
recent advances in chemical &
biological search systems:
evolution vs. revolution

Roger Sayle, John Mayfield and Noel O’Boyle

NextMove Software, Cambridge, UK

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

evolution vs. revolution

• Databases and computer power continue to grow at
exponential rates.

• A theme in this presentation is the competition
between traditional methods, that scale linearly with
the size of a problem, and sublinear methods that
outperform them.

• At 1M mol/s, searching ChEMBL takes under 2
seconds, searching PubChem takes a minute and a
half, and Enamine 2018 takes over 10 minutes.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Part 1:
smarts substructure search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

substructure searching

• Efficient substructure search has a long history in the
field of cheminformatics.
– R. Sayle, “Efficient Matching of Chemical Subgraphs”, 9th ICCS,

Noordwijkerhout, The Netherlands, 9th June 2011.

– R. Sayle, “Improved SMILES Substructure Searching”, Daylight CIS, European
UGM, EuroMUG 2000, Cambridge, UK.

• The use of a binary fingerprint to pre-screen possible
matches improves performance for typical queries.

• However, this approach does not affect the worst
case and pathological queries require atom-by-atom
matching on a significant fraction of the database.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

sqc substructure benchmarks

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff

smigrep Cpu time breakdown

1.1, 1%

69.8, 59%

11.5, 10%

32.3, 27%

3.3, 3%

File I/O

SMILES Parsing

Ring Perception

Aromaticty

SMARTS Matching

For the SMARTS search “[nH]1ccc2c1cccc2” of the 6,999,753
compounds in eMolecules 140701, the 120s CPU time is spent on:

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Proof-of-concept experiment

• Using a large memory server, load the entire
database into memory, and achieve/measure
SMARTS match only time.

• On the Indole/eMolecules benchmark, this achieved
~6s on a single CPU core (after 128s load time).

• Our C++ molecule footprint required 7.2Gbytes for
eMolecules (and 242 Gbytes for Pubchem).

• Perhaps disappointingly still ~2.5s on 8-16 cores

– Due to iterator allocation contention between threads.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

the “arthor” search engine

• Implement a substructure search engine uses a
compact persistent (pointer-free) binary
representation of molecules and a customized
SMARTS matcher to operate on it (co-design).

• All 107,404 indole derivatives in 6,653,323
eMolecules structures can be found/counted in 2.9s
elapsed time on a single CPU [no FP pre-screen].

• The memory-mapped binary database is about
2Gbytes in size (2,034,444,177 bytes), which
averages at 305 bytes per connection table.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

sqc substructure benchmarks

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff

sqc substructure benchmarks

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff

sqc substructure benchmarks

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff

sqc substructure benchmarks

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.slideshare.net/NextMoveSoftware/substructure-search-faceoff

substructure video

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.youtube.com/watch?v=NmmES_mNF9w

arthor atdb Future work

• Deploy as Oracle/MySQL cartridges, based on the
current PostgreSQL cartridge implementation.

• Add support for recursive SMARTS, MDL link atoms,
advanced stereochemistry.

• Further optimizations in SMARTS matching.

– Just-In-Time compilation to x86_64 instructions.

– More efficient connected components, ring sizes, etc.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Part 2:
tanimoto similarity search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

FP tanimoto calculation

• Chemical similarity is traditionally calculated as the
Tanimoto coefficient between two binary vectors.

• CUDA code from Olexandr Isayev, UNC

__device__

double similarity(long long *query, long long *target, int data_len) {

int a = 0, b = 0, c = 0, i;

for (i = 0; i < data_len; i++) {

a += __popcll(query[i]);

b += __popcll(target[i]);

c += __popcll(query[i] & target[i]);

}

return (double) c / (a + b – c);

}

https://www.slideshare.net/olexandr1/gpuaccelerated-virtual-screening

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

choice of fingerprints

• One of the most significant improvements and
differences since Daylight’s era has been the
development of circular fingerprints, ECFP4.

• ECFP4 fingerprints perform better on bioactivity
benchmarks that path-based fingerprints.

• Alas ECFP4 have different density characteristics to
“traditional fingerprints” making a number of classic
optimization methods (Baldi bounds) less effective.

