similarity searching, compared with 
using the whole field. Nearly identical search results were observed when searching over sets of CDK2, 
ESR1 and HIV inhibitors also used by Chen et al 2. We also describe the impact of wavelet approximation 
methods upon the retrieval of active compounds from amongst a large number of decoys procured from the 
DUD 3.

1. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on 
biologically important macromolecules. Journal of Medicinal Chemistry 1985, 28 (7), 849-857.

2. Chen, Q.; Higgs, R.E. & Vieth, M. Geometric Accuracy of Three-Dimensional Molecular 
Overlays. Journal of Chemical Information and Modelling 2006, 46 (5), 1996-2002.

3. Huang, N.; Shoichet, B.K. & Irwin, J.J. Benchmarking Sets for Molecular Docking. Journal of  
Medicinal Chemistry 2006, 49 (23), 6789-6801.

P-82 : A multiobjective approach to scoring functions for docking
I. Mott1, P. Gedeck2, V. Gillet1

1 Department of Information Studies, University of Sheffield, Sheffield, UK
2 Novartis Institutes for Biomedical Research, Novartis Horsham Research Centre, West Sussex, UK
We describe work undertaken to develop a multiobjective approach to scoring function optimisation for use 
with the docking problem. 

The limitations of current docking and scoring protocols are well documented1,3,4. Namely, the failure to 
correctly prioritise compounds according to their known binding affinities. Central to this dysfunction is the 
inability of the scoring functions employed to work universally given the diverse range of protein systems 
studied. We therefore argue a more targeted approach to the scoring problem is justified. 

In previous studies2,5 negative training data has been employed in scoring function optimisation, in which a 
genetic algorithm optimises a function so that it  ranks a known binding mode in preference to a set of 
decoys  poses.  This  approach  has  the  advantage  of  explicitly  encoding  information  of  disfavoured 
interactions, whilst not relying on potentially incomparable experimental affinity values, as per the typical 
regression-based scoring function optimisation. However, these studies aimed to produce functions with 
general applicability, which ultimately suffer the same shortcomings as many of the commonly used scoring 
functions.

Using a multiobjective evolutionary algorithm (MOEA), we demonstrate a scoring function optimisation 
protocol that extends the previously reported method. We utilise multiple proteins simultaneously, with the 
aim of producing ‘customised’ empirical scoring functions for different proteins and protein classes for use 
in high-throughput virtual screening applications.

1. Coupez, B. & Lewis, R.A. (2006). "Docking and scoring - Theoretically easy, practically 
impossible?" Current Medicinal Chemistry, 13, 2995-3003.

2. Fenu, L.A. (2007). The development of novel scoring methods for virtual screening. P.h.D., 
University of Southampton.

3. Kontoyianni, M., McClellan, L.M. & Sokol, G.S. (2004). "Evaluation of docking performance: 
comparative data on docking algorithms". Journal of Medicinal Chemistry, 47 (3), 558-565.

4. Leach, A.R., Shoichet, B.K. & Peishoff, C.E. (2006). "Prediction of protein-ligand interactions. 
Docking and scoring: successes and gaps". Journal of Medicinal Chemistry, 49 (20), 5851-5855.

5. Smith, R., Hubbard, R.E., Gschwend, D.A., Leach, A.R. & Good, A.C. (2003). "Analysis and 
optimization of structure-based virtual screening protocols: (3). New methods and old problems in 
scoring function design". Journal of Molecular Graphics and Modelling, 22 (1), 41-53.
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P-83 : Neighbourhood behaviour studies for lead optimisation
G. Papadatos1, V. Gillet1, P. Willett1, I. McLay2, T. Cooper2, S. Macdonald2, S. Pickett2

1Krebs Institute for Biomolecular Research and Department of Information Studies, University of Sheffield,  
Sheffield, UK
2GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
The  similar property principle is a well-established heuristic which has been the rationale for numerous 
Chemoinformatics and Medicinal Chemistry applications. It states that similar compounds tend to exhibit 
similar properties, and therefore similar chemical and biological activities.1 Closely related is the notion of 
the neighbourhood principle. According to this principle, small structural dissimilarities, as defined in silico 
by a molecular descriptor, are likely to lead to small property differences.

