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“A pharmacophore is the ensemble of steric and electronic 
features that is necessary to ensure the optimal supra-
molecular interactions with a specific biological target and to 
trigger (or block) its biological response.”    

   

C.-G. Wermuth et al., Pure Appl. Chem. 1998, 70: 1129-1143

The Pharmacophore Concept
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LigandScout Prototype 2003
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Pharmacophore Screening ...

[Mangold 2006]   Martina Mangold. Human Rhinovirus Coat Protein Inhibitors - A Pharmacophore Modeling Approach.  
     Master’s thesis at the University of Innsbruck (2006) 
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Pharmacophore Screening ...

[Mangold 2006]   Martina Mangold. Human Rhinovirus Coat Protein Inhibitors - A Pharmacophore Modeling Approach.  
     Master’s thesis at the University of Innsbruck (2006) 
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There Is A Problem ...

• “Old” 3D pharmacophore methods suffer  
 from severe limitations

–  different tools return inconsistent results 

–  alignment by graph matching  ---->  slow

–  low number of features  ---->  inaccurate

What is the solution ?
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... Breaking the Code

• Why Yuor Barin Can Raed Tihs

http://www.livescience.com/18392-reading-jumbled-words.html
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... Breaking the Code

• It deson’t mttaer in waht oredr the ltteers in a 
wrod aepapr, the olny iprmoatnt tihng is taht the 
frist and lsat ltteer are in the rghit pcale. The rset 
can be a toatl mses and you can sitll raed it 
wouthit pobelrm.

http://www.livescience.com/18392-reading-jumbled-words.html
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... Breaking the Code

• S1M1L4RLY,  Y0UR  M1ND  15  R34D1NG  
7H15 4U70M471C4LLY  W17H0U7  3V3N  
7H1NK1NG  4B0U7   17

http://www.livescience.com/18392-reading-jumbled-words.html
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LigandScout
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LigandScout Scientific Articles
• More than 1500 papers* 

– structure-based modeling 

– ligand-based modeling 

– virtual screening 

• Hit identification 

• Fragment-based design 
• Lead structure optimization 

• Protein-Protein Interactions 
• Drug repurposing 

• Profiling (side-effects)
* scholar.google.com, May 2018
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An Interesting Article To Read ...

Karaboga et al.,  
J. Chem. Inf. Model. 53  

 1043−1056 (2013)



T. Langer, 11th ICCS, Noordwijkerhout 2018

LigandScout for VS
Pharmacophore from PDB entry 3OE6

Karaboga et al., J. Chem. Inf. Model. 2013, 53, 1043−1056
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The Conclusions

• Overall, the total area under de curve of the ROC plot and 
the early recovery results of the present pharmacophore 
model show that it is a highly specific and sensitive 
screening filter, which makes it very appropriate for 
identifying CXCR4 antagonists. 

• Moreover, the scaffold retrieval analysis shows that  
the pharmacophore model is able to retrieve a diverse 
scaffold pool.

Karaboga et al., J. Chem. Inf. Model. 2013, 53, 1043−1056
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Molecular Dynamics
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MD and Pharmacophores
• Using pharmacophore models as a new way to investigate 

ligand-protein interactions in MD trajectories  
• Finding relevant interactions by pharmacophore frequency 

analysis 

• Use pharmacophore vectors for calculating similarities 

• Sampling and identification of rare (but important) events 
• Potential applications:  

–  Enhance VS efficiency 

–  Better guidance for lead structure optimization
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VS Screening Efficiency

Wieder M. et al., JCIM, 57, 365 (2017)

Common Hits Approach: Combining Pharmacophore Modeling and
Molecular Dynamics Simulations
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ABSTRACT: We present a new approach that incorporates flexibility based on extensive MD simulations of protein−ligand
complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets
saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same
pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation
is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every
representative pharmacophore model; the screening results are combined and rescored to generate a single hit-list. The score for
a particular molecule is calculated based on the number of representative pharmacophore models which classified it as active.
Hence, the method is called common hits approach (CHA). The steps between the MD simulation and the final hit-list are
performed automatically and without user interaction. We test the performance of CHA for virtual screening using screening
databases with active and inactive compounds for 40 protein−ligand systems. The results of the CHA are compared to the (i)
median screening performance of all representative pharmacophore models of protein−ligand systems, as well as to the virtual
screening performance of (ii) a random classifier, (iii) the pharmacophore model derived from the experimental structure in the
PDB, and (iv) the representative pharmacophore model appearing most frequently during the MD simulation. For the 34 (out of
40) protein−ligand complexes, for which at least one of the approaches was able to perform better than a random classifier, the
highest enrichment was achieved using CHA in 68% of the cases, compared to 12% for the PDB pharmacophore model and 20%
for the representative pharmacophore model appearing most frequently. The availabilithy of diverse sets of different
pharmacophore models is utilized to analyze some additional questions of interest in 3D pharmacophore-based virtual screening.

