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Who cares?

• I have >1500 datasets from ChEMBL that I would like 
to build models for

• I want to actually use the models, so they need to 
be deployed

• The whole process needs to be automated and 
reproducible so that I can do it again when ChEMBL
is updated

• Maybe we can learn something interesting from the 
models themselves
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Back to the beginning
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The model process

Image from: 
https://upload.wikimedia.org/wikipedia/commons
/b/b9/CRISP-DM_Process_Diagram.png

CRISP-DM (CRoss Industry 
Standard Process for Data 
Mining) is a standard 
process for data mining 
solutions.

wikipedia://CRISP-DM

https://upload.wikimedia.org/wikipedia/commons/b/b9/CRISP-DM_Process_Diagram.png
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The model process

Image from: 
https://upload.wikimedia.org/wiki
pedia/commons/b/b9/CRISP-
DM_Process_Diagram.png

Init Load Transform Learn Score Evaluate Deploy

https://upload.wikimedia.org/wikipedia/commons/b/b9/CRISP-DM_Process_Diagram.png
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The model process, multiple models

…
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The model process, multiple models

…



© 2018 KNIME AG. All Rights Reserved. 9

The model process, multiple models

…

It’s not feasible to manually do this 
for a daunting number of models!

https://commons.wikimedia.org/wiki/File:Jabberwocky.jpg
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https://www.publicdomainpictures.net/view-image.php?image=155188
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Automation: the model process factory
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Init Load Transform Learn Score Evaluate Deploy

Automation: the model process factory

Score EvaluateTransform DeployLoad Learn

Score

Learn

Load Transform Evaluate Deploy

Score EvaluateTransform DeployLoad Learn

Score

Learn

Load Transform Evaluate Deploy

Make each step a separate workflow.
Use KNIME to orchestrate calling those workflows

KNIME blog post: https://goo.gl/LvESqB
White paper: https://goo.gl/d6UpUu

https://goo.gl/LvESqB
https://goo.gl/d6UpUu
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Model Factory Init Load Transform Learn Score Evaluate Deploy
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The heart of the factory: Call Local Workflow1

• Executes another workflow in the same local repository
https://pixabay.com/en/heart-veins-arteries-anatomy-152594/

1 Call Remote Workflow 
when run on the KNIME 
Server
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Model Factory Init Load Transform Learn Score Evaluate Deploy
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Model Factory Init Load Transform Learn Score Evaluate Deploy
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Details
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Extracting the data

• Data source: ChEMBL 23
• Activity types:

('GI50', 'IC50', 'Ki', 'MIC', 'EC50', 'AC50', 'ED50', 'GI', 'Kd', 'CC50', 'LC50', 
'MIC90', 'MIC50', 'ID50’) -> 6.5 million points

• Define active: 
Standard_value < 100nM -> 1.3 million actives

• Define inactive:
Standard_value > 1uM

• Define an interesting assay
At least 50 actives -> 1556 assays

• Final dataset size: 2.5 million data points, 1.5 million 
compounds

Init Load Transform Learn Score Evaluate Deploy
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Init Load Transform Learn Score Evaluate DeployFinding more inactives

• The ChEMBL datasets almost all have an 
unrealistically high ratio of actives to inactives

• “Fix” that by adding enough assumed inactives to 
each dataset to get a 1:10 active:inactive ratio

• Pick those assumed inactives to be roughly similar 
to the actives: Tanimoto similarity of between 0.35 
and 0.6 using RDKit Morgan 2 fingerprints 
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Extracting the data Init Load Transform Learn Score Evaluate Deploy
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Transform

• Convert SMILES from database into chemical 
structures

• Cleanup the chemical structures

Init Load Transform Learn Score Evaluate Deploy

http://www.rdkit.org
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Transform

• Convert SMILES from database into chemical 
structures

• Cleanup the chemical structures

• Generate five chemical fingerprints for each 
structure

Init Load Transform Learn Score Evaluate Deploy

http://www.rdkit.org
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Transform

• Convert SMILES from database into chemical 
structures

• Cleanup the chemical structures

• Generate five chemical fingerprints for each 
structure
– Morgan 3 counts (ECFC6), 4K “bits”