The neighbourhood principle becomes very important during the Lead Optimisation phase when the main 
task for  the medicinal  chemists  is  to explore iteratively the chemical  space in  the vicinity of  the lead 
structure with the aim to improve its property profile. It  becomes fundamental then to identify a set of 
appropriate molecular descriptors which satisfy the neighbourhood principle, or in other words, molecular 
descriptors that exhibit the so-called neighbourhood behaviour (NB).2, 3

In  this  study,  we  have  compared  two  existing  computational  methods  to  assess  the  neighbourhood 
behaviour of selected molecular descriptors, namely Patterson plots and Horvath Optimality criterion.3, 4 To 
that end, we have employed a wide set of established 2D and 3D fingerprints, including dictionary-based, 
path,  circular  and pharmacophores,  as  well  as multiple assay data from several  GSK lead optimisation 
projects. By adapting the Optimality criterion method, we have generated graphs analogous to precision-
recall plots which illustrate the extent to which the neighbourhood behaviour is valid for a given descriptor, 
as  well  as  the  appropriate  Tanimoto similarity cut-off.  Compared  to  the  Patterson plots  approach,  this 
provides a faster, more robust and data-driven framework for the evaluation of similarity metrics in the 
context of NB.

Performance-wise,  the  results  indicate  that  2D circular  substructure  fingerprints  performed consistently 
better especially among the bioactivity datasets, having an optimal Tanimoto similarity cut-off of approx. 
0.65. This could provide an alternative to the well-established “Daylight & Tanimoto 0.85” practice for 
similarity as well as diversity studies.5

1. Johnson, M. A.; Maggiora, G. M., Concepts and application of molecular similarity. Wiley and 
sons: New York, 1990.

2. Dixon, S. L.; Merz, K. M., One-dimensional molecular representations and similarity calculations: 
methodology and validation. Journal of Medicinal Chemistry 2001, 44, (23), 3795-3809.

3. Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E., Neighborhood 
behavior: a useful concept for validation of "molecular diversity" descriptors. Journal of  
Medicinal Chemistry 1996, 39, (16), 3049-59.

4. Horvath, D.; Jeandenans, C., Neighborhood Behavior of in silico structural spaces with respect to 
in vitro activity spaces - A novel understanding of the molecular similarity principle in the context 
of multiple receptor binding profiles. Journal of Chemical Information and Computer Sciences  
2003, 43, (2), 680-690.

5. Martin, Y. C.; Kofron, J. L.; Traphagen, L. M., Do structurally similar molecules have similar 
biological activity? Journal of Medicinal Chemistry 2002, 45, (19), 4350-4358.

P-84 : Maximum unbiased validation (MUV) datasets for virtual screening by pubchem based 
chemogenomics data mining
S.G. Rohrer, K. Baumann, Institute of Pharmaceutical Chemistry, Braunschweig University of Technology,  
Braunschweig, Germany
Recently,  work  from our  lab provided  a  non-parametric  methodology within  the  framework  of  spatial 
statistics to quantify the bias introduced by the composition of benchmark datasets into the validation of 
ligand based virtual screening methods. 

Here, we use spatial statistics based design applied to a collection of bio-activity datasets selected from 
PubChem to generate maximum unbiased validation (MUV) datasets. Compared to other sources of bio-
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activity data, PubChem features several major advantages: (i) All data in PubChem, including structures, 
bio-assay conditions  and  experimental  readouts  are  publicly  accessible.  (ii)  The  compound collections 
tested exhibit a remarkable level of diversity. (iii) The vast majority of tested compounds are “drug-like”. 
(iv) Compounds that were found  inactive are listed in addition to those found  active. This provides the 
unique  opportunity  to  design  decoy sets,  for  which  the  inactivity  against  the  target  is  experimentally 
validated. 

