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OpenEye has built a solid reputation as a scientific leader in the 
field of molecular design based on two decades of delivering 
useful applications and programming toolkits. Our scientific 
approach has focussed on the power of molecular 3D structure 
to inform and guide, in particular via the concept of shape 
similarity. We have changed industry perception of what is 

possible with the speed, robustness and scalability of our tools 
and have recently built these into a ground-up, cloud-native 
platform, Orion. Combining unlimited computation and storage 
with powerful tools for data sharing, visualization and analysis 
in an open development platform, Orion offers unprecedented 
capabilities for drug discovery and optimization.

Attend our Pre-Conference Workshop on Sunday, May 27th 2018 from 15:00-17:00 

“Orion - CADD on the Cloud” 

•  Orion is OpenEye’s reimagining of all the elements of CADD conducted  
entirely within a cloud service, in our case Amazon Web Services (AWS),  
delivered as either a hosted system or an in-house VPC solution 

•  As a ‘cloud native’ platform Orion completely automates and manages access 
to large scale AWS processing and storage 

•  In-cloud facilities include molecular design, 3D visualization, data analysis, 
results/method sharing and project organization 

•  All of OpenEye science is included, enabling users to construct innovative 
workflows with Floe, our pipelining tool 

•  As an open platform Orion allows for straightforward integration of third- 
party code (customer, academic, vendor) 

•  Interaction with Orion is via a simple webpage, deliverable on any internet- 
enabled device 

Compute   
Analyse  
Discuss   
Develop 
 

To learn more about OpenEye and Orion, please stop by our booth, or visit us at: www.eyesopen.com

Cloud Native Drug Discovery

COMPUTE ANALYSE DISCUSS DEVELOP

BROWSER

Interact with Orion via web browser on any  
internet-enabled device. 
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Preface 

 
Welcome to the 11th International Conference on Chemical Structures (ICCS). The organizers decided to deviate 

from the triennial ICCS schedule by one year, the event, as a result, being organized in 2018. The conference builds 

on a long and successful history, which started with a NATO Advanced Study Workshop in 19731 and with the 

previous edition being jointly organized with the German Conference on Cheminformatics. The ICCS meeting is 

among the most important events in this area of science and gives an accurate picture of the state-of-the-art in the 

computer handling and manipulation of chemical structures.  

We have received 145 abstract submissions from over 24 different countries from 4 continents. All submissions were 

subject to a review process carried out by a Scientific Advisory Board of 20 international reviewers from academia 

and industry. This allowed us to compile an outstanding scientific program of 34 plenary and 78 poster 

presentations. Additionally, the conference hosts an exhibition which allows a sizable number of scientific 

institutions and vendors to present their latest applications, content and software. And most importantly, sufficient 

time is provided for scientific exchange and discussion among the attending scientist, both at the conference and also 

during the sailing excursion across the IJsselmeer to visit the Bataviawerf with a reconstruction of the Batavia, a 

17th-century VOC ship, on Wednesday afternoon. 

Once again, the conference was chosen as the venue to present the triennial CSA Trust Mike Lynch Award. This 

year, it is granted to Dr. Rudy Potenzone2 in recognition of his outstanding accomplishments in the field of 

cheminformatics. Rudy Potenzone will open the conference by receiving the award and delivering the keynote 

address titled From Teletype Structure Input to Biology and Chemistry Intelligent Knowledge Graphs: My 45 Years 

in Cheminformatics on Sunday evening. 

On Thursday, furthermore, we dedicate the cheminformatics session to Prof. Dr. Peter Willett, because of his 

important contribution to the ICCS and to the field of cheminformatics in general. 

After the conference, you are encouraged to submit your presentation or poster for publication in a special ICCS 

article collection of the Journal of Cheminformatics, guest edited by Gerard van Westen and Markus Wagener. 

Papers can be submitted at any date up to the 1st of October 2018, and authors should mention in their cover letter 

that the manuscript is intended to be included in the ICCS 2018 article collection. Of course, all manuscripts will be 

subject to a peer review following the journal’s guidelines. 

This book of abstracts is intended to inform you about the scientific program of the conference and to help you to 

plan your attendance. Moreover, we also hope that the abstracts in this volume will serve you as a reminder of the 

presentations and posters as well as provide a snapshot of the current research in the area of cheminformatics and 

molecular modeling in 2018. Note that in the online program ORCID identifiers are provided where available, 

allowing you to learn more about past research by presenters. The ORCID identifiers are also used to create an 

online webapp.3 

At this point, we would also like to thank the many sponsors for their financial support, which helped us to provide 

bursaries to a considerable number of PhD-student attendants. 

 

We hope that you enjoy the conference! 

 

Markus Wagener (ICCS Chair), Frank Oellien (ICCS Co-Chair), Chris de Graaf, Lars Ridder, Egon Willighagen, 

and Gerard van Westen 

 

 

1. https://tools.wmflabs.org/scholia/event-series/Q47501052 for an overview of all ICCS meetings. 
2. https://tools.wmflabs.org/scholia/author/Q51614233 

3. https://tools.wmflabs.org/scholia/event/Q47501229  

https://tools.wmflabs.org/scholia/event-series/Q47501052
https://tools.wmflabs.org/scholia/author/Q51614233
https://tools.wmflabs.org/scholia/event/Q47501229
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https://www.eyesopen.com/
http://www.chemcomp.com/
https://www.collaborativedrug.com/
http://www.abbvie.com/
https://www.bayer.com/
https://www.cas.org/
https://www.dotmatics.com/
https://www.discngine.com/
https://www.knime.com/
https://www.schrodinger.com/
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Silver Sponsors 

 
NextMove Software 

 
 

Conference Bag Sponsors 
 

 
inte:ligand 

 
 

Notepad Sponsors 

 
 

Schrödinger 

 
 

KNIME 
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ChemMedChem 

 

Other Sponsors 
 

We would like to thank the Royal Netherlands Chemical Society (KNCV) for supporting the 
conference at the front desk. We would like to thank CCL.NET and Jan Labanowski for adding 
the conference to the CCL Conferences webpage. We would also like to thank the Center of 
Bioinformatics of the University of Hamburg for hosting the conference webpage. 

https://www.nextmovesoftware.com/
http://www.inteligand.com/
https://www.schrodinger.com/
https://www.knime.com/
https://onlinelibrary.wiley.com/journal/18607187
http://ccl.net/
http://www.zbh.uni-hamburg.de/en/home.html
http://www.zbh.uni-hamburg.de/en/home.html
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Exhibition 

 
Exhibition Layout 

 
 

Exhibitor Booth Exhibitor Booth 
Acellera B1 Cresset B10 
Discngine B2 CCDC B11 
SilcsBio B3 inte:ligand B12 
Schrödinger B4 NextMove Software B13 
Collaborative Drug Design B5 Dotmatics B14 
Chemical Abstract Service B6 Xemistry B15 
Certara B7 Chemical Computing Group B16 
Knime B8 OpenEye B17 
Culgi B9   

 

Exhibition Hours 
• Monday, May 28th, 2018, 14:30 – 19:30  

• Tuesday, May 29th, 2018, 14:30 – 19:30  
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http://www.chemcomp.com/
https://www.eyesopen.com/
http://www.xemistry.com/
https://www.dotmatics.com/
https://www.nextmovesoftware.com/
https://www.collaborativedrug.com/
https://www.knime.com/
http://www.inteligand.com/
https://www.schrodinger.com/
http://www..cresset-group.com/
https://www.cas.org/
https://www.certara.com/
https://www.ccdc.cam.ac.uk/
http://silcsbio.com/
https://www.discngine.com/
https://www.acellera.com/
https://www.culgi.com/
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Workshops Sunday, May 27th 

 

Chemical Computing Group Workshop: Application of Matched Molecular Pairs to 
Interactive SAR Exploration 

Sunday May 27th 2018, 15:00-17:00, NH Conference Hotel Noordwijkerhout, Room: Boston 13 

Managing and analyzing structure activity/property relationship data in medicinal chemistry projects is becoming 

ever more challenging, with larger data sets and parallel development of different structural series. Tools and 

methods for the efficient visualization, analysis and profiling of structures therefore remain of deep interest. 

The workshop will start with a presentation about the use of interactive MMP analysis and R-group profiling to 

enhance typical medicinal chemistry workflows by interrogating the SAR data, thereby guiding a medicinal 

chemistry campaign in its development. 

