Conformational sampling of macrocycles in solution and in the solid state

Paul Hawkins, Ph.D.

Head of Scientific Solutions

Stanislaw Wlodek, Ph.D.

Senior Scientific Developer

The Iron Triangle

https://berkonomics.com/?p=2437

The Iron Triangle in conformation generation

Sampling macrocycle conformations

- Molecular Dynamics (MD)
 - Pro: Physics-based model, explicit solvent possible
 - Con: Slow, 3D input required, stochastic
- Torsion sampling
 - Pro: Fast (?), could be deterministic
 - Con: Implicit solvent only, 3D input required
- Distance geometry (DG)
 - Pro: Fast, no 3D input
 - Con: Stochastic, implicit solvent only

OMEGA: Macrocycle sampling by DG

Spellmeyer et al., J. Mol. Graph. Model. 15, 18 (1997).

Outline

• Validation against the solid-state

• Breaking the Iron Triangle

• Modelling the solution state

Outline

- Validation against the solid-state
 - Reproducing precise, reliable experimental data

• Breaking the Iron Triangle

• Modelling the solution state

Validating against the solid-state

TRAIN against the CSD. Very reliable conformations.

TEST against the PDB. Biologically relevant structures. VALIDATE against BIRD. Very challenging.

Basic chemical properties

Measuring reproduction performance

Whole molecule RMSD

"Ring only" RMSD

Effect of: # DG attempts Solvent model RMSD Ewindow Max confs kept

"Ring + beta atom" RMSD

Solvent modelling

• Poisson-Boltzmann

Numerical optimisation

$$\nabla[\varepsilon(r)\nabla\phi(r)] - \varepsilon(r)\kappa(r)^2 = q(r)/kT$$

Null model: Coulomb, $\varepsilon = 1$ (vacuum)

• Sheffield
$$E_{IJ}^{\text{pair}} = -\frac{f_{\epsilon}}{4\pi\epsilon_0} \frac{Q_I Q_J}{\sqrt{\sigma_I^{\text{B}} \sigma_J^{\text{B}} e^{-cR_{IJ}^2/\sigma_I^{\text{B}} \sigma_J^{\text{B}}} + R_{IJ}^2}}$$
 Analytical optimisation

Vacuum v. Sheffield v. PB: Good?

Vacuum v. Sheffield v. PB: Fast?

6/6/2018

Vacuum v. Sheffield v. PB: Cheap?

6/6/2018

Sheffield solvation: Fast & cheap & good

$$E_{IJ}^{\text{pair}} = -\frac{f_{\epsilon}}{4\pi\epsilon_0} \frac{Q_I Q_J}{\sqrt{\sigma_I^{\text{B}} \sigma_J^{\text{B}} \mathrm{e}^{-cR_{IJ}^2/\sigma_I^{\text{B}} \sigma_J^{\text{B}}} + R_{IJ}^2}}$$

© 2018 OpenEye Scientific

Parameter selection: A balancing act

Parameters after training:

DG attempts = 2000
Solvent model = Sheffield
 RMSD = 0.5Å
Ewindow = 20 kcal/mol
 # confs kept = 400

Outline

• Validation against the solid-state

• Breaking the Iron Triangle

• Modelling the solution state

Multiple method comparison

Improving Accuracy, Diversity, and Speed with Prime Macrocycle Conformational Sampling

Dan Sindhikara,*^{,‡}[®] Steven A. Spronk,[§] Tyler Day,[‡] Ken Borrelli,[‡] Daniel L. Cheney,[§] and Shana L. Posy[§][®]

208 macrocycles 130 CSD, 60 PDB, 18 BIRD

Sindhikara et al., J. Chem. Inf. Model., 57, 1881 (2017).

Methods compared

Method	Algorithm	Forcefield	Solvent	Requires 3D?
Macromodel	LowMode MD	OPLS05	GB/SA	YES
MD	MD	OPLS 2.1	Explicit	YES
Moe	LowMode MD	AMBER10	SRF	YES
Prime	Torsion sampling	OPLS05	Vacuum	YES
OMEGA	Distance geometry	MMFF94	Sheffield	NO

© 2018 OpenEye Scientific

6/6/2018

MD does not sample near the solid state well

Method 1	Method 2	P < 0.05	Effect size
24ns MD	Macromodel	TRUE	0.33
24ns MD	Moe	FALSE	0.15
24ns MD	OMEGA	TRUE	0.42
24ns MD	Prime	TRUE	0.44
Macromodel	Moe	FALSE	0.16
Macromodel	OMEGA	FALSE	0.06
Macromodel	Prime	FALSE	0.06
Moe	OMEGA	FALSE	0.22
Moe	Prime	FALSE	0.23
OMEGA	Prime	FALSE	0.0

P < 0.05: Is the difference consistent?

Effect size:

Does the difference make a difference?

Intra-molecular H-bonds are difficult

OMEGA is accurate

OMEGA is cheap

6/6/2018

^{© 2018} OpenEye Scientific

OMEGA is fast

© 2018 OpenEye Scientific

6/6/2018

Breaking the Iron Triangle: Summary

- Training and testing on carefully chosen datasets finds broadly transferable parameters
 - CSD <-> PDB -> BIRD (> 450 molecules)

- Comparison to other methods is important
 - OMEGA performs well
 - Informative failure cases found

Outline

• Validation against the solid-state

• Breaking the Iron Triangle

• Modelling the solution state

Structures in solution: NMR

Inter-atomic (proton) distances & J-coupling. HIGHLY under-determined.

An easy case: the 'Lokey peptide'

- H-bonds strongly affect conformation
 - Solid-state conformation easy to reproduce

Ring_beta RMSD: 0.29Å

White et al., Nature Chem. Biol., 7, 801 (2011).

Intra-molecular H-bonds driven by polarity

Stabilised in HIGH polarity solvents

Stabilised in LOW polarity solvents

IMHB propensity increases as solvent polarity decreases.

Modelling the solvent

CHCl₃

19%

12%

Water

11%

8%

109-4 < 2.5Å

59-17 < 2.5Å

Simulation responds QUALITATIVELY correctly to change in solvent dielectric

Torsion analysis: Now

Torsion Analysis Reimagined

To view

Download the add-in.

liveslides.com/download

Start the presentation.

A harder case: Emodepside

• No IMHBs, all amide N's are capped

Ring_beta RMSD: 0.43Å

Conformational hetereogeneity in solution

Scherkenbeck et al., Curr. Topics Med. Chem., 2, 759 (2002).

Testing the energy function in solution

3/10 most stable BUT 60% of Boltzmann ensemble

7/10 most stable BUT 40% of Boltzmann ensemble

© 2018 OpenEye Scientific

cis

Emodepside in low dielectric (CHCl₃)

© 2018 OpenEye Scientific

NMR data: distance & angle restraints

Incorporating NMR restraints: Lokey peptide

Experimental restraints focus sampling.

Lokey peptide in CHCl₃: unrestrained

© 2018 OpenEye Scientific

Lokey peptide in CHCl₃: NMR restraints

Summary

6/6/2018

- OMEGA works well for reproduction of the solid state
- Side-by-side comparisons drive future development
- Modelling the solution state is possible
 More difficult than the solid-state

Acknowledgements

- OpenEye
 - Stan Wlodek, Krisztina Boda, Burt Leland

- Unnatural Products
 - Cameron Pye, Josh Schwochert

- BMS
 - Shana Posy, Steve Spronk