On the downside,  most  of  the bio-activity data available from PubChem is based on High-Throughput 
Screening (HTS) experiments. HTS data is notoriously affected by experimental noise and artifacts. Thus, 
for the design of benchmark datasets it is essential to scrutinize PubChem bio-activity data with extreme 
care.

A workflow is presented that purges PubChem bio-activity datasets from unselective hits and enforces the 
selection of a representative set of decoys.  In a first step, a collection of datasets of compounds active 
against  pharmaceutically  relevant  targets  was  selected.  A distance  matrix  was  calculated,  linking  all 
PubChem bio-assays with protein target information by the sequence similarity of their respective targets. 
Based on a statistical analysis of all  compounds tested in at least one bio-assay, those were flagged as 
unselective hits and removed from the datasets, that were found active in a significantly large number of 
assays with unrelated targets. Furthermore, active compounds located in regions of chemical space under-
sampled by decoys were excluded from the datasets. Topological optimization using experimental design 
strategies monitored by spatial  statistics functions was then used to generate corresponding datasets of 
actives and decoys that are unbiased with regard to analogue bias and artificial enrichment.

The presented datasets, the selectivity filter and a MATLAB toolbox for the spatial statistics analysis of 
chemical datasets will be available from our web-page.

(http://www.pharmchem.tu-bs.de/forschung/baumann/)

P-85 : 3D-Visualization of molecular conformations in the MOGADOC database
Jürgen Vogt 1, Natalja Vogt 1, Evgeny Popov 2

1 Chemieinformationssysteme, University of Ulm, Ulm, Germany
2 Nizhegorodsky State Architectural and Civil Engineering University, Nizhny Novogod, Russia
The MOGADOC Database (Molecular Gasphase Documentation) has grown up to 32,800 bibliographic 
references for about 9,000 inorganic, organic and organometallic compounds, which were studied in the 
gas-phase by microwave spectroscopy, radio astronomy and electron diffraction. The database also contains 
7,700 numerical datasets with internuclear distances, bond angles and dihedral angles.

The standard retrieval features of the WWW browser supported database have been described elsewhere in 
details  [1].  By means  of  an  implemented  Java-based  structure  editor  the  user  can  retrieve  molecular 
structures and their fragments [2]. Hereby the user has the choice to take into account or to ignore cis-trans-
isomerism in cyclic compounds and (E)-(Z)-isomerism at double bonds [3]. Moreover, a Java-based applet 
has been developed, which enables the user to visualize three-dimensionally the molecular structures. The 
user can interactively rotate, shift, and scale the displayed 3D structures. Furthermore it is possible to allow 
or  suppress  the  display of  bond orders,  atom labels  (which  are  necessary to  assign  the  corresponding 
internal coordinates in that entry) and the principal axis system.

The full set of Cartesian coordinates for all  atoms of a molecule is necessary for the 3D visualization. 
However, in most of the original papers, the Cartesian coordinates are not given, not completely determined 
or cannot be determined (for example, for trigonometrically inconsistent thermal-average structures from 
the  conventional  gas  electron  diffraction analysis).  In  these  cases  the  Cartesian  coordinates  have  been 
derived by means of our own program supplemented by GaussView™ from available experimental internal 
coordinates using the symmetry of the equilibrium configuration and/or structural parameters of similar 
compounds as supplementary data.

Presently we are developing a Java based modul for the visualization of the energy hypersurface for multi-
conformational molecular systems.

The project has been supported by the Dr. Barbara Mez-Starck Foundation, Freiburg/Br. (Germany). 

