

How Do You Build and Validate 1500 Models and What Can You Learn from Them?

Greg Landrum*, Anna Martin, Daria Goldmann KNIME AG

2018 ICCS

The Monster Model Factory

Greg Landrum*, Anna Martin, Daria Goldmann KNIME AG

2018 ICCS

Who cares?

- I have >1500 datasets from ChEMBL that I would like to build models for
- I want to actually use the models, so they need to be deployed
- The whole process needs to be automated and reproducible so that I can do it again when ChEMBL is updated
- Maybe we can learn something interesting from the models themselves

Back to the beginning

The model process

CRISP-DM (CRoss Industry Standard Process for Data Mining) is a standard process for data mining solutions.

wikipedia://CRISP-DM

The model process

Load

The model process, multiple models

. . .

The model process, multiple models

The model process, multiple models

https://commons.wikimedia.org/wiki/File:Jabberwocky.jpg

AUTOMATE

ALL THE THINGS!

Automation: the model process factory

Automation: the model process factory

Make each step a separate workflow.

Use KNIME to orchestrate calling those workflows

KNIME blog post: <u>https://goo.gl/LvESqB</u> White paper: <u>https://goo.gl/d6UpUu</u>

Model Factory

Score

The heart of the factory: Call Local Workflow¹

¹ Call Remote Workflow when run on the KNIME Server

• Executes another workflow in the same local repository

https://pixabay.com/en/heart-veins-arteries-anatomy-152594/

Model Factory

Load

Model Factory

•

Details

Extracting the data

- Data source: ChEMBL 23
- Activity types: ('GI50', 'IC50', 'Ki', 'MIC', 'EC50', 'AC50', 'ED50', 'GI', 'Kd', 'CC50', 'LC50', 'MIC90', 'MIC50', 'ID50') -> 6.5 million points
- Define active: Standard_value < 100nM -> 1.3 million actives
- Define inactive: Standard_value > 1uM
- Define an interesting assay At least 50 actives -> 1556 assays
- Final dataset size: 2.5 million data points, 1.5 million compounds

Finding more inactives

Init >

- The ChEMBL datasets almost all have an unrealistically high ratio of actives to inactives
- "Fix" that by adding enough assumed inactives to each dataset to get a 1:10 active:inactive ratio
- Pick those assumed inactives to be roughly similar to the actives: Tanimoto similarity of between 0.35 and 0.6 using RDKit Morgan 2 fingerprints

Extracting the data

Load

Database Query	Database GroupBy	Database Joiner	Database Joiner	Column Rename	Table Reader
.	1 52 0	1 50	<mark>_ }⊍</mark> ■		- <u>12</u> -
Retrieve actives and inactives	Summarize num_active, num_inactive	add ChEMBLID	add ChEMBLID	Node 154	Node 136
	Database Row Filter	Database Row Filter			
	• <u>•</u>	• • •			
	/				

- Convert SMILES from database into chemical structures
 - nto chemical RDKit
- Cleanup the chemical structures

- aluate > Deplo
- Convert SMILES from database into chemical structures

- Cleanup the chemical structures
- Generate five chemical fingerprints for each structure

	RDKit Count-Based	1		
	Fingerprint	R	DKit Fingerprint	
RDKit Fingerprint		RDKit Fingerprint		RDKit Fingerprint
<mark>_</mark>		→ <mark> @</mark> →		
	ECFC6 4096		RDKit 2048	
ECFP6 4096		Atom Pair 4096 1-20	1-5	ECFP4 2048

Transform

- Convert SMILES from database into chemical structures
- Cleanup the chemical structures
- Generate five chemical fingerprints for each structure
 - Morgan 3 counts (ECFC6), 4K "bits"
 - Morgan 3 (ECFP6), 4K bits
 - Morgan 2 (ECFP4), 2K bits
 - RDKit FP, length 1-5, 2K bits
 - Atom pairs, distances 1-20, 4K bits

Load

Transform

Learn and Score

- Full parameter optimization done for each method+fingerprint on 70 assays
- Results used to pick "standard" parameter sets:
 - Random Forest: 200 trees, max depth=10, min_leaf_size=3, min_node_size=6
 - Gradient Boosting: 100 trees, max_depth = 5, learning_rate = 0.05

Parameter Optimization

🕨 Load

Parameter Optimization

The optimization and model selection workflow is presented in detail in Daria's KNIME blog post:

https://www.knime.com/blog/stuck-in-the-nine-circles-of-hell-try-parameteroptimization-a-cup-of-tea

The workflow is available in the EXAMPLES folder inside KNIME: 04_Analytics/11_Optimization/08_Model_Optimization_and_Selection

Init	Load	Transform	Learn	Score	Evaluate	Deploy

Making it all run

Execution

• In total >310K models were built¹

¹~1550 assays * 4 methods * 5 FPs * 10 repeats

Execution

Are the models any good?

Performance on validation sets

• AUC: mean=0.958 s=0.070

 Cohen's kappa: mean=0.690 s=0.382

Performance on validation sets

• AUC: mean=0.958 s=0.070

Yeah!

 Cohen's kappa: mean=0.690 s=0.382

Performance on validation sets

ALL THE THINGS!

