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Introduction



Motivation: 
Need for toxicity data outstrips 
output of traditional toxicology

• There is increased regulatory demand for data on the safety of 
chemicals, e.g. the EU’s REACH, the US’s TSCA, Canada’s 
CMP


• However, there is also increased regulatory/societal/economic 
pressure to “replace, reduce and refine” traditional in vivo 
toxicity studies


• Applying tradition toxicology techniques to the vast quantity of 
data-poor chemicals requiring evaluation is not practically 
possible – and translating animal results to humans is nontrivial


• Therefore, increased demand for novel approaches, including 
in silico methods
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 see e.g. Kavlock et al. Chem. Res. Toxicol., 2018, 31, 287–290



Prior work: 
Integration of heterogenous data can 

improve performance of toxicity models
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• Improved accuracy of acute oral rat toxicity QSAR models using in vitro 
HTS data previously demonstrated by A. Sedykh, A. Tropsha and 
colleagues1


• A tripartite, heterogeneous descriptor set for 367 compounds was 
comprised of:


(a) chemical descriptors


(b) descriptors derived from in vitro cell cytotoxicity dose–response 
data from a panel of human cell lines


(c) protein target descriptors generated using an algorithm trained on 
190,000 ligand–protein interactions from ChEMBL


• This dataset was used to build Random Forests classification models, and 
the performance and interpretability of the models compared on successive 
integration of data types2

!6 2. Allen et al. Tox. Res., 2016, 5, 883-894

Prior work: 
Integration of heterogenous data can 

improve performance of toxicity models

1. Sedykh et al. E.H.P., 2011, 119, 364–370
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Prior work: 
Integration of heterogenous data can 

improve performance of toxicity models

Allen et al. Tox. Res., 2016, 5, 883-894



Practical difficulty: 
Generating dataset with 

sufficient overlap of data domains
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Practical difficulty: 
Generating dataset with 

sufficient overlap of data domains
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The Globally Harmonized System



GHS: 
Hazard pictograms
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Explosive Flammable Oxidizing Compressed 
gas

Corrosive 
(chemically)

Toxic Corrosive 
(to people!)

Irritant Health 
hazard

Environmentally 
damaging



GHS: 
Pictograms derived from Categories
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Chapter 3.1: Acute Toxicity 
In Globally Harmonized System of Classification and Labelling of Chemicals (GHS) [Online], 7th revised ed. 

https://www.unece.org/trans/danger/publi/ghs/ghs_rev07/07files_e.html (accessed April 2018)



GHS: 
Categories derived from quantitative data
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Chapter 3.1: Acute Toxicity 
In Globally Harmonized System of Classification and Labelling of Chemicals (GHS) [Online], 7th revised ed. 

https://www.unece.org/trans/danger/publi/ghs/ghs_rev07/07files_e.html (accessed April 2018)



Public regulatory GHS data sources
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5,450 
classifications

141,475 
classifications

3,967 
classifications

5,577 
classifications



Public regulatory GHS data sources
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• “Harmonized” classifications (4,604)

• Industrial notifications (136,871)

5,450 
classifications

141,475 
classifications

3,967 
classifications

5,577 
classifications



Dataset collation



Dataset summary

• 3,336 compounds


• For each:


• qHTS assay data: ToxCast/Tox21 assay data


• Chemical structures: represented by physico-chemical 
descriptors from MOE and morgan fingerprints from RDKit


• Predicted targets: “PIDGIN”-derived probabilities of 
ligand-protein bioactivity


• GHS acute toxicity classification: Regulator-derived 
toxicity categories
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Dataset: 
qHTS assay data

• The US EPA has published data for the ToxCast chemical set for 821 
assay endpoints freely available online – available as raw data and 
processed hit calls, AC50 values, etc.


• The dataset is designed with computational toxicology applications 
in mind.