The presentation will be followed by working through some real examples of the use of the new MOEsaic 

application, and some complementary capabilities in the MOE (Molecular Operating Environment) software system; 

R-Group Profiles and Analysis / MOEsaic / MMP Analysis / Template-Forced Docking / Scaffold 

Replacement / MedChem Transformations 

Trial copies of MOE can be provided; see www.chemcomp.com/Product-Free_Trial.htm 

 

OpenEye Workshop: Orion - CADD on the Cloud 

Sunday May 27th 2018, 15:00-17:00, NH Conference Hotel Noordwijkerhout, Room: Boston 15 

The cloud will increasingly become the destination for a wide variety of tasks, in computational chemistry and 

elsewhere. In this workshop we will introduce Orion, OpenEye’s new cloud-native CADD platform. By seamlessly 

integrating almost limitless computing capacity with well validated workflows and powerful analysis tools Orion 

substantially increases the scale of problems that can be addressed and makes finding solutions to those problems 

easy for anyone. 

In this workshop we will use Orion to address a frequent problem in medicinal chemistry – using protein structural 

knowledge to find new lead compounds from a large number of molecules and understanding how these active 

compounds interact with the protein binding site. To solve this problem effectively we will use a variety of 

approaches; docking at various levels of accuracy, re-scoring and pose refinement using higher levels of theory. This 

workflow will proceed from a pool of millions of molecules to produce a few 10’s of high probability candidates for 

experimental validation. 

The ability to set up and monitor a large-scale calculation on the cloud, analyse its results, share that analysis and 

make decisions based on it, all through the same interface, a standard web browser, is extremely powerful. We will 

illustrate all these capabilities in the course of the workshop. 

  

http://www.chemcomp.com/Product-Free_Trial.htm
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Workshops Thursday, May 31st 

 

Schrödinger Workshop: Maximizing the impact of Computational Modelling on Drug 
Design 

Thursday May 31st 2018, 14:00-16:00, NH Conference Hotel Noordwijkerhout, Room: Boston 13 

LiveDesign is a novel platform delivering cheminformatics and expert computational models side by side in a highly 

collaborative and intuitive web-based tool. By presenting experimental data alongside predictive data and models, a 

broad range of scientists can drive new ideas by asking the key questions and easily exploring chemical space. 

In this workshop we will introduce LiveDesign in the context of real-world medicinal chemistry workflows. This 

will range from rapid querying of the existing SAR, through to graphical exploration of experimental and predictive 

data to aid profiling and prioritization of new ideas. Embedded 3D docking and pharmacophore model visualization 

is a key component of the LiveDesign platform and we will show how to make the most of this information. We will 

also show how the administration interface allows modelers to publish validated Glide1 docking models, for use in a 

selectivity study of COX1 and COX22. Finally we will show how new ideas can easily be pushed and pulled into 

Maestro for deeper analysis with more complex computational methods, for a truly cyclic workflow. 

1. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren,T. A.; Sanschagrin, 

P. C.; Mainz, D. T., "Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic 

Enclosure for Protein-Ligand Complexes" J. Med. Chem., 2006, 49, 6177–6196 

2. Plount-Price, M. L.; Jorgensen W. L., “Analysis of Binding Affinities for Celecoxib Analogues with COX-

1 and COX-2 from Combined Docking and Monte Carlo Simulations and Insight into the COX-2/COX-1 

Selectivity” J. Am. Chem. Soc., 2000, 122 (39), pp 9455–9466 

 

Joint Xemistry & KNIME Workshop: Chemistry Data Workflows – Leveraging 
Explorative Native KNIME Technology and Xemistry Custom Nodes 

Thursday May 31st 2018, 14:00-16:00, NH Conference Hotel Noordwijkerhout, Room: Boston 15 

The KNIME software has quickly become a prime player in the chemistry data processing arena. Additional 

chemistry capabilities are continuously added – as built-in support features, packaged standard nodes, and third-

party vendor offerings. 

Xemistry and KNIME will present a joint workshop highlighting new chemistry-related developments in and around 

the KNIME software. 

In the first part, Daria Goldmann of KNIME will explain and demonstrate new core chemistry features and 

interactive analysis and exploration capabilities which support the implementation of reproducible KNIME 

workflows for chemistry data. 

In the second part, Wolf Ihlenfeldt of Xemistry introduces the CACTVS KNIME node builder environment – for 

those occasions where you need a custom chemistry data processing node which is not available as a turnkey 

solution, and you really do not want to dig into the intricacies of native KNIME Java development. 
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Excursion: Sailing Cruise on the IJsselmeer (Lake IJsel) and visit to 
Batavia Yard 

 
Schedule 
 

13:00 Busses depart from the conference center, Noordwijkerhout 

14:00 Arrive at the harbor of Volendam, board the sailing boats Willem Barentsz and 
Abel Tasman 

16:30 Arrive at Batavia Yard (Lelystad) and join the guided tour 

18:00 Return to the ships, dinner will be served on board 

22:00 Disembark at Volendam, return to Noordwijkerhout by bus  

23:00 Arrive at the conference center 

 
 
 
Batavia Yard 
 
The destination of the sailing cruise is the Batavia Yard. As described at their website: 

“Batavia Yard is a shipyard with extraordinary ambitions, reconstructing ships from the Golden Age that 

were important to the Netherlands' maritime history. This heritage was demolished at the time because of 

its limited lifespan, or has sunk to the bottom of the sea. In April 1995, the Batavia, which is the most 

authentic reconstruction of a 17th-century VOC ship ever made, was launched after ten years in the 

making. The initiator was master shipbuilder Willem Vos. After this reconstruction was complete, a 

second project was started in the yard to reconstruct ‘De 7 Provinciën', a 17th-century battleship with 

which Michiel de Ruyter fought many sea battles.” 

http://www.bataviawerf.nl/who-are-we.html 

 

http://www.bataviawerf.nl/who-are-we.html
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Sunday, May 27 
 

12:00 - 18:00 
Registration 
Atrium Lounge 

15:00 - 17:00 Pre-conference workshops 

 

Application of Matched Molecular Pairs to Interactive SAR Exploration 
Workshop Chemical Computing Group 
Boston 13 

 

Orion - CADD on the Cloud 
Workshop OpenEye 
Boston 15 

17:00 - 18:00 Free Time 

18:00 - 18:15 
Welcome 
Rotonde 

18:15 - 19:00 

Keynote Address - CSA Trust Mike Lynch Award 
From Teletype Structure Input to Biology and Chemistry Intelligent Knowledge 
Graphs: My 45 Years in Cheminformatics 
Awardee Dr. Rudy Potenzone 

19:00 - 20:00 
Welcome Reception 
Atrium 

20:00 - 22:00 
Reception Dinner 
Atrium 
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Monday, May 28 
 

8:30 - 10:00 
Session A - Integration of Chemical Information 
Herman van Vlijmen, Presiding 
Rotonde 

8:30 - 9:00 
A-1: Synthetically Accessible Virtual Inventory (SAVI) – Reaction Generation and 
Handling at the One-Billion Compounds Scale 
Hitesh Jayantilal Patel, National Cancer Institute, United States 

9:00 - 9:30 
A-2: Fast Molecular Searching Tools and Their Extension at GSK 
Peter Pogany, Glaxo Smith Kline, United Kingdom 

9:30 - 10:00 
A-3: Analysis of the ToxCast & Tox21 Compound Set Using Regulator-derived GHS 
Toxicity Annotations and in silico-derived Protein-target Descriptors 
Chad Henry George Allen, University of Cambridge, United Kingdom 

10:00 - 10:30 
Coffee Break  
Atrium 

10:30 - 14:30 
Session B - Structure-Activity and Structure-Property Prediction  
Andreas Bender, Presiding 
Rotonde 

10:30 - 11:00 

B-1: How Do You Build and Validate 1500 Models and What Can You Learn from 
Them? An Automated and Reproducible System for Building Predictive Models for 
Bioassay Data 
Greg Landrum, KNIME AG, Switzerland 

11:00 - 11:30 
B-2: Machine Learning of Partial Charges From QM Calculations and the Application 
in Fixed-Charge Force Fields and Cheminformatics 
Sereina Riniker, ETH Zurich, Switzerland 

11:30 - 12:00 
B-3: Artificial Intelligence for Predicting Molecular Electrostatic Potentials (ESPs): A 
Step Towards Developing ESP-guided Knowledge-based Scoring Functions 
Prakash Chandra Rathi, Astex Pharmaceuticals, United Kingdom 