• In this work, we consider 1K (and 256 bit) ECFP4 FPs.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #1: hardware popcount

• Perhaps the best known approach to achieving high-
performance Tanimoto search is use of AMD/Intel’s
32-bit and 64-bit popcount instructions.

• These are provided by the __builtin_popcount and
__builtin_popcountll builtins in the GNU compilers.

• Historically, there has been a technical interest in
using SSE2 and SSE3 instruction sequences, but the
widespread availability of hardware popcount makes
such approaches unnecessary.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #2: sort fps by popcount

• A technique employed by high-performance FP
search systems is to sort FPs by their popcount.

• This is traditionally done to enable “Baldi bounds”
pruning to achieve “sub-linear” searching.

• The same approach is used by Arthor, but purely as a
data storage strategy, allowing the “popcount” for
each FP in the database to stored implicitly.

• Arthor can work with unsorted FP files, but search
performance is typically several fold slower.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #3: reciprocal multiplication

• Traditionally, calculating a Tanimoto co-efficient
requires a (double-precision) floating point division.

• Arthor replaces this with an integer multiplication by
using a table of reciprocals.

• Before
return (double) c / (a + b – c);

• After
return c * recip_table[c];

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #4: the sorting bottleneck

• Analysis of current FP search systems reveals that
typically sorting, not searching, is the bottleneck.

• The search phase is O(N), but sorting the results is
typically O(N.logN) for non-trivial numbers of hits.

• ChemSpace hit lists are 200 to 2000 compounds.

• Arthor uses an efficient O(N) two-pass counting sort.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5: just-in-time compilation

• A powerful optimization based on Just-in-Time
compilation techniques is called code specialization.

• Using this technique, searches can take advantage of
properties of a chemical similarity query that are not
known ahead of time.

• The search engine acts a compiler generating the
machine code required to perform the database
search and then executes it.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5a: skip empty words

• The biggest win of specialization is from zero words.
c = __popcll(target[0]&query[0]) + __popcll(target[1]&query[1])

+ __popcll(target[2]&query[2]) + __popcll(target[3]&query[3])

+ __popcll(target[4]&query[4]) + __popcll(target[5]&query[5])

+ __popcll(target[6]&query[6]) + __popcll(target[7]&query[7])

+ __popcll(target[8]&query[8]) + __popcll(target[9]&query[9])

+ __popcll(target[10]&query[10]) + __popcll(target[11]&query[11])

+ __popcll(target[12]&query[12]) + __popcll(target[13]&query[13])

+ __popcll(target[14]&query[14]) + __popcll(target[15]&query[15]);

• Benzene only has two non-zero query words
c = __popcll(target[0]&query[0]) + __popcll(target[15]&query[15]);

c = __popcll(target[0] & 272) + __popcll(target[15] & 1024);

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5b: words with a single bit

• Although hardware popcount is very fast (3 cycles on
x86_64), it is sometimes possible to do better.

• When P is a constant containing a single bit, i.e. P=(1<<C),

popcount(x & P) = (x>>C)&1

This replaces a popcount with a right shift.

Additionally C and 1 are smaller constants than P.

c = __popcll(target[0] & 272) + __popcll(target[15] & 1024);

c = __popcll(target[0] & 272) + ((target[15]>>10)&1);

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5C: coalesce memory reads

• Fingerprint data is usually read from memory as
aligned 64-bit “unsigned long longs”.

• When only the top or bottom 32-bits are required,
these can be read/processed as “unsigned int”.

• On some architectures, consecutive 32-bit words can
also be processed as “unaligned” 64-bit data.

• Deciding the set of memory reads and size of each
can be optimized via (Viterbi) dynamic programming.

• On GPUs, interleaving of fingerprints is faster still.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5D: popcount combining

• This transformation allows us to reduce the total
number of popcounts we need to perform.