An experiment to check model generalizability

- Pick assays where standard_type is Ki
- Group them by target ID
- Limit to targets where Ki was measured in at least 5 assays -> 11 targets, 73 assays
- Use the model built on one assay from a target ID to predict activity across the other assays.

An experiment to check model generalizability

• The targets:

TargetID	Name	Num Assays
CHEMBL205	Carbonic anhydrase II	7
CHEMBL224	Serotonin 2a (5-HT2a) receptor	8
CHEMBL234	Dopamine D3 receptor	10
CHEMBL243	Human immunodeficiency virus type 1 protease	6
CHEMBL244	Coagulation factor X	5
CHEMBL253	Cannabinoid CB2 receptor	7
CHEMBL281	Carbonic anhydrase IV	5
CHEMBL3371	Serotonin 6 (5-HT6) receptor	8
CHEMBL344	Melanin-concentrating hormone receptor 1	5
CHEMBL4550	5-lipoxygenase activating protein	5
CHEMBL4908	Trace amine-associated receptor 1	7

lipoxygenase act0eatingbinnine/i0B2Oedeentor anhyGenbollic anhydCoegVlation fa0ttha/maneiDomerce/Macliamicycoince/typetih@httotansine2xe(5=BEBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5=BeBat)oneince/tSetde@httotansine2xe(5

41

 Target: CHEMBL3371 (5-HT6)

 Train on Assay ID: 448716

 Test with Assay ID: 1366806

AUROC: 0.38 **EF5**: 0

Assay_ID 1366806

 \mathcal{O}

CHEMBL3289984

CHEMBL3290021

CHEMBL237389

CHEMBL236772

Smol

80mg

CHEMBL391517

CHEMBL3286432

 Target: CHEMBL3371 (5-HT6)

 Train on Assay ID: 448716

 Test with Assay ID: 659849

AUROC: 0.99 EF5: 8.8

CHEMBL237389

CHEMBL236772

Assay_ID 659849

CHEMBL236576

CHEMBL392976

CHEMBL237593

+0+80

CHEMBL236976

CHEMBL1242702

© 2018 KNIME AG. All Rights Reserved.

CHEMBL391517

 Target: CHEMBL3371 (5-HT6)

 Train on Assay ID: 448716

 Test with Assay ID: 1528679

AUROC: 0.83 **EF5**: 0.4

CHEMBL391517

CHEMBL237593

CHEMBL3696963

CHEMBL3692855

Intermediate conclusion

- Many/most of the models have likely overfit the training data
- Alternative interpretation: we've actually built models to predict whether or not a compound is taken from a particular paper
- Unfortunately these are functionally the same if you want to predict activity

ALL THE THINGS!

Look for frequent algorithm + fingerprint combinations

For each of the ~1550 assays * 4 learning algorithms
 * 10 repeats, look at which fingerprint performed
 best (as measured by EF5)

Look for frequent algorithm + fingerprint combinations

For each of the ~1550 assays * 4 learning algorithms * 10 repeats, look at which fingerprint performed best (as measured by EF5)

Which method/FP pair is best for each assay?

 For each of the ~1550 assays * 10 repeats, look at which algorithm + fingerprint performed best (as measured by EF5¹, AUC², and algorithm complexity³)

> ¹ Rounded to 1 decimal point
> ² Rounded to 2 decimal points
> ³ Random Forest > Gradient Boosting > Fingerprint Bayes > Logistic Regression

Which method/FP pair is best for each assay?

Select best model using EF5, AUC, algorithm complexity

Wrapping up

- We have automated the construction and evaluation of >1500 models for bioassays using data pulled from ChEMBL
- We've got some strong evidence that the models themselves are significantly overfit
- We were able to start to draw some general conclusions about fingerprints and methods

There's still a lot left to do

- Verify the repeatability of the process by updating when the next version of ChEMBL is released
- Some more thought into combining assays to get around the "one series per paper" problem
- Look into doing the full optimization run
- Come up with a good way of presenting the predictions

© 2018 KNIME AG. All Rights Reserved.

More details...

- Model process factory blog post: <u>https://goo.gl/LvESqB</u>
- Model process factory white paper: <u>https://goo.gl/d6UpUu</u>
- Model process factory workflow: <u>knime://EXAMPLES/50 Applications/26 Model Process</u> <u>Management</u>
- Daria's blog post on the model optimization workflow: <u>https://www.knime.com/blog/stuck-in-the-nine-circles-of-hell-try-parameter-optimization-a-cup-of-tea</u>
- Accompanying workflow: <u>knime://EXAMPLES/</u> 04 Analytics/11 Optimization/08 Model Optimization and Selection
- When we're done cleaning up, there will be a blog post/sample workflow for the monster model factory too.

7th RDKit UGM: 19 - 21 September

- Hosted by Andreas Bender, Cambridge University
- Free registration: <u>https://goo.gl/VVvHUH</u> (or get it on <u>http://www.rdkit.org</u>)

http://www.rdkit.org

November 6 – 9 at AT&T Executive Education and Conference Center, Austin, Texas

- Tuesday & Wednesday: One-day courses
- Thursday & Friday: Summit sessions

Use the code ICCS-2018 for 10% off tickets.

Register at: knime.com/fall-summit2018

The KNIME[®] trademark and logo and OPEN FOR INNOVATION[®] trademark are used by KNIME.com AG under license from KNIME GmbH, and are registered in the United States.