12:00 - 13:00 
Lunch  
Atrium 

13:00 - 13:30 
B-4: Next-Generation MD-QSAR Models of Dynamic Kinase-Inhibitor Interactions 
Based on Machine Learning and Molecular Dynamics 
Denis Fourches, North Carolina State University, United States 

13:30 - 14:00 
B-5: Automated Selectivity Inversion of Kinase Inhibitors 
Simone Fulle, Novo Nordisk, Denmark 

14:00 - 14:30 
B-6: Multivariate Regression with Left-censored Data – Efficient Use of Incompletely 
Measured Bioactivity Data for Predictive Modelling 
Knut Baumann, TU Braunschweig, Germany 

14:30 - 15:00 
Coffee Break  
Atrium 

15:00 - 19:30 
Poster Session & Exhibition  
Atrium 

15:00 - 17:00 
Poster Presentations Red  
Egon Willighagen, Presiding 
Atrium 

18:30 - 19:30 
Reception  
Atrium 

19:30 - 21:30 
Dinner  
Atrium 
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Tuesday, May 29 
 

08:30 - 14:30 
Session C - Structure-Based Drug Design and Virtual Screening  
Esther Kellenberger and Matthias Rarey, Presiding 
Rotonde 

08:30 - 09:00 
C-1: In The Need of Bias Control: Evaluation of Chemical Data for Machine Learning 
Methods in Structure-Based Virtual Screening 
Jochen Sieg, University Hamburg, Germany 

09:00 - 09:30 
C-2: An Exhaustive Assessment of Computer-Based Drug Discovery Methods by High-
Throughput Screening Data 
Oliver Koch, TU Dortmund, Germany 

09:30 - 10:00 
C-3: Lessons Learned in Benchmarking Virtual Screening for Polypharmacology 
E.B. Lenselink, LACDR/Leiden University, Netherlands 

10:00 - 10:30 
Coffee Break  
Atrium 

10:30 - 11:00 
C-4: Assisting Site-directed Mutagenesis in silico to Optimize Ligand-Binding 
Hugo Gutierrez de Teran, Uppsala University, Sweden 

11:00 - 11:30 
C-5: Structural Analysis of Chemokine Receptor-Ligand Interactions for 
Computational Modelling Integration in Drug Design 
Marta Arimont, Vrije Universiteit Amsterdam, Netherlands 

11:30 - 12:00 

C-6: Generation of Structure-based Pharmacophore Models in Protein Binding Sites 
Obtained from Molecular Dynamics Simulations: Application to Understanding Kd of 
Hsp90 Ligands 
Thierry Langer, University of Vienna, Austria 

12:00 GROUP PHOTO 

12:00 - 13:00 
Lunch  
Atrium 

13:00 - 13:30 
C-7: How Significant are Unusual Intermolecular Interactions? 
Bernd Kuhn, F. Hoffmann-La Roche, Switzerland 

13:30 - 14:00 
C-8: Interaction Pattern Analysis – What are we Missing? 
Alexandra Nass, FU Berlin, Germany 

14:00 - 14:30 
C-9: Hydrogen Bonds as Determinants of Structural Stability 
Maciej Majewski, University of Barcelona, Poland 

14:30 - 15:00 
Coffee Break  
Atrium 

15:00 - 19:30 
Poster Session & Exhibition  
Atrium 

15:00 - 17:00 
Poster Presentations Blue  
Lars Ridder, Presiding 
Atrium 

18:30 - 19:30 
Reception  
Atrium 

19:30 - 21:30 
Conference Dinner  
Atrium 
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Wednesday, May 30 
 

08:30 - 10:30 
Structure-Based Drug Design and Virtual Screening II  
Matthias Rarey, Presiding 
Rotonde 

08:30 - 09:00 
C-10: Selectivity Determining Features in Proteins with Conserved Binding Sites - A 
Case Study Using N-myristoyltransferase as Model System 
Ruth Brenk, University of Bergen, Norway 

09:00 - 09:30 
C-11: Active Search for Computer-Aided Drug Design 
Steven Andrew Oatley, University of Nottingham, United Kingdom 

09:30 - 10:00 
C-12: Conformational sampling of macrocycles in both the solid- and solution-states 
Paul Hawkins, OpenEye Scientific, United States 

10:00 - 10:30 
C-13: Automated Fragment Evolution (FrEvolAted) Applied to Fragments Bound to 
NUDT21 
Moira Michelle Rachman, University of Barcelona, Spain 

10:30 - 11:00 
Coffee Break 
Atrium Lounge 

11:00 - 13:00 
Session D - Analysis of Large Chemical Datasets  
Peter Ertl, Presiding 
Rotonde 

11:00 - 11:30 
D-1: Hit Dexter 2.0: Machine Learning for Triaging Hits from Biochemical Assays 
Johannes Kirchmair, University of Hamburg, Germany 

11:30 - 12:00 
D-2: Recent Advances in Chemical and Biological Search Systems: Evolution vs. 
Revolution 
Roger Sayle, NextMove Software, United Kingdom 

12:00 - 12:30 
D-3: Advancing Automated Synthesis Via Reaction Data Mining and Reuse 
Christos Nicolaou, Eli Lilly and Company, United States 

12:30 - 13:00 
D-4: Revealing Important Molecular Fragments in Drug Discovery Using Time Trend 
Analyses 
Barbara Zdrazil, University of Vienna, Austria 

13:00 Box Lunch 

13:00 - 23:00 
Excursion 
Cruise the IJsselmeer on two traditional sailing boats and visit the Batavia Yard. A 
banquet dinner will be served on the boats on the way back. 
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Thursday, May 31 
 

07:30 - 08:30 Hotel Check-Out 

08:30 - 10:30 
Session E - Dealing with Biological Complexity  
Andrea Volkamer, Presiding 
Rotonde 

08:30 - 09:00 
E-1: Strategies for Assembling an Annotated Library for Phenotypic Screening 
Henriette Willems, University of Cambridge, United Kingdom 

09:00 - 09:30 
E-2: Targeting of the Disease Related Proteome by Small Molecules 
Modest von Korff, Idorsia Pharmaceuticals Ltd., Switzerland 

09:30 - 10:00 
E-3: Gearing Transcriptomics Towards High-Throughput Screening: Compound 
Shortlisting from Gene Expression Using in silico Information 
Natalia Aniceto, University of Cambridge, United Kingdom 

10:00 - 10:30 
E-4: Discrimination of G–protein Coupled Receptors and their Conformational States 
Using Intramolecular Interaction 
Florian Koensgen, University of Strasbourg, France 

10:30 - 11:00 
Coffee Break & Hotel Check-Out  
Atrium Lounge 

11:00 - 13:10 

Cheminformatics 
Dedicated to Peter Willett  
Val Gillet, Presiding 
Rotonde 

11:00 - 11:10 
Some remarks 
Val Gillet 

11:10 - 11:40 
F-1: Comparison and Analysis of Molecular Patterns on the Example of SMARTS 
Robert Schmidt, Universität Hamburg, Germany 

11:40 - 12:10 
F-2: Anisotropic Atom Reactivity Descriptors for the Prediction of Liver Metabolism, 
Ames Toxicity and Hydrogen Bonding 
Andreas Hans Göller, Bayer AG, Germany 

12:10 - 12:40 
F-3: Exploring 3D Molecular Shape Using Spectral Geometry 
Matthew Seddon, University of Sheffield, United Kingdom 

12:40 - 13:10 
F-4: Creating Atom-to-Atom Mapping in Chemical Reaction Using Machine Learning 
Methods 
Timur Madzhidov, Kazan Federal University, Russia 

13:10 - 13:15 Closing Remarks 

13:15 - 14:00 Lunch or Box Lunch 

13:30 Shuttle Busses leave for Shiphol Airport 

14:30 Shuttle Busses leave for Shiphol Airport 

14:00 - 16:00 POST-CONFERENCE WORKSHOPS 

 

Maximizing the Impact of Computational Modelling on Drug Design 
Workshop by Schrödinger 
Boston 13 

 

Chemistry Data Workflows – Leveraging Explorative Native KNIME Technology and 
Xemistry Custom Nodes 
Joint Workshop by Xemistry & KNIME 
Boston 15 

16:30 Shuttle Busses leave for Shiphol Airport 
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Integration of Chemical Information   

Accelerating problem solving and decision making in medicinal chemistry through visualisation 
Paul Hawkins, OpenEye Scientific 

P-01 

Nanomaterial safety data integration with substance data model and federated search 
Nina Jeliazkova, Ideaconsult Ltd. 