• popcount(x & P) + popcount(y & Q) = popcount((x&P)+(y&Q))
– when (P & Q) = 0

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Trick #5E: graph coloring

0: 4000400000101110
1: 0002000000082000
2: 0000000001000000
3: 0010001010046000
4: 0000000000001000
5: 9000002001000080
6: 1000000810000940
7: 0000000004800900
8: 0000100400000008
9: 0040804000040400
10: 0000000010000000
11: 0020000000240020
12: 00000000500a0000
13: 0000800400080002
14: 0000000001002004

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Trick #5E: graph coloring

• CUDA code for similarity to Aripiprazole
c = __popcll((target[0] & 0x4000400000101110) +

(target[3] & 0x0010001010046000) +

(target[5] & 0x9000002001000080) +

(target[13]& 0x0000800400080002))

+ __popcll((target[1] & 0x0002000000082000) +

(target[6] & 0x1000000810000940) +

(target[8] & 0x0000100400000008) +

(target[9] & 0x0040804000040400))

+ __popcll((target[7] & 0x0000000004800900) +

(target[11]& 0x0020000000240020) +

(target[12]& 0x00000000500a0000) +

(target[14]& 0x0000000001002004))

+ ((target[2]>>24)&1)

+ ((target[4]>>12)&1)

+ ((target[10]>>28)&1);

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

trick #5E: graph coloring results

• Graph coloring attempts to combine optimally.
Before: After:

1 Plan has 1 popcount 1 Plan has 1 popcount

12 Plan has 2 popcounts 55 Plan has 2 popcounts

55 Plan has 3 popcounts 363 Plan has 3 popcounts

154 Plan has 4 popcounts 399 Plan has 4 popcounts

231 Plan has 5 popcounts 104 Plan has 5 popcounts

205 Plan has 6 popcounts 28 Plan has 6 popcounts

161 Plan has 7 popcounts 3 Plan has 7 popcounts

73 Plan has 8 popcounts

41 Plan has 9 popcounts

16 Plan has 10 popcounts

2 Plan has 11 popcounts

2 Plan has 12 popcounts

Total: 5477 popcounts Total: 3505 popcounts

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

influence of atfp optimizations

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Implementation 1 thread
M mol/s

4 threads
M mol/s

6 threads
M mol/s

CPU Traditional (transpose) 72 157 158

CPU Traditional 75 178 192

CPU Implicit Popcount 97 191 200

CPU Implicit Popcount (transpose) 100 154 175

CPU JIT Compilation 121 191 197

CPU JIT Compilation (transpose) 133 173 180

GPU JIT 203

GPU Traditional 221

GPU JIT (transpose) 230

GPU Traditional (transpose) 267

953 queries over ChEMBL23 database on my Dell Laptop

comparison to previous work

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Split bars indicate single thread vs. 16 threads for CPU.

Fp similarity video

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.youtube.com/watch?v=NmmES_mNF9w

arthor atfp jit backends

• NVidia PTX Assembly Language
ld.global.u64 %rd27, [%rd10+56];

and.b64 %rd28, %rd27, 4947953319952;

popc.b64 %r19, %rd28;

add.s32 %r20, %r18, %r19;

ld.global.u32 %r21, [%rd10+68];

shr.u32 %r22, %r21, 3;

and.b32 %r23, %r22, 1;

add.s32 %r24, %r20, %r23;

• ARM v6 Assembly Language
ldrd r0, [fp]

lsl r0, r0, #11

lsr r7, r0, #31

lsl r0, r0, #8

add r7, r7, r0, lsr #31

lsl r0, r0, #4

add r7, r7, r0, lsr #31

lsl r1, r1, #1

add r7, r7, r1, lsr #31

lsl r1, r1, #16

add r7, r7, r1, lsr #31

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

arthor atfp future work

• Support for multiple GPU cards [federated search].

• Direct generation of NVidia SASL via cubin binaries
for Volta, Pascal, Maxwell and Kepler architectures.

• Improved statistical significance scoring & Tversky.

• Optimizations incorporated in the GNU compilers:

2018-05-24 Roger Sayle <roger@nextmovesoftware.com>

* fold-const.c (tree_nonzero_bits): New function.

* fold-const.h (tree_nonzero_bits): Likewise.