◄ 125 ►



Eighth International Conference on Chemical Structures

1. J. Vogt and N. Vogt: Statistical Tools of the MOGADOC Database (Molecular Gasphase 
Documentation). Struct. Chem. 2003, 14,137-141

2. J. Vogt, N. Vogt, and R. Kramer: Visualzation and Substructure Retrieval Tools in the MOGADOC 
Database. J. Chem. Inform. Comput. Sci. 2003, 43, 357-361

3. J. Vogt and N. Vogt: Structure Searching in the MOGADOC Database. J. Mol. Struct. 2004, 695, 
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P-86 : Similarity based correction for the predictions of compounds physicochemical 
properties
Andrius Sazonovas3 , P. Japertas 1, R. Didziapetris 2, A. Petrauskas 4

1 Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania; Faculty of Chemistry, Vilnius  
University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania
2 Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania
3 Faculty of Chemistry, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania; Pharma 
Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania
4 Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania
A number  of  problems  have  been  long  known  to  prevent  the  effective  use  of  third-party  predictive 
algorithms in the pharmaceutical industry. Among them is the training set not covering the specific part of 
the  chemical  space  occupied  by the  compounds that  a  certain  company is  working with or  a  specific 
experimental protocol used to measure the property of interest that yields the results contrasting with the 
experimental values for the same compounds in the training set. Therefore the need arises for a method that 
would allow any company to tailor a third-party predictive algorithm to its specific needs using proprietary 
in-house data.

Here we present a novel similarity based methodology that provides a possibility for a user to expand the 
Applicability Domain of the existing Pharma Algorithms models with the help of a custom database of 
experimental values for the property of interest. A Reliability Index (RI) is also calculated as a measure of 
the quality of the particular prediction. The use of the method is illustrated with examples of its application 
in predicting logP, logD and solubility of the compounds. It is shown that a relatively small amount (5 to 
10) of similar compounds has to be added to substantially improve the prediction for a group of problematic 
compounds that is not represented in the original training set. The Reliability Index is shown to be closely 
related to the overall quality of any given prediction that is represented by a clear correlation of the RI and 
RMSE values.

Given that the improvement of any Pharma Algorithms model in this way is instant as it occurs that very 
moment when new compounds with experimental values are added to the similarity database and there is no 
need to retrain the model, this method opens completely new possibilities for their use in the industry.

P-87 : Prediction of ionization constants for complex multicenter electrolytes utilizing 
proprietary ‘in house’ data
Andrius Sazonovas, P. Japertas 1, R. Kubilius 2, D. Simelevicius 3

1 Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania; Faculty of Chemistry, Vilnius  
University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania
2 Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania
3 Faculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius,  
Lithuania; Pharma Algorithms, Inc., A.Mickeviciaus g. 29, LT-08117 Vilnius, Lithuania
Ionization is one of the key parameters that affects absolute majority of the physicochemical properties and 
biological activities that are of interest to the developers of any new marketed chemicals, regardless of their 
intended use. Therefore, estimation of pKa values has always been the field where prediction accuracy 
received special attention from the industry.

In this work we present the methodology of pKa prediction developed by Pharma Algorithms. It is a multi-
step  procedure  involving  estimation  of  pKa  microconstants  for  all  possible  ionization  centers  in  an 
uncharged  molecule  (“fundamental  microconstants”),  numerous  corrections  of  these  initial  pKa  values 
according to the surrounding of the reaction center and calculation of charge influences of ionized groups to 
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the  neighboring  ionization  centers.  In  total,  algorithm utilizes  a  data  set  of  >12,000  compounds  with 
experimental pKa measurements, a database of 4,600 ionization centers, a set of ca. 500 various interaction 
constants and four interaction calculation methods for different types of interactions, producing a full range 
of microconstants from which pKa macroconstants are obtained. This allows for a simulation of complete 
distribution plot of all protonation states of the molecule at different pH conditions.

Finally the above described predictions are used as the baseline values in a novel similarity based routine, 
allowing estimation of reliability for each prediction (evaluation of the Model Applicability Domain). In 
addition,  this  methodology  provides  industrial  users  with  a  unique  possibility  to  expand  the  Model 
Applicability Domain with the help of any user-defined proprietary ‘in house’ databases of experimental 
pKa values. As it will be shown, this functionality is capable of substantially increasing the accuracy of 
predictions for the compounds not represented in the initial training set, thus opening new possibilities of 
the model use in prediction of pKa values for specific classes of proprietary ‘in house’ compounds.