■ INTRODUCTION
Highly specific interactions between biological macromolecules
and their small molecule ligands are of fundamental importance
in all domains of life. An understanding of biomolecular
recognition and how the ligand/receptor interaction triggers or
blocks a biological response is at the heart of every reductionist
view on molecular biology.1,2

Over time, several theories with different levels of complexity
for molecular recognition were established: (i) the “lock-and-
key” model (the static modelconformations of the free and
ligand-bound protein are essentially the same) developed by
Fischer,3 (ii) the “induced-fit” hypothesis (ligands induce the
receptor to adopt the conformation best suited for binding)

proposed by Koshland,4 and (iii) the conformational selection
and population shift hypothesis proposed by Changeux and
colleagues5 (different conformations involved in biomolecular
recognition exist spontaneously in the absence of the regulatory
ligand and the distribution of the protein conformations
changes as a result of ligand binding).
In the past decade it became clear that the question of

molecular recognition and biological function is tightly bound
to the dynamic behavior of the macromolecule. Proteins are
inherently flexible systems sampling a large ensemble of

Received: November 2, 2016
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LigandScout Implementation
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LigandScout Trajectory Analysis
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Find Models With Specific Feature

T. Langer, 11th ICCS, Noordwijkerhout 2018

Further Analysis of MD Trajectories
• Identification of transient pockets 

• Qualification of regions for additional interactions 

• Analysis of the role of water molecules  
 
Case study: 
Ligand Desolvation Steers On-Rate and Impacts Drug Residence  
Time of Heat Shock Protein 90 (Hsp90) Inhibitors  
Schütz D. et al., J. Med. Chem. Articles ASAP, April 27, 2018.   
DOI: 10.1021/acs.jmedchem.8b00080
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Feature Interaction Grids
• Specify region of interest by 

defining key residues, which  
should be in the grid box 

• Hsp90 example: 
Residues 76, 82-92, 95-96, 
131-135 

• Alignment of frames done  
using a subset of ‘static’ 
residues: 131 - 135, 144, 152,  
154, 167, 168

3

Calculation of Pharmacophore Interaction Field 
Grids

Step 1: Specify a region of interest via a list of key residues that are covered
     by the grid box

Example: Residues 76, 82-92, 95-96, 131-135

Schütz D., Seidel T. et al, JCTC, submitted
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Pairwise Feature Interaction Scores
• Calculated for every complementary probe/target feature pair  

i and j at every grid point, taking into account distance D and 
angle A dependent score contributions, together with a feature 
strength weighting factor C 
 
FISij = DSij · ASij · Cj 

Schütz D., Seidel T. et al, JCTC, submitted
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Scoring Function
Generalized bell function: 

resulting in a 
vector of scores

Schütz D., Seidel T. et al, JCTC, submitted

4

Calculation of Pharmacophore Interaction Field 
Grids

Step 2: Calculate Pairwise Feature Interaction Scores FIS
ij
 for every complementary 

             probe/target feature pair at every grid point →Result: A Vector of Scores

where FISij is the interaction score of the features i and j. 

DSij stands for the distance and ASij for the angle dependent score contributions. 

Cj is the interaction strength weighting factor for feature j.

Choice for scoring Function: Generalized Bell Function (GBF)

where a controls the width of the curve at GBF(x) = 0.5, 
b controls the slope of the curve at x = c - a and x = c + a 
and c represents the center of the bell curve.

FISij=DSij ∙ ASij ∙C j

GBF (x )=
1

1+|x−c

a |
2b
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Scoring Function
For every interaction type: Optimum distances & angles defined  

Schütz D., Seidel T. et al, JCTC, submitted
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Scoring Function

Schütz D., Seidel T. et al, JCTC, submitted
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Calculation of Atom Densities
For protein and ligand atoms, and for water molecules:

6

Calculation of Pharmacophore Interaction Field 
Grids

Step 3: Calculate Atom Densities AD
i
 at every grid point i

j = 1, …, N
A

where dij is the distance between atom j and the grid point i and NA 

is the number of atoms to consider. The parameter a of the bell function
GBFj corresponds to the Van der Waals radius of atom j and parameter

b is set to a value of 10 for all atom types. 

→Done for water, ligand and environment separately:

ADi=max(GBFj(dij))

6

Calculation of Pharmacophore Interaction Field 
Grids

Step 3: Calculate Atom Densities AD
i
 at every grid point i

j = 1, …, N
A

where dij is the distance between atom j and the grid point i and NA 

is the number of atoms to consider. The parameter a of the bell function
GBFj corresponds to the Van der Waals radius of atom j and parameter

b is set to a value of 10 for all atom types. 

→Done for water, ligand and environment separately:

ADi=max (GBF j(dij ))

protein ligand water

Schütz D., Seidel T. et al, JCTC, submitted
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Final Feature Interaction Grid Score

7

Calculation of Pharmacophore Interaction Field 
Grids

Step 4: Calculate final Feature Interaction Grid Scores FIS
i
 at every grid point i

j = 1, …, N
F

where FISi is the scalar feature interaction score at grid point i, FISij is the pairwise

feature interaction score (step 2) of the probe feature and a complementary target feature j,
ADi is the atom density (step 3) at grid point i and NF is the number of target features

complementary to probe feature type. 