• However, R. Thomas et al. (Toxicol. Sci., 2012, 128, 398–417) found 
that “the current ToxCast phase I assays and chemicals have limited 
applicability for predicting in vivo chemical hazards using standard 
statistical classification methods.”
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USEPA. 2018. “ToxCast & Tox21 Summary Files” from invitrodb_v2

http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data (accessed Jan 2018)


Data released October 2015 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data


Dataset: 
Chemical structures

• 9011 substances in the ToxCast & Tox21 dataset:


• Discarded those classed as “Mixture/Formulation”, “Polymer” or 
“Macromolecule”


• Discarded those without a CAS number (required for looking up GHS data) or 
without a structure (where one could not be found from PubChem)


• Standardised structures using ChemAxon’s Standardizer


• Resulting in 8539 structures


• From these, calculated 205 2D physico-chemical descriptors from CCG’s MOE, and 
2048-bit (radius 2) Morgan fingerprints from RDKit
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USEPA. 2018. “ToxCast & Tox21 Chemicals DSSTox Database” from DSSTox_20151019

http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data (accessed Jan 2018)


Data released October 2015 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data


Dataset: 
Predicted targets

• In-house target prediction tool: “PIDGIN” (Prediction IncludiDinG INactivity)


• Random Forests with 100 trees, outputs either:

• Platt-scaled probabilities of activity, or

• Binary activity predictions for a given recall threshold


• Models for 3394 targets, trained on:

• 19,918,879 bioactivities 

(extracted from PubChem and ChEMBL21)

• 2,087,404 actives

• 11,829,475 inactives
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PIDGINv2 
Available for download and use via GitHub – DOI:10.5281/zenodo.15984



Protein target model selection via 
performance estimation

PIDGIN comprises 3394 independent bioactivity models – each with their applicability domain.


We can use input structures which also happen to be in the models’ training sets to estimate each 
model’s performance, rejecting all except the 800 that attain the required recall (here, 0.7)

In addition, we incorporate known bio-activities from PIDGIN’s training data by setting the 
probability of interaction for these ligand-target pairs to be 1.

Rejected Accepted
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Dataset: 
GHS acute toxicity classification

10% rule: Require for presence of a classification in >10% of industrial 
submissions before annotating a compound. This is the standard used 
by ECHA themselves for issuing a warning on their website.
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Regulator- 
approved 

classifications

Query 
compound

Industrial 
notifications 

to ECHA

Annotation Annotation

Fail

Minimum “10% rule”

Not found Not found



Regulator-derived toxicity: 
acute oral toxicity coverage

• 8539 structures from original ToxCast dataset, of which…


• 3336 (39%) were classified, of which…


• 920 (28%) in categories 1-3, labelled “toxic”


• 1052 (32%) in category 4, labelled “harmful”


•  245 (7%) in category 5, no label


• 1119 (34%) were implied nontoxic
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Implied nontoxicity

• There is no GHS acute toxicity category representing non-
toxic – the least severe category has a lower limit


• However, regulatory classification and industrial 
submissions are expected to be “complete”


• Therefore, absence of an acute toxicity category in a set 
of purportedly complete GHS classifications should imply 
non toxicity
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Chapter 3.1: Acute Toxicity 
In Globally Harmonized System of Classification and Labelling of Chemicals (GHS) [Online], 7th revised ed. 

https://www.unece.org/trans/danger/publi/ghs/ghs_rev07/07files_e.html (accessed April 2018)



Dataset analysis



“Toxic” / “nontoxic” binning

• There are five GHS acute toxicity categories:

1-3: (LD50 ≤ 300 mg/kg) 	 	 	 	 	 	 labelled “Toxic"

4: (300 mg/kg < LD50 ≤ 2000 mg/kg)	 	 labelled “Harmful”

5: (2000 mg/kg < LD50 ≤ 5000 mg/kg)	 	 not labelled


• When binary “toxic”/“nontoxic” classifications are utilised, 


• “toxic” includes to cat. 1-3


• “nontoxic” includes cat. 5 and implied non-toxic

(cat. 4 compounds are disregarded)
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Most GHS data sources  
overlap by less than 60%
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% overlap

AU: Australia (SWA) 
EU: European Union (ECHA) 
EU-N: Industrial notifications to ECHA 
JP: Japan (NITE) 
NZ: New Zealand (EPA)



GHS classifications correlate with 
one another across different sources
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Spearman corr.