P-88 : A novel chemical database for sustainable development of synthesis routes: An 
instance of developing synthesis routes of quinolone derivatives
K. Hori, T. Yamaguchi, H. Sadatomi, M. Sumimoto, Graduate school of Science and Engineering,  
Yamaguchi University, Ube, Japan
Transition State Database (TSDB)[1] is a system storing information of TSs, reactants, intermediates and 
products  derived  from quantum chemical  calculations.  One of  the  usages  of  TSDB is  to  make initial 
geometries for new TSs using data in the TSDB and  to reduce computational  times of  searching TSs. 
Another usage is to confirm whether or not a new route designed by a synthesis route designing system 
such as AIPHOS, KOSP[2] or TOSP is useful to synthesize target compounds. Figure 1 show the concept of 
TSDB. We have been developing TSDB and studying how to use it. The present TSDB has a web interface 
which  shows 3D structures,  IRC animations and  so on and  searches  transition states  in  the  TSDB by 
comparing chemical structures of reactants and products. Trial version is released at  https://trial.tsdb.jp/. 
The present study describes how to use the TSDB in developing synthesis routes of target compounds.

Antibacterial spiro compounds are usefull as medicines and preservatives. Quinolone derivatives including 
7-amino-5-azaspiro[2.4]heptyl substitutions offer super antibacterial activity and oral absorptive property. 
6-metyl-6-azaspiro[2.4]heptane-4-one  is  one  of  manufactured  intermediates  for  7-amino-5-
azaspiro[2.4]heptane.  TOSP  that  is  one  of  SRDSs  proposed  24  synthesis  routes  for  6-metyl-6-
azaspiro[2.4]heptane-4-one. Similarity reaction searching about these 24 routes in TSDB was executed and 
4  similar  reactions  were  found.  We performed PM3 or  B3LYP/6-31G* level  of  theory calculations  to 
analyze these routes using found data. Accordingly, it was clarified that 6-metyl-6-azaspiro[2.4]heptane-4-
one could be synthesized using 3-methyl-3-aza-bicyclo[3.2.0] heptane-1,5-diol, the starting compound of 
the  pinacol  rearrangement.  We  also  generated  next  routes  for  synthesizing  3-methyl-3-aza-
bicyclo[3.2.0]heptane-1,5-diol  using TOSP. 84 routes were proposed and 3 similar  reactions with these 
routes  were  found  from  TSDB.  3  routes  were  also  analyzed  to  clarify  that  3-methyl-3-aza-
bicyclo[3.2.0]heptane-1,5-diol could be synthesized from 5-chloro-3-methyl-3-aza-bicyclo[3.2.0]heptan-1-
ol using the substitution reaction.

It is possible to use other simple starting compounds with reiterating the present procedure shown in Figure 
2.  This  procedure  makes  it  possible  to  evaluate  synthesis  routes  created  by  SRDS  using  theoretical 
calculations together with the TSDB for developing new synthesis routes.
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P-89 : Combinatrial chemistry using theoretical calculations. An application to boric acid 
catalyzed esterification of phenol
M. Shimeno, M. Sumimoto, K. Hori, Graduate school of Science and Engineering, Yamaguchi University,  
Ube, Japan
Combinatrial technique is rather difficult in organic synthetic chemistry since it is not so easy to synthesize 
all the  compounds with desired substituents. However, the same technique in computational chemistry is 
very attractive since  it is very easy to  introduce complicated substituents in theoretical calculations and 
reactions  are proceeding in  the  virtual  world. This  is  also true  when we try to  investigate the role  of 
catalysis, for example, boric acid catalyzed esterification of phenol.
Boric acid / sulfuric acid catalyzed esterification has been using to synthesize phenyl methacrylate [1]. In 
the beginning of this reaction, boric acid reacts with methacrylic acid to form boric methacrylic anhydride 
and H2O. The anhydride then reacts with phenol to form phenyl methacrylate 3. While sulfuric acid has 
been using as the catalyst for the reaction, other protic acids such as phosphoric acid, trichloroacetic acid, 
and so on may be useful. In order to understand the role of acids and find other acids useful for the reaction, 
following calculations were performed.