Final (optional) step: Normalization of the scores to the range [0, 1]

where FISi,normalized is the normalized feature interaction score at grid point i, FISi is the feature

interaction score at grid point i, FISmin is the minimum feature interaction score amongst all grid

points and FISmax is the maximum feature interaction score amongst all grid points. 

FISi=max (FISij) ∙(1−ADi)

FISi , normalized=
FISi+FISmin

FISmax−FISmin

FISi:   scalar feature interaction score at grid point i,  
FISij:  pairwise feature interaction score (step 2) of the probe feature 
           and a complementary target feature j,  
ADi:  atom density (step 3) at grid point i  

NF:    number of target features complementary to probe feature type  

Schütz D., Seidel T. et al, JCTC, submitted



T. Langer, 11th ICCS, Noordwijkerhout 2018

Vizualisation (1)

8

Calculation of Pharmacophore Interaction Field 
Grids

→Outcome: Eight grids, one for every supported type of interaction

Residue Phe 138:
(A) aromatic - aromatic (AR-AR) grid in blue
(B) hydrophobic - hydrophobic (H-H) grid in yellow
(C) positive ionizable - aromatic (PI-AR) grid in purple

Positively charged residue Lys 100:
(D) negative ionizable - positive ionizable (NI-PI) grid in pink
(E) aromatic - positive ionizable (AR-PI) grid in light blue
(F) hydrogen bond acceptor - hydrogen bond donor grid
     (HBA-HBD) in red

Negatively charged residue Asp 85:
(G) hydrogen bond donor - hydrogen bond acceptor grid 
      (HBD-HBA) grid in green
(H) positive ionizable - negative ionizable (PI-NI) grid in turquoise

Residue Phe138 interactions: 
(A) … aromatic - aromatic 
(B) … hydrophobic - hydrophobic 
(C) … positiv charge - aromatic

A B

C

Schütz D., Seidel T. et al, JCTC, submitted
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Vizualisation (2)
Residue Lys100 interactions: 
(E) … negative - positive charge 
(E) … aromatic - positive charge 
(F) … HBA - HBD

8
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Schütz D., Seidel T. et al, JCTC, submitted
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Vizualisation (3)

8

Calculation of Pharmacophore Interaction Field 
Grids

→Outcome: Eight grids, one for every supported type of interaction

Residue Phe 138:
(A) aromatic - aromatic (AR-AR) grid in blue
(B) hydrophobic - hydrophobic (H-H) grid in yellow
(C) positive ionizable - aromatic (PI-AR) grid in purple

Positively charged residue Lys 100:
(D) negative ionizable - positive ionizable (NI-PI) grid in pink
(E) aromatic - positive ionizable (AR-PI) grid in light blue
(F) hydrogen bond acceptor - hydrogen bond donor grid
     (HBA-HBD) in red

Negatively charged residue Asp 85:
(G) hydrogen bond donor - hydrogen bond acceptor grid 
      (HBD-HBA) grid in green
(H) positive ionizable - negative ionizable (PI-NI) grid in turquoise

Residue Asp85 interactions: 
(G) … HBD -> HBA 
(H) … hydrophobic - hydrophobic 

G H

Schütz D., Seidel T. et al, JCTC, submitted

T. Langer, 11th ICCS, Noordwijkerhout 2018

Further Steps in the Procedure
• Create grid covering the binding site for each frame of the MD  

• Perform calculations at grid points: 
–  Buriedness and drugability threshold 

–  Interaction probabilities for each feature at each point 

• Align the grids 

• Visualize and analyze  
–  Look for emerging binding pockets 

–  Find hot spots for interactions 

–  Evaluate water molecules

Schütz D., Seidel T. et al, JCTC, submitted
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Vizualisation (4)

Schütz D., Seidel T. et al, JCTC, submitted
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Schütz D., Seidel T. et al, JCTC, submitted

 9 nM  42 nM

 195 nM  485 nM
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Visual Analysis

‘unhappy’  
water  

molecules

‘happy’  
water  

molecules

Schütz, D., PhD Thesis, Vienna University
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Atom Density Grids

Schütz D., Seidel T. et al, JCTC, submitted

AR-PI grids are depicted in light blue
Water molecules in a hydrophobic region  
without potential H-bond interactions calculated  
grids are represented in light pink
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Use in Lead Optimization 
• Easy understandable design guidance provided 

• Focus on specific regions 
–  e.g. replacing ‘unhappy’ water molecules with small hydrophobic 

substituent (“magic methyl positioning”) 

• Pharmacophore hotspot feature frequency analysis  
–  for prioritizing replacement/modifications of molecular substructures 

–  providing interaction preference guidance  

–  easily adaptable for automatization for de novo design

T. Langer, 11th ICCS, Noordwijkerhout 2018

• The pharmacophore interaction analysis concept is 
no more limited to static observation but is available 
in a convenient dynamic approach

• The novel pharmacophore-feature based grid 
calculations allow in-depth analysis of protein 
regions for optimized ligand design

➡  Highly useful for lead structure optimization

Conclusions
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Thank you for your attention