P-03 

Can we agree on the structure represented by a SMILES string? A benchmark dataset 
Noel M O'Boyle, NextMove Software 

P-05 

Structure-Activity and Structure-Property Prediction   

Computational Studies of Integrin Inhibitors 
Saleh Saeed Alarfaji, The University of Nottingham 

P-07 

Fast prediction of the specific conductivity of electrolytes from the molecular structure of the 
solvent 
Rémi Bouteloup, CEA 

P-09 

Identification of novel sodium-dependent glucose co-transporter 1 inhibitors using 
proteochemometrics 
Lindsey Burggraaff, Leiden University 

P-11 

Application of 3D-QSAR Methods in Drug Design & Discovery: Two Case Studies 
Giulia Chemi, University of Siena 

P-13 

Applications of in silico approaches to decipher the structure and functions of ADAMTS13: En route 
to novel therapeutics of TTP 
Bogac Ercig, Maastricht University 

P-15 

Confidence estimation of ADME properties using conformal prediction 
Christina Maria Founti, The University of Sheffield 

P-17 

Selectivity profiles in Activity Atlas 
Mark Mackey, Cresset 

P-19 

KnowTox: Risk Assessment by Automated Read-Across and Machine Learning 
Andrea Morger, Charite Berlin 

P-21 

Machine learning to predict the recruitment profile of intracellular binding partners of G protein-
coupled receptors 
Trung Ngoc Nguyen, Freie Universität Berlin 

P-23 

Estimation of electrophilicity for warheads of covalent protease inhibitors 
Szymon Pach, Freie Universität Berlin 

P-25 

A web-based informatics platform for PhysChem/ADME/Tox property predictions 
Andrius Sazonovas, ACD/Labs, Inc. 

P-27 

Development of a novel structure descriptor combining molecular shape and surface properties 
Anke Schultz, Technische Universität Braunschweig 

P-29 
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Classification of corneal permeability of drug-like compounds using data mining and machine 
learning 
Carlos J. V. Simões, BSIM Therapeutics 

P-31 

Coarse-grained approaches for prediction of solubility and membrane permeability of large drugs: 
The Why and the How 
Teun Sweere, Culgi BV and Leiden University 

P-33 

Molecular Dynamics Fingerprints (MDFP): Combining MD and Machine Learning to Predict 
Physicochemical Properties 
Shuzhe Wang, ETHZ 

P-35 

Structure-Based Drug Design and Virtual Screening   

Towards Small Molecule Inhibition of HSP90 Dimerization 
David Bickel, Heinrich Heine University Duesseldorf 

P-37 

Reverse Virtual Screening Procedure for Identifying the Target of an Antiplasmodial Hit Compound 
Simone Brogi, University of Siena 

P-39 

Conformational Sampling and Binding Affinity Prediction of Macrocycles 
Daniel Cappel, Schrödinger GmbH 

P-41 

Using FEP (Free Energy Perturbation) Calculations to estimate relative binding affinities and 
selectivity for GPCR targets 
Francesca Deflorian, Heptares Therapeutics Ltd 

P-43 

Can I Have Seconds? 
Christiane Ehrt, TU Dortmund University 

P-45 

Virtual Screening of CCR5 Inhibitors as Potential Anti- Colorectal Cancer Agents 
Mariam El-Zohairy, Faculty of Pharmacy and Biotechnology at the German University in Cairo 

P-47 

SILCS reproduces experimental binding trends for 31 TrmD ligands 
Olgun Guvench, SilcsBio 

P-49 

Fuzzy ligands for allosteric target detection and lead identification 
Susanne Hermans, Heinrich-Heine University, Düsseldorf 

P-51 

A fast and efficient rescoring method based on binding information of fragment and drug-like 
ligands 
Célien Jacquemard, Université de Strasbourg 

P-53 

Mapping Binding Site Thermodynamics by 3D RISM Theory for Drug Design 
Julia Beatrice Jasper, TU Dortmund 

P-55 

Structure based design of potent and selective ligands for the adenosine receptor family 
Willem Jespers, Uppsala University/Leiden University 

P-57 

Transferable Neural Networks Architecture for Low Data Drug Discovery 
Mun-Hwan Lee, Seoul University 

P-59 

Tetris of HDAC Inhibitor Design 
Jelena Melesina, Martin Luther University Halle-Wittenberg 

P-61 
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Applications of Binding Free Energy Calculations and QSAR Modeling to Design Novel Inhibitors for 
Human Myt1 Kinase 
Abdulkarim Najjar, Martin Luther University of Halle-Wittenberg 

P-63 

Estimation of solvation free energies by continuum methods: How to tackle halogenated species? 
Rafael Nunes, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa 

P-65 

A multi-target approach to neurodegenerative diseases  
Sebastian Oddsson, University of Iceland 

P-67 

A Computational Platform For Fragment Evolution 
Serena Gaetana Piticchio, University of Barcelona 

P-69 

NAOMInext - Reaction-Driven Probing of Protein Binding Sites 
Kai Sommer, University of Hamburg 

P-71 

Effects of MD-MM/GBSA Parameters on the Rank-Ordering of Ligands in Drug Design 
Nikolaus Stiefl, Novartis Institute of Biomedical Research 

P-73 

Can I make this into a macrocycle? Effective methods for fragment growing, joining and 
cyclisation. 
Paolo Tosco, Cresset 

P-75 

Truly Target-Focused Pharmacophore Modeling: A Novel Tool for Mapping Intermolecular Surfaces 
Andrea Volkamer, Charité – Universitätsmedizin Berlin 

P-77 
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Analysis of Large Chemical Data Sets   

Characterization of the Chemical Space of Known and of Readily Purchasable Natural Products 
Ya Chen, University of Hamburg 

P-02 

Effects of missing data on multitask prediction performance 
Antonio de la Vega de Leon, University of Sheffield 

P-04 

Compound enumeration using Reaction Workflows 
Jameed Hussain, Dotmatics 

P-06 

chem2vec : vector embedding of atoms and molecules 
Nina Jeliazkova, Ideaconsult Ltd. 

P-08 

Building and searching large chemistry spaces 
Uta Lessel, Boehringer Ingelheim Pharma GmbH & Co. KG 

P-10 

Learning from Extant Medicinal Chemistry to Accelerate Hit Identification and Optimisation in 
Drug Discovery 
Yi Mok, The Institute of Cancer Research 

P-12 

HTS workup at AZ – state of the art 
Willem Nissink, AstraZeneca 

P-14 

A Comprehensive Evaluation of ACD/LogD on a Pharmaceutical Compound Set 
Andrius Sazonovas, ACD/Labs, Inc. 

P-16 

Halogens in protein-ligand binding mechanism: a structural perspective 
Nicolas Ken Shinada, Discngine 

P-18 

Interoperable and scalable data analysis in metabolomics 
Christoph Steinbeck, Friedrich-Schiller-University 

P-20 

Supporting the assessment of the purging potential mutagenic impurities via analysis of patent 
literature 
Samuel Webb, Lhasa Limited 

P-22 

Dealing with Biological Complexity   

Metabolite Structure Prediction Benefits from Cytochrome P450 Regioselectivity Prediction 
Christina de Bruyn Kops, Universität Hamburg 

P-24 

Small Molecule Binding Site Prediction - Know Your Needs 
Christiane Ehrt, TU Dortmund University 

P-26 

Molecular nature of the increased activity of the Uridine 5’-diphospho-glucuronosyltransferase 
nine-fold mutant 1A5*8 
David Machalz, Freie Universität Berlin 

P-28 

Searching within HELM 
Eva Bültel, quattro research GmbH 

P-30 

HELM-driven Integration of Peptides into Structure-Based Drug Design and Cheminformatics 
Conor Scully, Heptares Therapeutics 

P-32 
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Cheminformatics   

Machine Learning Models of Hydrogen Bond Basicity Based on Anisotropy Atomic Reactivity 
Descriptors 
Christoph Bauer, ETH Zürich 

P-34 

International Chemical Identifier for Reactions (RInChI) 
Gerd Blanke, StructurePendium Technologies GmbH 

P-36 

Characterizing Somatic Cancer Mutations in GPCRs 
Brandon Jeremy Bongers, Leiden University 