– Morgan 3 (ECFP6), 4K bits

– Morgan 2 (ECFP4), 2K bits

– RDKit FP, length 1-5, 2K bits

– Atom pairs, distances 1-20, 4K bits

Init Load Transform Learn Score Evaluate Deploy

http://www.rdkit.org
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Learn and Score Init Load Transform Learn Score Evaluate Deploy

10 different stratified random 
training/holdout splits generated for 
each assay
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Learn Init Load Transform Learn Score Evaluate Deploy

Learning:
• Fingerprint Bayes (NB)
• Logistic Regression (LR)
• Random Forest (RF)

200 trees, max depth=10, 
min_leaf_size=3, min_node_size=6

• Gradient Boosting (H2O)
100 trees, max_depth = 5, 
learning_rate = 0.05

Model Selection:
• Pick best model based on Enrichment 

factor at 5% (EF5)
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Learn Init Load Transform Learn Score Evaluate Deploy

Where did these parameters 
come from?

Learning:
• Fingerprint Bayes (NB)
• Logistic Regression (LR)
• Random Forest (RF)

200 trees, max depth=10, 
min_leaf_size=3, min_node_size=6

• Gradient Boosting (H2O)
100 trees, max_depth = 5, 
learning_rate = 0.05
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Parameter Optimization Init Load Transform Learn Score Evaluate Deploy

• Full parameter optimization done for each 
method+fingerprint on 70 assays

• Results used to pick “standard” parameter 
sets:

– Random Forest: 200 trees, max depth=10, 
min_leaf_size=3, min_node_size=6

– Gradient Boosting: 100 trees, max_depth = 5, 
learning_rate = 0.05
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Parameter Optimization Init Load Transform Learn Score Evaluate Deploy
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Parameter Optimization Init Load Transform Learn Score Evaluate Deploy

The optimization and model selection workflow is presented in detail in Daria’s 
KNIME blog post:
https://www.knime.com/blog/stuck-in-the-nine-circles-of-hell-try-parameter-
optimization-a-cup-of-tea

The workflow is available in the EXAMPLES folder inside KNIME:
04_Analytics/11_Optimization/08_Model_Optimization_and_Selection
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Making it all run

Init Load Transform Learn Score Evaluate Deploy
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Execution

• In total >310K models were built1

1 ~1550 assays * 4 methods * 5 FPs * 10 repeats
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Execution

KNIME Analytics 
Platform

KNIME 
Server

...

Distributed Executor

Distributed Executor

Distributed Executor

Build/test workflows Run model factory Run individual assays
65-70 load-balanced 
distributed executors
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Are the models any good?
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Performance on validation sets

• AUC: mean=0.958 
s=0.070

• Cohen’s kappa: 
mean=0.690 s=0.382
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Performance on validation sets

• AUC: mean=0.958 
s=0.070

• Cohen’s kappa: 
mean=0.690 s=0.382

Yeah!
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Performance on validation sets

• AUC: mean=0.958 
s=0.070

• Cohen’s kappa: 
mean=0.690 s=0.382

Yeah! Uh oh…
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https://www.publicdomainpictures.net/view-image.php?image=155188
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An experiment to check model generalizability

• Pick assays where standard_type is Ki

• Group them by target ID

• Limit to targets where Ki was measured in at least 5 
assays -> 11 targets, 73 assays

• Use the model built on one assay from a target ID to 
predict activity across the other assays.
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An experiment to check model generalizability

• The targets:

TargetID Name Num Assays

CHEMBL205 Carbonic anhydrase II 7

CHEMBL224 Serotonin 2a (5-HT2a) receptor 8

CHEMBL234 Dopamine D3 receptor 10

CHEMBL243 Human immunodeficiency virus type 1 protease 6

CHEMBL244 Coagulation factor X 5

CHEMBL253 Cannabinoid CB2 receptor 7

CHEMBL281 Carbonic anhydrase IV 5

CHEMBL3371 Serotonin 6 (5-HT6) receptor 8

CHEMBL344 Melanin-concentrating hormone receptor 1 5

CHEMBL4550 5-lipoxygenase activating protein 5

CHEMBL4908 Trace amine-associated receptor 1 7
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Carbonic Anhydrase IV