* match.pd (POPCOUNT): New patterns to fold BUILTIN_POPCOUNT and

friends. POPCOUNT(x&1) => x&1, POPCOUNT(x)==0 => x==0, etc.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Part 3:
protein sequence search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

protein sequence naming

• In cheminformatics, InChI and canonical SMILES can
be used to semantically link database/tables/graphs.

• Traditionally in bioinformatics, accession numbers
(such as SwissProt) have been used for proteins.

• Mature proteins however require derived names.
– PDB 1CRN (crambin) is [L25I]P01542 CRAM_CRAAB

– PDB 4ZAU is Gly-Ala-Met-P00533 (696-1022) EGFR_HUMAN

– PDB 1UA2 is des-(32-43,145)-P50613 (13-311) CDK7_HUMAN

– PDB 5NN9 is [A187D]P03472 (83-470) NRAM_I75A5

– PDB 1HXB is P04585 (489-587) POL_HV1H2

– PDB 1JTE is [Y181C]P04585 (588-1147) POL_HV1H2

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

algorithm: longest common prefix

• Traditionally, longest common subsequence search
uses a linear scaling algorithm (e.g. blast, fasta, FSM).

• Sequence identify and longest common prefix can be
solved by binary search of an alphabetically sorted a
sequence database.

– APPLE

– BANANA

– PEAR

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

algorithm: longest common substring

• Suffix arrays efficiently index every substring:
– A 6@BANANA

– ANA 4@BANANA

– ANANA 2@BANANA

– APPLE 1@APPLE

– AR 3@PEAR

– BANANA 1@BANANA

– E 5@APPLE

– EAR 2@PEAR

– LE 4@APPLE

– NA 5@BANANA

– NANA 3@BANANA

– PEAR 1@PEAR

– PLE 3@APPLE

– PPLE 2@APPLE

– R 4@PEAR

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Part 4:
graph edit distance search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Fighting big data with bigger data

• The same technique used to speed up longest
common subsequence and string edit distance
search in bioinformatics can also be applied to
maximum common substructure and graph edit
distance search in cheminformatics.

• Here we describe the use of a sublinear-scaling
search method over a database that is approximately
constant (perhaps 1K-1M) times larger.

• As data set sizes increase, these approaches make
traditional methods increasingly uncompetitive.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Smallworld chemical space

Graph search (GED) of 68 billion subgraphs vs. 340 million molecules.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Counting molecular subgraphs

Name Atoms MW Subgraphs

Benzene 6 78 7

Cubane 8 104 64

Ferrocene 11 186 3,154

Aspirin 13 180 127

Dodecahedrane 20 260 440,473

Ranitidine 21 314 436

Clopidrogel 21 322 10,071

Morphine 21 285 176,541

Amlodipine 28 409 58,139

Lisinopril 29 405 24,619

Gefitinib 31 447 190,901

Atorvastatin 41 559 3,638,523

≤ Bond Count %PubChem

≤ 20 bonds 14%

≤ 25 bonds 30%

≤ 30 bonds 55%

≤ 35 bonds 77%

≤ 40 bonds 89%

≤ 45 bonds 93%

≤ 50 bonds 95%

≤ 55 bonds 97%

≤ 60 bonds 98%

≤ 65 bonds 98%

≤ 70 bonds 99%

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Smallworld chemical space

Graph search (GED) of 68 billion subgraphs vs. 340 million molecules.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

graph Edit distance

• Graph Edit Distance (GED) is the minimum number of
edit operations required to transform one graph into
another.

– Alberto Sanfeliu and K.S. Fu, “A Distance Measure between
Attributed Relational Graphs for Pattern Recognition”, IEEE
Transactions of Systems, Man and Cybernetics (SMC), Vol.
13, No. 3, pp. 353-362, 1983.

– https://en.wikipedia.org/wiki/Graph_edit_distance

• Edit operations consist of insertions, deletions and
substitutions of nodes and edges (atoms and bonds).