P-38 

A Novel Approach to Assign Absolute Configuration Using Vibrational Circular Dichroism 
Lennard Böselt, ETHZ 

P-40 

A Novel Search Engine and Application for Very Large Chemistry Database Mining 
Robert D Brown, Dotmatics 

P-42 

Designing of a drug-like natural compound library for secondary metabolites collected from the 
African flora. 
Veranso Conrad Simoben, Martin-Luther-University, Halle-Wittenberg 

P-44 

mmpdb: A Matched Molecular Pair Platform for Large Multi-Property Datasets 
Andrew Dalke, Dalke Scientific Software 

P-46 

3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug Discovery 
Chris de Graaf, Heptares Therapeutics 

P-48 

Analysis and inference within the molecular space: A visual approach using NAMS and 
multidimensional scaling 
Andre O. Falcao, University of Lisboa 

P-50 

Reaction Classification by Reaction Vectors 
Gian Marco Ghiandoni, University of Sheffield 

P-52 

Tautomeric Equilibria: Modeling and Visualization. 
Marta Glavatskikh, University of Strasbourg 

P-54 

Artificial Intelligence in Medicinal Chemistry – Current Status at AstraZeneca 
Thierry Kogej, AstraZeneca 

P-56 

Compact descriptor sets for automatic annotation of natural products in large databases by 
pairwise variable screening 
Max Kretzschmar, Technische Universität Braunschweig 

P-58 

De novo drug-candidate molecule generation with generative adversarial networks 
Xuhan Liu, Leiden University 

P-60 

The need for comprehensive reaction handling in SAVI and beyond 
Marc C. Nicklaus, National Cancer Institute, NIH 

P-62 

Flavours in Aromaticity 
Martin Ott, Lhasa Limited 

P-64 

Smooth Molecular Surfaces with Joined Marching Cubes 
Thomas L. Sander, Idorsia Pharmaceutical Ltd. 

P-66 
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Chemistry Identifier Mapping to Pathway Databases using Ontologies: Expanding metabolomics 
analysis in WikiPathways with ChEBI 
Denise Nicole Smaragda Michelle Slenter, Maastricht University 

P-68 

Finding answers from chemical space extremely fast 
Akos Tarcsay, ChemAxon 

P-70 

Structural Analysis of Protein Homomers – the Quest for Perfect Symmetry 
Inbal Tuvi-Arad, The Open University of Israel 

P-72 

Wikidata and Scholia as a hub linking chemical knowledge 
Egon Willighagen, Maastricht University 

P-74 

PSMILES – A particle-based Molecular Structure Representation for Mesoscopic Simulation 
Achim Zielesny, Westphalian University of Applied Sciences 

P-76 

A new, improved model to predict kinase inhibition 
Pieter FW Stouten, Galapagos NV 

P-78 
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Keynote Address CSA Trust Mike Lynch Award 

 

From Teletype Structure Input to Biology and Chemistry Intelligent Knowledge 
Graphs: My 45 Years in Cheminformatics 

Rudy Potenzone, Ph. D. 

Ingentium Inc. 

A short review will be presented of the changes and incredible advances that have occurred over the past 45 years in 

cheminformatics, and related scientific informatics.  While our scientific knowledge has developed at an incredible 

pace, it has come alongside of the advances in computer hardware and software. Advances in the capabilities and 

accessibility of chemical and biological information has been amazing but dwarfed by the increasing volume.  As we 

enter the Fourth Paradigm of scientific research and discovery, the availability of machine learning and cybernetics 

offers an opportunity to leverage the vast amounts of information. Finding relevant sources is challenging as they are 

spread across normal scientific channels as well as the press, social media, and in various forms including audio and 

video. At Ingentium, we have been studying how to organize and mine this information as well as how today’s 

scientists want to consume it. We have creating disease focused knowledge bases and ‘magazines’ for browsing, a 

portal for searching and extended tools for reviewing our collections. In focusing on specific topics, a richer, more 

focused context can be mapped and made available to research scientists in the various forms including new content 

alerts, readable content summaries, related items and  knowledge graphs. Examples of our magazines and knowledge 

graphs will demonstrate the value of our approach.  
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A-1: Synthetically Accessible Virtual Inventory (SAVI) – Reaction Generation and 
Handling at the One-Billion Compounds Scale 

H. Patel 1, W. D. Ihlenfeldt 2, M. C. Nicklaus 1 
1 Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, 

National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, MD 21702, United 

States, 2 Xemistry GmbH, D-61462 Königstein, Germany. 

The Synthetically Accessible Virtual Inventory (SAVI) project is an international collaboration between partners in 

government laboratories, small companies, not-for-profits, and large corporations, to computationally generate a 

very large number of reliably and inexpensively synthesizable novel screening sample structures. SAVI handles 

reactions not by virtue of applying simple SMIRKS to a set of building blocks of unknown availability. It instead 

combines a set of transforms richly annotated with chemical context, coming from, or being newly developed in the 

mold of, the original LHASA project knowledgebase, with a set of highly annotated, reliably available, purchasable 

starting materials. These components are tied together for SAVI product generation with the chemoinformatics 

toolkit CACTVS with custom developments for this project. Each product is annotated with a number of computed 

properties seen as important in current drug design, including rules for identifying potentially reactive or 

promiscuous compounds. After having produced and made publicly available the first (beta) set of 283 million SAVI 

products annotated with proposed one-step syntheses, we will be reporting on the second full production run aimed 

at creating a database of one billion high-quality, easily synthesizable screening samples. We will present the current 

status, ongoing developments, as well as scientific and technical challenges of the project. 

 

A-2: Fast molecular searching tools and their extension at GSK 

P Pogany 1, T Kostrzewski 1, S Senger 1, S Pickett 1 
1 GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY UK 

Searching pharmaceutically relevant chemical datasets is an integral part of the lead discovery workflow and an 

important source of ideas for lead optimization. It is important that such tools are readily available at the desktop and 

that results can be obtained in an interactive fashion. Some of these datasets can contain hundreds of millions of 

drug-like molecules and pose a challenge to traditional database systems for similarity searching and other 

cheminformatics tasks. 

We have implemented the ChemAxon tool MadFast1,2 for this purpose at GSK. We have used MadFast with large 

datasets (ca. 180 million) vendor compound collections and connected to an in-house adapted SureChEMBL3,4 

database containing patent compounds and their mapping to the patent information. Reduced graph fingerprints5 

have been added to the existing datasets as an alternative to the regular chemical hashed fingerprints and extended 

connectivity fingerprints. MadFast search has been made available through the LiveDesign6 platform and a separate 

implementation used for patent compound lookup in the SureChEMBL database. From both implementations it is 

possible to link out to the original datasources to provide additional information and context for any hit compounds. 

In this work we present our implementation and and illustrate the use in lead discovery and lead optimization stages 

of drug discovery programs.  

1. https://chemaxon.com/products/madfast 

2. Pickett S., ChemAxon UGM, Budapest 2016. 

https://chemaxon.com/presentation/fast-similarity-searching-making-the-virtual-real 

3. Papadatos, G.; Davies, M.; Dedman, N.; Chambers, J.; Gaulton, A.; Siddle, J.; Koks, R.; Irvine, S. A.; 

Pettersson, J.; Goncharoff, N.; Hersey, A.; Overington, J. P. SureChEMBL: a large-scale, chemically 

annotated patent document database. Nucleic acids res. 2015, 44.D1, D1220-D1228. 

4. Senger, S.; Bartek, L.; Papadatos, G.; Gaulton, A. Managing expectations: assessment of chemistry 

databases generated by automated extraction of chemical structures from patents., J. Cheminform. 2015, 7, 

49. 

5. Harper, G.; Bravi, G. S.; Pickett, S. D.; Hussain, J.; Green, D. V. S. The reduced graph descriptor in virtual 

screening and data-driven clustering of high-throughput screening data. J. Chem. Inf. Comput. Sci. 2004, 

44, 2145-2156. 

6. https://www.schrodinger.com/livedesign 

https://chemaxon.com/products/madfast
https://chemaxon.com/presentation/fast-similarity-searching-making-the-virtual-real
https://www.schrodinger.com/livedesign
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A-3: Analysis of the ToxCast & Tox21 compound set using regulator-derived GHS 
toxicity annotations and in silico-derived protein-target descriptors 

C. H. G. Allen1, L. H. Mervin1, A. Bender1 
1 Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, U.K. 

Accurate in silico prediction of compound toxicity is of value to the chemical industry because traditional toxicity 

testing is slow and expensive, and there are societal and legal incentives to minimize in vivo experimentation. 