(D): dermal toxicity

(I): inhalation toxicity

(O):	 oral toxicity

AU: Australia (SWA) 
EU: European Union (ECHA) 
EU-N: Industrial notifications to ECHA 
JP: Japan (NITE) 
NZ: New Zealand (EPA)



GHS classifications correlate with 
one another across different sources
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N.B. acute oral toxicities 
only used from now on

Spearman corr.

(D): dermal toxicity

(I): inhalation toxicity

(O):	 oral toxicity

AU: Australia (SWA) 
EU: European Union (ECHA) 
EU-N: Industrial notifications to ECHA 
JP: Japan (NITE) 
NZ: New Zealand (EPA)



Bioavailability and druglikeness are 
largely independent of GHS category
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FAFDrugs4 toxicophore screening does 
not catch GHS acute oral toxicities
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Lagorce et al. Bioinformatics, 2017, 33, 3658-60



Number of ToxAlerts is also not a 
relevant screening metric
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All toxicophore alerts “Reactive, unstable, toxic” alerts

Sushko et al., J. Chem. Inf. Model., 2012, 52, 2310-6



Presence/absence of any 
“reactive, unstable, toxic” ToxAlerts shows 

weak relationship with GHS acute oral toxicities

!30



Presence/absence of any 
“reactive, unstable, toxic” ToxAlerts shows 

weak relationship with GHS acute oral toxicities
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Odds ratio: 1.71

p value: 1.88 × 10-6  



Enrichment of 
“reactive, unstable, toxic” ToxAlerts 

(from nontoxic to toxic)
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Structure Alert ID Name Odds 
ratio p value Source

TA1000 “double P=S and 
P=C bonds” 24.6 2.3 × 10−17

“Filter to detect reactive, 
toxic and unstable 
compounds” – Enamine

TA880
“gem-Dihalo 
propane and 
cyclopropane”

23.5 4.8 × 10−5
“Toxic fragments in 
molecular structures” – 
Life Chemicals

TA567, TA885, 
TA1075 “thioureas” 23.5 4.8 × 10−5

“Reactive, unstable, and 
often toxic chemical 
groups” – ChemDiv etc.

TA324, TA914, 
TA770, TA1087 “nitroso” 19.0 3.2 × 10−7

“Exclusion criteria of the 
Maybridge Screening 
Collection database”

TA574 “organometallic 
compounds” 7.6 1.6 × 10−5

“Reactive, unstable, and 
often toxic chemical 
groups” – ChemDiv



Inter- and intra-class distances in 
chemical space
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Linear Discriminant Analysis can partially 
separate classes in physico-chemical space
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Inter- and intra-class 
distances in protein target space
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Enrichment of human target predictions 
(from nontoxic to toxic)
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Uniprot Protein Odds ratio p value Associated pathologies

P07711 Cathepsin L1 7.39 5.10 × 10−7 Heart disease, cardiomyopathy,  
inflammatory skin disease, etc.

Q16850 Lanosterol 14-
alpha demethylase 3.44 1.44 × 10−5 Metabolic disease, 

retinal dystrophy, etc.

Q16853
Membrane 
primary amine 
oxidase

2.50 1.06 × 10−6 Vascular disease, cerebravascular 
disorder, stroke, etc.

P10696
Alkaline 
phosphatase, 
placental-like

2.35 1.14 × 10−16 Lymphoma, neurodegenerative 
disease, acute myeloid leukemia, etc.

P35869 Aryl hydrocarbon 
receptor 2.22 1.80 × 10−17 Cardiovascular disease, Chrohn’s  

disease,  lung disease, etc.