1. Investigate  the  reaction  mechanism without  considering  protic  acids  using  Density Functional 
Theory (DFT) calculations.

2. Clarify the role of sulfuric acid in the esterification reaction.
3. Confirm whether or not other protic acids play a same role as sulfuric acid.

Table 1 Activation energies (Ea) and heat of 
reactions depending onprotic acids.

Fig. 1: boric acid catalyzed reaction cycle.
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acid 2-3　   Ea        ∆

H2SO4

(pKa=1.9)

1-step 28.0 -0.2 

2-step 27.6 -0.5 

3-step 24.9 -0.5 

CCl3COOH
(pKa=0.77)

1-step 37.8 -4.0 

2-step 29.2 -4.8 

3-step 31.0 

PO4H3

(pKa=2.12)

1-step 37.8 -9.1 

2-step 24.5 -9.9 

3-step 20.8 -13.3 

H2O
(pKa=15.7)

1-step 39.3 -4.8 

2-step 41.0 -6.7 

3-step 40.8 -3.9 

Fig. 2: 1-step transition state (TS) from sulfuric acid.

Figure 1 displays  the  mechanism investigated in  the present  study.  As boric  acid  have  three hydroxyl 
groups, all the groups react with methacrylic acid to form 2, followed by the reaction with phenol to form 3. 
It was confirmed that the reaction proceeds with help of one water molecule, i.e., a proton relay that the 
water  molecule accepts  a  proton from phenol  and donates  its  proton to  regenerate  boric  acid [2].  The 

activation energies (Ea) of three similar reactions were calculated to be almost 40 kcal mol-1 as  listed in 
Table 1. We tried to calculate that sulfuric acid can also play a similar role to that of the water molecule. 
Figure 2 displays  the transition state  geometry including a sulfuric  acid for  the reaction.  The intrinsic 
reaction coordinate calculations showed that  the obtained TS connect 2+PhOH with the product 3. The 
calculated Ea is 28.0 kcal mol-1, lower by 11.3 kcal mol-1 than that with a water molecule. This mechanism 
suggests that HCl cannot catalyze the esterification since the acid has no donor atom used for the proton 
relay.

In  order  to  search  other  protic  acids  useful  for  the  proton  relay,  the  same  mechanism applied  to  the 
esterification using trichloroaacetic acid and phosphoric acid. Although TS structures similar to sulfuric 
acid were obtained for the both acids, the Ea’s of the first step reaction are larger by ca. 10 kcal mol-1 than 
that for sulfuric acid. The high barrier for phosphoric acid resulted in observation that the acid is useless for 
producing phenyl  methacrylate using boric  acids.  The same conclusion is  applicable to the reaction of 
trichloroacetic acid. We now try to find useful protic acids for the esterification  using this combinatorial 
technique.

1. William, W., Tetrahedron Letters, 1971, 37, 3453.
2. Hori, K.; Ikenaga, Y.; Arata, K.; Takahashi, T.; Kasai, K.; Noguchi, Y.; Sumimoto, M.; Yamamoto. 

H. Tetrahedron, 2007, 63, 1264
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P-90 : Calculation of difference of free energy of solvations using the QM/MC/FEP method in 
chemical reactions
K. Uezu, T. Yamaguchi, M. Sumimoto, K. Hori, Graduate school of Science and Engineering, Yamaguchi  
University, Ube, Japan
Monte Carlo (MC) simulations or molecular dynamic (MD) calculations using classical force fields have 
been used for many studies which calculate free energies of activation (∆G‡) in solutions.  We have been 
developing the QM/MC method, Monte Carlo simulation using quantum mechanical (QM) calculations in 
order to investigate solvent  effects for chemical  reactions.  The simulation uses the QM calculations to 
obtain energies of ensembles so that it is not necessary to determine charges and van der Waals parameters 
of solvent molecules. Although MC simulations using fully quantum mechanical calculations are free from 
classical parameters, it takes long CPU times to obtain energies with statistical meanings.