Carbonic Anhydrase II

HIV Protease

Factor X

5-HT6

TAAR1
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Carbonic Anhydrase IV

Carbonic Anhydrase II HIV Protease

Factor X

5-HT6 TAAR1
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An Example

Target: CHEMBL3371 (5-HT6)
Train on Assay ID: 448716
Test with Assay ID: 1366806

AUROC: 0.38
EF5: 0
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An Example

Assay_ID 448716 Assay_ID 1366806
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An Example

Target: CHEMBL3371 (5-HT6)
Train on Assay ID: 448716
Test with Assay ID: 659849

AUROC: 0.99
EF5: 8.8
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An Example

Assay_ID 448716 Assay_ID 659849
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An Example

Target: CHEMBL3371 (5-HT6)
Train on Assay ID: 448716
Test with Assay ID: 1528679

AUROC: 0.83
EF5: 0.4
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An Example

Assay_ID 448716 Assay_ID 1528679
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Intermediate conclusion

• Many/most of the models have likely overfit the 
training data

• Alternative interpretation: we’ve actually built 
models to predict whether or not a compound is 
taken from a particular paper

• Unfortunately these are functionally the same if you 
want to predict activity
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https://www.publicdomainpictures.net/view-image.php?image=155188
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Look for frequent algorithm + fingerprint combinations

• For each of the ~1550 assays * 4 learning algorithms 
* 10 repeats, look at which fingerprint performed 
best (as measured by EF5)
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Look for frequent algorithm + fingerprint combinations

For each of the ~1550 assays * 4 learning 
algorithms * 10 repeats, look at which fingerprint 
performed best (as measured by EF5)
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Which method/FP pair is best for each assay?

• For each of the ~1550 assays * 10 repeats, look at 
which algorithm + fingerprint performed best (as 
measured by EF51, AUC2, and algorithm complexity3)

1 Rounded to 1 decimal point
2 Rounded to 2 decimal points
3 Random Forest > Gradient Boosting > Fingerprint Bayes > Logistic 
Regression
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Which method/FP pair is best for each assay?

Select best model using EF5, 
AUC, algorithm complexity
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Wrapping up

• We have automated the construction and evaluation 
of >1500 models for bioassays using data pulled 
from ChEMBL

• We’ve got some strong evidence that the models 
themselves are significantly overfit

• We were able to start to draw some general 
conclusions about fingerprints and methods
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There’s still a lot left to do

• Verify the repeatability of the process by updating 
when the next version of ChEMBL is released

• Some more thought into combining assays to get 
around the “one series per paper” problem

• Look into doing the full optimization run

• Come up with a good way of presenting the 
predictions
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More details…

• Model process factory blog post: https://goo.gl/LvESqB
• Model process factory white paper: 

https://goo.gl/d6UpUu
• Model process factory workflow: 

knime://EXAMPLES/50_Applications/26_Model_Process_
Management

• Daria’s blog post on the model optimization workflow: 
https://www.knime.com/blog/stuck-in-the-nine-circles-
of-hell-try-parameter-optimization-a-cup-of-tea

• Accompanying workflow: knime://EXAMPLES/ 
04_Analytics/11_Optimization/08_Model_Optimization_
and_Selection

• When we’re done cleaning up, there will be a blog 
post/sample workflow for the monster model factory too.

https://goo.gl/LvESqB
https://goo.gl/d6UpUu
knime://EXAMPLES/50_Applications/26_Model_Process_Management
https://www.knime.com/blog/stuck-in-the-nine-circles-of-hell-try-parameter-optimization-a-cup-of-tea
knime://EXAMPLES/50_Applications/26_Model_Process_Management
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7th RDKit UGM: 19 - 21 September

• Hosted by Andreas Bender, Cambridge 
University

• Free registration: https://goo.gl/VVvHUH
(or get it on http://www.rdkit.org)

http://www.rdkit.org

https://goo.gl/VVvHUH
http://www.rdkit.org/
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KNIME Fall Summit 2018

November 6 – 9 at AT&T Executive Education and 
Conference Center, Austin, Texas
• Tuesday & Wednesday: One-day courses

• Thursday & Friday: Summit sessions

Use the code
ICCS-2018

for 10% off tickets.

Register at:
knime.com/fall-summit2018
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