Meanwhile, the regulatory demand for toxicity information is higher than ever. Conventional in silico approaches 

seek relationships between chemical structure and adverse outcomes, and the integration of high-throughput in vitro 

screening data and protein target annotations has been shown to increase toxicity classification models’ applicability 

and interpretability.1 However, a challenge in developing such heterogeneous models is the collation of suitable 

datasets, which require the presence of a toxicological endpoint, chemical structure, protein targets, and in vitro 

readouts for each compound. Finding a suitably large number of compounds with such an overlap of data on which 

to train predictive models is not trivial.  

The Globally Harmonized System of Classification and Labelling (GHS) is an international framework for 

standardising chemical hazard information. Inter alia, the GHS facilitates the collation of the outcomes of 

independent acute oral toxicity studies into internationally-recognised categories, for the purposes of producing 

globally-recognized hazard labels. Five acute oral toxicity categories are defined, each corresponding to a 

quantitative LD50 interval specified in mg/kg, with three categories labelled “toxic”, one “hazardous” and one 

requiring no label. The European Chemicals Agency (ECHA), Japan’s National Institute of Technology and 

Evaluation and New Zealand’s Environmental Protection Authority provide public access to governmentally 

mandated/recommended acute oral toxicity classifications under the GHS. Further, ECHA publishes the industrial 

submissions it receives under the requirements of the EU’s REACH legislation, which include declaring GHS 

classifications. The common classification standards provided by the GHS system enable the collation of acute oral 

toxicity data from all of these resources with confidence that they are mutually commensurate. This represents a 

valuable means of annotating arbitrary compound sets with toxicity labels. 

In our study, we annotated 8,003 unique standardized chemical structures from the ToxCast and Tox21 datasets3,4 

with toxicity classifications derived from regulatory GHS information; toxicity classifications could be found for 

2736 (34%) of the structures, illustrating the coverage of this technique. For these compounds, a set of 206 

physiochemical and structural descriptors were calculated using MOE.5 The dataset was further annotated with 1,651 

in silico-derived protein-target descriptors using an in-house random forest (RF) protein-ligand prediction algorithm 

trained on over 13 million bioactivity datapoints.6 We next analysed the predictability of regulator-derived toxicity 

annotations using clustering and linear discrimination analysis on the chemical and protein-target descriptors, the 

ToxCast/Tox21 qHTS assay data, and combinations of these spaces. We show the performance of RF classifiers 

(evaluated by the ROC and precision-recall curves) and the effect of the inclusion of the different combinations of 

heterogeneous descriptors on these models’ interpretability and applicability domains. 

1. Allen, C. H. G.; Koutsoukas, A.; Cortés-Ciriano, I.; Murrell, D. S.; Malliavin, T. E.; Glen, R. C.; Bender, A. 

Improving the prediction of organism-level toxicity through integration of chemical, protein target and 

cytotoxicity qHTS data. Toxicol. Res. 2016, 5, 883–894. 

2. United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 7th 

revised ed.; New York and Geneva, 2017; Chapter 3.1, pp 115–125. 

http://www.unece.org/trans/danger/publi/ghs/ghs_rev07/07files_e0.html (accessed Jan 20, 2018). 

3. Kavlock, R. J.; Austin, C. P.; Tice, R. R. Toxicity testing in the 21st century: Implications for human health 

risk assessment. Risk Anal. 2009, 29, 485–487.  

4. Dix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, R. W.; Kavlock, R. J. The ToxCast 

program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 2007, 95, 5–12. 

5. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. 

West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2018. 

6. Mervin, L. H.; Bulusu, K. C.; Kalash, L.; Afzal, A. M.; Svensson, F.; Firth, M. A.; Barret, I.; Engkvist, O.; 

Bender, A. Orthologue chemical space and its influence on target prediction. Bioinformatics. 2018, 34, 72–

79. 



Plenary Session Abstracts 

 

 
41 

 

 

 

 

 

 

 

Session B: 
 

STRUCTURE-ACTIVITY AND STRUCTURE-PROPERTY PREDICTION 



Plenary Session Abstracts 

 

 
42 



Plenary Session Abstracts 

 

 
43 

B-1: How do you build and validate 1500 models and what can you learn from them? 
An automated and reproducible system for building predictive models for bioassay 

data 

G.A. Landrum1, D. Goldmann2, A. Martin3 
1 KNIME AG, Zurich, Switzerland, 2 KNIME GmbH, Berlin, Germany, 3 KNIME GmbH Konstanz, 

Germany 

Here we describe an automated workflow for building and training predictive models for bioassay data and the 

application of that workflow to train and validate more than 1500 predictive models for the assay data present in 

ChEMBL 23. The workflow is implemented with the KNIME Model Factory [1] in the open-source KNIME 

Analytics Platform. Since we know that there is no single best machine-learning algorithm/chemical fingerprint 

combination for all datasets [2], our workflow tries a variety of different fingerprints and algorithms for each assay 

and selects the one that performs best. The breadth of methods we use, and the automation of the process sets this 

effort apart from other large-scale modeling exercises with ChEMBL [3]. 

We begin with an overview of the KNIME Model Factory itself, and then describe the individual steps used to build 

and validate the predictive models: 

1) Selection and extraction of the datasets 

2) Feature generation 

3) Model building: parameter optimization, model building, model selection 

4) Model validation 

5) Model deployment 

We’ve also started analyzing the models themselves and will close with a presentation of what we’ve learned so far 

about combinations of fingerprints/algorithms/parameters which seem to work well across this very large collection 

of different datasets. 

The KNIME Model Factory is open source and can be freely downloaded from our website (URL provided during 

the presentation). The files for the final models and datasets are large, but we will also make those available upon 

request. Although we have worked with public data (ChEMBL), applying the workflow described here to other data 

sources (for example an internal data warehouse) would only require modification of the section that selects and 

extracts the data from the database. 

1. Adä, I.; Winters, P.; Berthold, M.R. The KNIME Model Factory: Scaling Modeling Processes for the 

Enterprise. [Online] 2017. https://files.knime.com/sites/default/files/inline-

images/Model_Process_Management_20170404_1.pdf (accessed 14 Feb 2018). 

2. Riniker, S.; Fechner, N.; Landrum, G. A. Heterogeneous classifier fusion for ligand-based virtual screening: 

or, how decision making by committee can be a good thing. J. Chem. Inf. Model. 2013, 53 2829–2836. 

3. http://chembl.blogspot.com/2014/04/ligand-based-target-predictions-in.html, 

http://chembl.blogspot.ch/2016/03/target-prediction-models-update.html  

 

B-2: Machine Learning of Partial Charges From QM Calculations and the Application 
in Fixed- Charge Force Fields and Cheminformatics 

Sereina Riniker 1 
1 Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland 

Partial charges are a highly important component of fixed-charge force fields, which are used in classical molecular 

dynamics (MD) simulations. Partial charges are also widely used as descriptors in quantitative structure-activity 

relationship (QSAR) or quantitative structure-property relationship (QSPR) models. To obtain partial charges one 

has typically to choose between speed and accuracy. The vastness of the chemical space makes fast approaches 

using building blocks or connectivity information challenging. Therefore, a common approach used for force fields 

https://files.knime.com/sites/default/files/inline-images/Model_Process_Management_20170404_1.pdf
https://files.knime.com/sites/default/files/inline-images/Model_Process_Management_20170404_1.pdf
http://chembl.blogspot.com/2014/04/ligand-based-target-predictions-in.html
http://chembl.blogspot.ch/2016/03/target-prediction-models-update.html
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is to extract partial charges from semi-empirical or ab initio calculations. However, the high computational cost of 

QM methods limits the use of this approach to low throughput applications. In order to obtain high- quality partial 

charges in a fast manner, we have developed a machine-learning (ML) based approach for predicting partial charges 

extracted from density functional theory (DFT) electron densities.1 The training set was chosen with the goal to 

provide a broad coverage of the known chemical space of drug-like molecules. In addition to the speed of the 

approach, the partial charges predicted by ML are not dependent on the three-dimensional conformation in contrast 

to the ones obtained by fitting to the electrostatic potential (ESP). The quality and the compatibility of the ML-

predicted partial charges with standard force fields is assessed by calculating thermodynamic properties of organic 

liquids. In addition, the chemically meaningful partial charges obtained by the presented ML-based approach are 

tested in high-throughput ligand-based virtual screening. 