Highest-weighted human protein targets 
in Linear Discriminant Analysis projection

Uniprot Protein Weight 
(absolute) Associated pathologies

P25789 Proteasome subunit alpha type-4 64.5 Amyloidosis, immune system 
disease, lymphoma, etc.

P28070 Proteasome subunit beta type-4 52.9 Amyloidosis, immune system 
disease, lymphoma, etc.

P32239 Gastrin/cholecystokinin type B 
receptor 40.6 Digestive system disease, peptic 

ulcer, etc.

P60900 Proteasome subunit alpha type-6 29.9 Amyloidosis, immune system 
disease, lymphoma, etc.

P35346 Somatostatin receptor type 5 29.3 Digestive system disease, 
Haemorrhage, diarrhoea, etc.
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ToxCast AC50 values show 
little separation power
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Modelling results



Modelling workflow

• 20% of data reserved as validation set, rest used as training set.

• On training set, for each descriptor set:


• Random Forest hyperparameter optimisation (5-fold cross 
validation) – 
	 maximising area under the ROC curve


• Threshold optimisation (5-fold cross validation) using selected 
hyper parameters – 
	 maximising correct classification rate (CCR)


• Final Random Forest classification model fitted

• On validation set, for each model:


• Precision-recall and ROC curves plotted

• Sensitivity, specificity and CCR at optimum threshold calculated
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Performance of physico-chemical 
Random Forests model
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At (training-set determined) optimal threshold: 

Sensitivity: 0.84     Specificity: 0.75     Correct classification rate: 0.80



Performance of protein target 
Random Forests model
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At (training-set determined) optimal threshold: 

Sensitivity: 0.71     Specificity: 0.76     Correct classification rate: 0.74



Performance of ToxCast AC50 
Random Forests model

!42

At (training-set determined) optimal threshold: 

Sensitivity: 0.68     Specificity: 0.46     Correct classification rate: 0.57



Performance of physico-chemical and 
protein target Random Forest model
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At (training-set determined) optimal threshold: 

Sensitivity: 0.79     Specificity: 0.81     Correct classification rate: 0.80



Performance summary
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PR AUC ROC AUC Sensitivity Selectivity CCR

Physico-
chemical 0.81 0.90 0.84 0.75 0.80

Protein 
target 0.69 0.84 0.71 0.76 0.74

ToxCast 
AC50 0.47 0.62 0.68 0.46 0.57

Combination 
physics-
chemical 

and protein 
target

0.76 0.87 0.79 0.81 0.80



Model interpretation?
• MOE-generated physico-chemical descriptors can be challenging 

to interpret


• e.g. highest-importance features in physico-chemical model:

“Relative negative partial charge”, “mean atom information content”, “number of 
nitrogen atoms”, “0th GCUT descriptor using atomic contribution to molar 
refractivity”, “molecular mass density” etc. 

• In contrast, protein target features are intrinsically suggestive of a 
specific biological activity


• e.g. highest-importance protein target features in combination 
physico-chemical and protein target model:


“5-hydroxytryptamine receptor 3B”, “Metabotropic glutamate receptor 1”, 
“P2Y purinoceptor 1”, “Prostaglandin E2 receptor EP2 subtype”, 
"Vitamin D3 receptor”, etc. 

• Future work can be done using more sophisticated feature analyses 
to generate potential modes of action for individual predictions
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Conclusions



Conclusions

• The GHS represents a rich source of acute dermal, inhalation and oral 
toxicity data for use in predictive toxicology studies


• Acute oral toxicity, as encoded by the GHS system, is not well screened 
by the FAFDrugs4 toxicophore-based screen; however, ToxAlert’s 
“reactive, unstable, toxic” toxicophore set does show a weak 
relationship with this toxicity


• Toxicity classes derived from GHS data are partially separable in 
chemical and protein-target space and may be predicted using Random 
Forests models


• Predictive models could be created using physico-chemical and protein 
target descriptors. However, qHTS data from the ToxCast/Tox21 assays 
could not be successfully employed in GHS class prediction. 
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