We developed a program which calculates difference of free energy of solvation, ∆∆G(solv), using the QM/
MC method  connected  with free  energy  perturbation  (FEP)  calculations according  to  Eq.  1,  i.e.,  the 
QM/MC/FEP simulation. ∆G‡ in solution can be calculated by adding ∆G‡ in the gas phase to ∆∆G(solv) 
between the TS and the reactant in solution. The QM/MC/FEP calculations use the thermodynamic cycle 
shown in Scheme 1. We adopted he droplet model that includes a solute molecule in its center and  have 
solvent molecules around the solute within a radius depending on the sides of solvent molecules. The solute 
has structures optimized using quantum mechanical calculations. The QM/MC/FEP simulation was applied 
to calculate  ∆∆G(solv)  between the reactant  and TS, between TS and the product by dividing differences 
between the structures by 50 points. 
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The  QM/MC/FEP  simulation  was  applied  to  Diels-Alder  reaction  between  methylvinylketone  and 
cyclopentadiene. The activation barrier was calculated to be 18.3 kcal mol-1 and the heat of reaction to be 
12.5  kcal  mol-1 in  the  gas  phase  at  the  B3LYP/6-311++G**//MP2/6-31G*  level  of  theory.  The 
QM/MC(B3LYP/6-311++G**//MP2/6-31G*,PM3,PM3)  calculation  gave  averaged  activation  energies 
included solvent effects to be 12.7, 13.8 and 15.2 kcal mol-1 in aqueous, methanol and propane solutions, 
respectively. These results indicate that the rate of the reaction in aqueous solution is much faster than that 
in propane and is consistent with the experimental data.

Applications to other reactions such as acid-catalyzed hydrolysis, Cope Elimination and decarboxylation 
reactions will be shown in the poster. 

1. R. Breslow, T.Guo, J. Am. Chem. Soc, 1988, 110, 5615.
2. in isooctane
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P-91 : Toward in silico screening using transition state data base for developing new 
synthesis routes
T. Yamaguchi, H. Sadatomi, M. Sumimoto, K. Hori, Graduate School of Science and Engineering, 
Yamaguchi University, Ube, Japan

We have been constructing a data base with information of transition states for chemical reactions[1]. The 
data base is called the transition state data base (TSDB) which helps to develop synthesis routes for target 
compounds  and  works  together  with  the  synthesis  route  design  systems  (SRDS)  such  as  TOSP and 
KOSP[2]. The present study describes what is the TSDB and how to use it for “in silico screaning” of 
synthesis routes from chemoinformatic calculations. 

The structure of  the TSDB is shown in Figure 1.  The TSDB has a  library of  TS information (TSLB) 
including more than 1000 TSs for 30 kinds of namely reactions at present. We are expecting to gather more 
than 3000 TS information for 100 namely reactions for two years.  The library categorizes  information 
depending  on  names  of  reactions,  skeleton  structures  and  kinds  of  products  and  contains  coordinates, 
energies and results of intrinsic reaction coordinate (IRC) calculations. The data base has six programs with 
different aims. TSDB_View displays 3D structures of selected reactions as well as coordinates which will 
be used as initial geometries for locating new TSs. To build an initial geometry for the TS_Search program, 
FIND_TSINFO  can  perform  searches  based  on  similarities  of  chemical  structures.  This  function  is 
deliveried  by  PostgreSQL +  pgchem::tigress  programs[3],  both  of  which  are  open  source  softwares. 
TS_Search is a program which is developed for trying several methods to search TSs semi-automatically. 
The  Predict_Yield  program predicts  the  trends  of  experimental  yields  of  synthesis  reactions  using  the 
calculated activation energies. For this purpose, PLS analysis was used to obtain a relationship between the 
experimental data and the activation energies obtained from the DFT calculations[4].

It is very important to access the TSDB via the internet. Figure 2a shows a window found data for Diels-
Alder reaction of cyclopentadiene and furan-2,5-dione. Figure 2b displays results of the IRC calculations 
for the reaction as well as energy relations between reactants, TS and the product. The interface has been 
developed using PHP5 and is able to display the energy relations. You can use a trial version of the TSDB at 
http://traial.tsdb.jp.