1. Bleiziffer, P.; Schaller, K.; Riniker, S. Machine Learning of Partial Charges Derived From High-Quality 

Quantum-Mechanical Calculations. J. Chem. Inf. Model. 2018, submitted. 

 

B-3: Artificial Intelligence for Predicting Molecular Electrostatic Potentials (ESPs): A 
Step Towards Developing ESP-guided Knowledge-based Scoring Functions 

P. C. Rathi 1, R. Lewis 2, A. Bender 2, and M. L. Verdonk 1 
1 Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United 

Kingdom, 2 Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, 

Lensfield Road, Cambridge CB2 1EW, United Kingdom 

Molecular electrostatic potential (ESP) surfaces are a useful tool for optimizing protein-ligand interactions in drug 

design.1 It has been shown that binding efficiency of a ligand can be greatly improved by careful modifications that 

lead to a better complementarity between protein and ligand electrostatics.2 We believe that knowledge-based 

scoring functions can be improved by leveraging the information about electrostatic potentials around atoms. 

However, time-intensive quantum mechanical calculations are required for generating molecular ESP surfaces. 

Therefore, to develop a fast ESP-guided knowledge-based scoring function, a quick and accurate model is required 

for the prediction of molecular ESPs. 

We will present a model for predicting ESPs around atoms (specifically, in the direction of atomic features, e.g., lone 

pairs, hydrogens, p orbitals, etc.) developed using graph convolutional deep neural network techniques.3 The 

network was trained on ~48,000 diverse molecules (mean heavy atom count ≈ 11). For each molecule, ESP surfaces 

were generated by running quantum mechanical (QM) calculations (B3LYP with 6-31G* basis set for optimization 

and 6-311G** basis set for energy calculation). The input layer of the model receives 209 atomic descriptors 

calculated using the scikit-chem library built on RDKit4 plus atomic connectivity matrices.  The output layer returns 

ESP values in the direction of the atomic features. The optimized model performs very well on predicting ESP 

values for a validation set of ~12,000 molecules (R2 = 0.95, p << 0.001 for a correlation with ESP values derived 

using QM calculations). The mean absolute error in predicting ESP values is ~3 kcal/mol for the validation set 

suggesting that our model can provide good estimates of ESP values obtained using time-intensive QM calculations, 

but in a fraction of the computing time. This level of precision should also allow a successful application in guiding 

knowledge-based scoring functions, and we will exemplify how this may be achieved for the Protein Ligand 

Informatics force field (PLIff).5 

1. Vinter, J. G. Extended electron distributions applied to the molecular mechanics of some intermolecular 

interactions. II. Organic complexes. J. Comput-Aided. Mol. Des. 1996, 10, 417-426. 

2. Chessari, G.; Buck, I. M.; Day, J. E.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, 

D.; Reader, M. Fragment-based drug discovery targeting inhibitor of apoptosis proteins: discovery of a non-

alanine lead series with dual activity against cIAP1 and XIAP. J. Med. Chem. 2015, 58, 6574-6588. 

3. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: moving 

beyond fingerprints. J. Comput-Aided. Mol. Des. 2016, 30, 595-608. 

4. The scikit-chem library (https://github.com/richlewis42/scikit-chem), built on RDKit 

(http://www.rdkit.org). 

5. Verdonk, M. L.; Ludlow, R. F.; Giangreco, I.; Rathi, P. C. Protein-Ligand-Informatics force field (PLIff): 

towards a fully knowledge driven “force field” for biomolecular interactions. J. Med. Chem. 2016, 59, 

6891-6902. 

 

https://github.com/richlewis42/scikit-chem
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B-4: Next-Generation MD-QSAR Models of Dynamic Kinase-Inhibitor Interactions 
Based on Machine Learning and Molecular Dynamics 

Denis Fourches 1 
1 Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, 

USA 

Quantitative Structure-Activity Relationships (QSAR) typically rely on the two- and three-dimensional structures of 

molecules to assess their bioactivity. These models have proven to be accurate enough for screening large chemical 

libraries but have also shown poor performances when it comes to lead optimization and in-depth assistance to 

medicinal chemists. In this presentation, I will present the MD-QSAR modeling approach that uses machine learning 

and MD descriptors directly computed from the molecular dynamics trajectories of kinase-inhibitor complexes. I 

will discuss the rationale of the approach, its origin with early attempts of 4D-QSAR modeling, and two case studies 

involving a set of 85 ERK2 kinase inhibitors1 and another large set of 925 Bcr-Abl tyrosine-kinase inhibitors (all 

being imatinib analogues). Our MD-QSAR modeling workflow includes (i) the structure-based docking of all 

compounds in the binding site of the kinase, (ii) the independent molecular dynamics (MD) simulations of each 

protein-ligand complex (Desmond-GPU, 15 ns, NTP, 300K, TIP3P, 1fs), (iii) the computation of MD fingerprints to 

characterize ligands’ conformational flexibility and the dynamic kinase-inhibitor interactions over the trajectories, 

and (iv) both training and cross-validation of MD-QSAR models using machine learning techniques (random forests 

and artificial neural networks). Not only MD-QSAR models afforded similar or better prediction performances 

compared to classical 2D and 3D QSAR models, but the interpretation of MD descriptors was facilitated with the 

direct visualization of their associated dynamic kinase-inhibitor interactions. This next-generation modeling 

workflow combining machine learning, 3D docking, and molecular dynamics simulations could provide key 

knowledge for the design of more potent and selective small molecule inhibitors. 

1. Ash, J.; Fourches, D. Characterizing the Chemical Space of ERK2 Kinase Inhibitors Using Descriptors 

Computed from Molecular Dynamics Trajectories. J Chem Inf Model. 2017, 57, 1286−1299. 

 

B-5: Automated selectivity inversion of kinase inhibitors 

Simone Fulle 

BioMed X Innovation Center, Heidelberg, Germany 

Current affiliation: Novo Nordisk, Copenhagen, Denmark 

Elimination of inadvertent binding is crucial for inhibitor design targeting conserved protein classes like kinases. In 

turn, compounds in clinical trials provide a rich source for initiating drug design efforts by exploiting such secondary 

binding events. Considering both aspects, we shifted the selectivity of a kinase inhibitor, originally developed 

against a cancer target, towards a pain target. In line with the design objectives, the top-ranked compound has a 

significant selectivity improvement against a selected off-target and is highly selective in a kinase panel. This was 

achieved in a single round of automated in silico optimization, highlighting the power of recent advances in 

computer-aided drug design technologies to automate design and selection processes. 

The presentation will describe the employed multi-objective selection scheme that filters for selective and highly 

active compound based on orthogonal methods grounded in computational chemistry and machine learning. The 

benefit of the underlying technologies (e.g. ref. 1-3), primarily developed for the design of selective inhibitors, will be 

exemplarily demonstrated and discussed using our novel compound series for a pain target. 

1. Merget, B.; Turk, S.; Eid, S.; Rippmann, F.; Fulle, S. Profiling Prediction of Kinase Inhibitors: Toward the 

Virtual Assay. J Med Chem. 2017, 60, 474-485. 

2. Turk, S.; Merget, B.; Rippmann, F.; Fulle, S. Coupling Matched Molecular Pairs with Machine Learning 

for Virtual Compound Optimization. J Chem Inf Model. 2017, 57, 3079-3085. 

3. Eid, S.; Turk, S.; Volkamer, A.; Rippmann, F.; Fulle, S. KinMap: a web-based tool for interactive 

navigation through human kinome data. BMC Bioinformatics. 2017, 18:16. 