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

topological edit/edge types

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

tup: add a terminal bond
tdn: remove a terminal bond
rup: form a ring bond
rdn: break a ring bond
lup: insert a (degree 2) linker node
ldn: remove a (degree 2) linker node

smallworld search

SmallWorld lattice: Bold circles denote indexed molecules,
thin circles represent virtual subgraphs.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

The solid circle denotes a query structure which may be
either an indexed molecule or a virtual subgraph.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

The first iteration of the search adds the neigbors of the
query to the “search wavefront”.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

Each subsequent iteration propagates the wavefront by
considering the unvisited neighbors of the wavefront.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

At each iteration, “hits” are reported as the set of indexed
molecules that are members of the wavefront.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

The search terminates once sufficient indexed neighbors
have been found (or a suitable iteration limit is reached).

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

smallworld search

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

SMALLWORLD

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

https://www.youtube.com/watch?v=hZ4QyQSeSWg

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Example edit operations

Ticlodipine Clopidogrel

Penicillin G Amoxicillin

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Example edit operations

Sildenafil (Viagra) Vardenafil (Levitra)

Sumatriptan (Imitrex) Zolmitriptan (Zomig)

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Current database statistics

• As of October 2017, the SmallWorld index has

• 68,921,678,269 nodes (~69B or ~236 nodes)

• 258,787,077,793 edges (~259B or ~238 edges)

– 128,762,041,180 ring edges.

– 95,709,763,280 terminal edges

– 34,315,273,333 linker edges.

• Average degree (fan-out) of node: ~7.5

• 8.22B acyclic nodes, 7.12B have a single ring.

• Runtime index requires 5TB of disk space.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Classic Ex ScienTia example

MAJ

2×LUP

LDN

2×TUP

MAJ

LUP

Total Distance: 8 Total Topological Distance: 6
Besnard, Hopkins et al. Nature, 492:215-220, Dec 2012

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Classic Ex ScienTia example

MAJ

2×LUP

LDN

2×TUP

MAJ

LUP

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

0.384
0.412

0.451
0.482

0.620 0.957

1.00

0.533

0.659

0.776

0.859

summary

• Algorithmic improvements and Moore’s law
advances in hardware should allow traditional
cheminformatics and bioinformatics search
techniques to be applied for the time being,
but ultimately next generation approaches will
be required to handle multi-billion compound
databases.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

acknowledgements

• Andrew Dalke, Dalke Scientific Software.

• Yurii Moroz, Enamine and ChemSpace.

• Evan Bolton, PubChem Group, NCBI.

• Pat Walters, Relay Therapeutics.

• Andrew Grant, AstraZeneca.

• Darren Green, GSK.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

advantages over fingerprints

• FP similarity based on “local” substructures.

• FP saturation of features/Chemical Space.
– Many peptides/proteins/nucleic acids have identical FPs.

– For alkanes, C16 should be more similar to C18 than C20.

– Identical FPs in Chemistry Toolkit Rosetta benchmark.

– PubChem “similar compounds” uses 90% threshold.

• FPs make no distinction atom type changes.
– Chlorine to Bromine more conservative than HBD to HBA.

– Tautomers/protonation states often have low similarity.

– FPs are more sensitive to Normalization/Standardization.

• Stereochemistry is poorly handled by FPs.
– Either not represented or isomers have low similarity.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

Graph database fabrication

• The “raw” source representation of SmallWorld is
28.7 TB of data, one ASCII line (of two SMILES) for
each edge, i.e. 259 billion text lines.

• Hypothetically, these 259B triples could be loaded
into a database such as Oracle, Virtuoso or Neo4j.

• Instead, we “compile” this graph database down to a
5TB form that is very efficiently searched at run-time.

• This 5TB can be delivered to customers on a £150
external USB disk (like a subscription service).

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

database partitioning

• Instead of treating the database as a single
monolithic entity, the nodes are partitioned by their
atom, bond and ring counts.

• This results in 2406 partitions, named BxRy where x is
the number of bonds, y is the number of rings.

• Each edge links vertices in neighboring partitions.

– A tdn edge from BxRy leads to Bx-1Ry, tup to Bx+1Ry.

– A rdn edge from BxRy leads to Bx-1Ry-1, rup to Bx+1Ry+1.

– A ldn edge from BxRy leads to Bx-1Ry, lup to Bx+1Ry.

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

SmallWorld Density heatmaps

11th ICCS, Noordwijkerhout, The Netherlands, Wednesday 30th May 2018