It is also important to show how to use the TSDB for developing new synthesis routes for synthetic organic 
chemist. They can create synthesis routes of targets but cannot give answers for their possibility without 
experiments. Theoretical analyses of reaction mechanisms for the synthesis routes are considered to be one 
of  the  tools  for  examining  possibilities  of  the  synthesis  routes.  It  means  that  the  combination  of 
computational chemistry and chmoinformatics offers a different way to develop new synthesis routes for 
compounds although real experiments have to be done and improved in order to create synthesis routes for 
industrial  usages.  These  efforts  are  called  “in  silico  screaning”  of  synthesis  routes.  We  have  been 
investigating  this  concept  and  found  that  information  previously  obtained  is  very  useful  for  new 
calculations to locate TSs for similar reactions. This is why we have been building the TSDB for these 
years. In  fact,  in silico screaning for  2,6-dimethylchroman-4-one make it  was possible to narrow down 
more than 20 routes to only four routes using the DFT calculations.
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P-92 : Tautomer generation. pKa based dominance conditions for generating the dominant 
tautomers
József Szegezdi, Ferenc Csizmadia, ChemAxon Ltd., 1037 Budapest, Máramaros köz 3/A, Hungary
We developed a Java based application for generating the tautotmeric forms (protomers) of a molecule.
The generation of tautomers is performed after the identification of the hydrogen donor and acceptor groups 
of the submitted molecule.  Hydrogen acceptors are atoms which have unsaturated bond.  An atom in the 
molecule may be   considered a donor if it is connected to an unsaturated bond at alpha position. 

The numbers of the generated tautomers largely depend on the donor and the acceptor sites, which are 
allowed to interact with each other through the tautomerization path. The length of the tautomerization path 
is also an important parameter of the tautomer generation. In our method, no restriction is applied for the 
length of the tautomerization path. 

The calculation of  the distribution of  the different  tautomeric forms in aqueous solution is  particularly 
important both from theoretical and practical point of view. This is why we pay special attention for the 
generation of the dominant tautomeric forms of the submitted molecule.  To generate the major tautomeric 
forms, we defined simple pKa conditions for the donor and acceptor groups. The ratio of the major and the 
minor tautomeric forms also depend on the solution’s pH. The prediction of these ratios is also possible 
from the  calculated pKa values.  Predicted dominant  tautomeric forms  are  in  good agreement  with the 
practical observations. 
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P-93 : Chemical terms – A language for cheminformatics
G. Pirok, Z. Mohacsi, N. Mate, J. Szegezdi, I. Cseh, A. Szabo, M. Vargyas, S. Csepregi, A. Papp, F.  
Csizmadia, ChemAxon, Budapest, Hungary
Pharmaceutical  research is  not  just  about molecules,  it  is  about realizable molecules  having interesting 
properties. The available set of computable properties is growing, functions usually calculate a specific 
physicochemical parameter.   These functions like partial charge distribution, pKa, logD carry important 
chemical information, but the most interesting questions today are more complex. Many of those questions 
are related to ADMET. Will a planned specific compound be absorbed well, what are its major metabolites, 
what is its risk of being toxic? Chemical reactivity is another field where the problem is too complex to be 
described by a simple prediction function. 

Scientists  need  an  easy  way  to  formulate  new  functions  by  the  combination  of  property  predictions, 
mathematical functions, and structural calculations. The Chemical Terms language was developed with this 
purpose in mind. More than a hundred functions are currently provided, and can be extended through a 
public  plugin  interface.   The  evaluator  engine  is  an  integratable  component,  and  the  Chemical  Terms 
language has been implemented within other areas of ChemAxon’s technology to add or tune chemical 
feasibility for cheminformatics tools in various areas such as database filtering, pharmacophore screening, 
drug design, virtual synthesis, and xenobiotic metabolic pathway prediction. 
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