 

https://www.ncbi.nlm.nih.gov/pubmed/27966949
https://www.ncbi.nlm.nih.gov/pubmed/27966949
https://www.ncbi.nlm.nih.gov/pubmed/29131617
https://www.ncbi.nlm.nih.gov/pubmed/29131617
https://www.ncbi.nlm.nih.gov/pubmed/28056780
https://www.ncbi.nlm.nih.gov/pubmed/28056780
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B-6: Multivariate Regression with Left-censored Data – Efficient Use of Incompletely 
Measured Bioactivity Data for Predictive Modelling 

K. Baumann 1, M. Mathea 1,♯, W. Klingspohn 1, A. ter Laak 2, N. Heinrich 2 
1 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 

Beethovenstraße 55, 38106 Braunschweig, Germany 

2 Bayer AG, Drug Discovery, Pharmaceuticals, 13342 Berlin, Germany 

♯ Current address: BASF SE, 67056 Ludwigshafen am Rhein, Germany 

In industrial drug discovery research, bioactivity data are often incompletely measured so that for weakly active 

compounds no exact pIC50 or pKi value is known. In these cases, it is only known that the pIC50 or pKi value is 

smaller than a certain cut-off value. Data of this type are called left-censored. Such data frequently occur in 

econometrics and environmental chemistry (values below the determination or detection limit) and efficient 

regression algorithms to include those data into calibration models are well known1. However, in the latter two 

application areas only few predictors are typically processed. Regression algorithms for handling hundredths or 

thousands of predictors are not available. For right-censored survival data, high-dimensional regression algorithms 

have been published. Yet, the censoring mechanism in these cases is often very different from the one at work for 

the aforementioned left-censored data. Hence, not all available algorithms can efficiently be adapted to the left-

censored case. 

Here, we describe the adaption of the Buckley-James algorithm2 to principal component regression (PCR) and partial 

least-squares regression (PLS), as well as to other penalized regression algorithms for handling high-dimensional 

structure descriptor data with left-censored bioactivity data. Two different implementations are conceivable: In the 

first case, the regression algorithm is left untouched and the Buckley-James imputation scheme is adapted to left-

censored data using a reverse Kaplan-Meier estimator. In the second case, the aforementioned regression algorithms 

are decomposed into many univariate regression steps for matrix decomposition and each univariate regression step 

is replaced by the respective Buckley-James regression. This has the advantage that cross-validation schemes can be 

implemented more efficiently. 

Numerical stability and predictive capability is equivalent for the different implementations. Although the adaption 

is rather straightforward, pitfalls are possible. Critical issues with respect to estimating intercepts and the predictive 

ability will be discussed. The specifically tailored regression algorithms will be compared to the naïve case where 

the censored data are handled as if they were uncensored and to the case where simply all censored data are removed 

from the data set. Not surprisingly, the tailored regression algorithms use the data more efficiently and thus perform 

better. The performance differences will be discussed with simulations and real data. 

1. Helsel, D. R.. Statistics for censored environmental data using Minitab® and R. John Wiles & Sons, 

Hoboken, NJ, USA, 2012, 2nd Ed. 

2. Buckley, J.; James, I. Linear regression with censored data. Biometrika. 1979, 66, 429-436. 
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C-1: In The Need of Bias Control: Evaluation of Chemical Data for Machine Learning 
Methods in Structure-Based Virtual Screening 

Jochen Sieg1, Florian Flachsenberg1, Matthias Rarey 1 
1 Center for Bioinformatics, Hamburg, Germany 

Currently, machine learning (ML) methods receive increasing attention. This includes the field of structure-based 

virtual screening, where these methods are used for predicting binding of small molecules to protein targets. 

Improved predictions for the scoring of protein-ligand complexes in comparison to established empirical scoring 

functions are reported for example with convolutional neural networks (CNNs)1-3. However, trained ML models are 

treated often as black boxes and are not straightforward interpretable4. The difficulty of interpretation makes it 

laborious to identify which features and patterns are responsible for activity prediction and makes these methods 

prone to unnoticed bias. 

New methods are usually evaluated by retrospective validation on benchmark datasets5. Different ML methods have 

achieved impressive results on commonly used benchmark datasets.  Exemplary, utilizing CNNs on the Directory of 

Useful Decoys (DUD)5 and Directory of Useful Decoys – Enhanced (DUD-E)6 values of the area under the receiver 

operating characteristic curve (AUC) of 0.812 and 0.863 have been reported, respectively, for discriminating active 

and inactive molecules. Thus, it seems that these datasets are no challenge for these ML methods. Nevertheless, the 

question of the true prospective predictive capability and the applicability domain remains. 

Benchmark datasets are usually designed for a specific evaluation scenario. While DUD and DUD-E both have been 

developed for the evaluation of structure-based virtual screening (SBVS) methods, the Maximum Unbiased 

Validation (MUV)7 dataset is a benchmark for ligand-based virtual screening. A benchmark dataset can be seen as a 

selected chemical subspace that is appropriate to constitute good test cases for a specific group of methods and 

descriptors. Although the prediction task might remain the same, a benchmark might be inapplicable once methods 

or descriptors change. A benchmark dataset designed for SBVS with empirical scoring functions is not necessarily 

be suited for ML. As a consequence, unphysical bias might become the cause for over-estimated performance. 

We show exemplary on current literature that it is possible to learn bias unobserved and implicitly. Specifically, we 

show that the molecules property of being active against any target can be learned with only ligand features for 

example from an established benchmark datasets like DUD with an AUC of 0.83. Here, we present a new approach 

aiming at more realistic estimates on SBVS performance. Our approach utilizes domain knowledge to recognize 

good performance caused by unphysical data patterns when applying a specific composition of methods and 

descriptors to a given dataset as illustrated in Figure 1. Therefore, it is possible to identify descriptor and method 

combinations that cause unreasonable good performance on the given dataset, which helps to choose a suitable 

dataset for validation. 

1. Our findings suggest that there is a need for bias control in the validation of machine learning methods. For 

this reason we propose best practice guidelines for designing validation experiments to identify and control 

bias. Furthermore, these steps can be used to create new benchmark datasets with reduced risk for implicit 

bias. Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes D. R. Protein–Ligand Scoring with 

Convolutional Neural Networks Journal of Chemical Information and Modeling 2017, 57 (4), 942-957 

2. Pereira, J. C.; Caffarena, E. R.; Santos, C. N.  Boosting Docking-Based Virtual Screening with Deep 

Learning Journal of Chemical Information and Modeling 2016, 56 (12), 2495-2506 

3. Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: a deep convolutional neural network for bioactivity 

prediction in structure-based drug discovery 2015, arXiv preprint arXiv:1510.02855 

4. Polishchuk, P. Interpretation of Quantitative Structure–Activity Relationship Models: Past, Present, and 

Future Journal of Chemical Information and Modeling 2017, 57 (11), 2618-2639 

5. Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking Journal of Medicinal 

Chemistry 2006, 49 (23), 6789–6801 

6. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-

E): Better Ligands and Decoys for Better Benchmarking Journal of Medicinal Chemistry 2012, 55 (14), 

6582–6594 

7. Rohrer, S. G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on 

PubChem bioactivity data Journal of Chemical Information and Modeling 2009, 49 (2), 169–184 
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C-2: An Exhaustive Assessment of Computer-Based Drug Discovery Methods  
by High-Throughput Screening Data 

Christiane Ehrt1, Dennis M. Krüger1,2, Tom Mejuch3, Sonja Sievers3, Herbert Waldmann3, 

Oliver Koch1 
1Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany, 2Chemical Genomics 

Centre of the Max Planck Society, Dortmund, Germany , 3Max Planck Institute of Molecular Physiology, 

Dortmund, Germany 

In silico methods, especially virtual screening approaches, proved to be useful sources of inspiration for drug 

discovery as well as suitable tools for modern drug design [1], although there are potential pitfalls [2]. Most in silico 

screening approaches highly rely on experimental data which can be either three-dimensional structures of the 

proteins of interest or knowledge about ligands binding to the respective target. In the ideal case, the research is 

guided by the knowledge of protein-ligand complex structures. 

Here, the outcome of a virtual screening study is presented that aimed to identify small molecule ligands for a 

protein whose structure was solved in the presence of a peptide ligand. The impact of different computer-based 

methods on the virtual screening performance was assessed without previous knowledge of small molecule binders 

and exclusively based on one X-ray structure. A combination of MD simulations, hot-spot analyses, pharmacophore 

searches and docking approaches was used to identify potential ligands and circumvent virtual screening pitfalls. 

In contrast to the popular method of performance assessment using benchmarking data sets [3] the screened database 

of about 150,000 compounds was subsequently tested experimentally. This data enabled a detailed analysis of the 

performance of this exhaustive structure-guided virtual screening approach in an unbiased manner. In addition, the 

abundance of available experimental data provides the opportunity to oppose ligand-based and structure-based in 

silico screening approaches in a retrospective manner. Thus, the experimental data was used to analyse the 

maximum enrichment that could be obtained during pharmacophore screening and molecular docking. 

I will present and discuss the outcome of this prospective screening and compare these results to the knowledge-

based results to finally answer the question: How much knowledge is needed to save time and money during drug 

discovery? 

Figure 1: Workflow of our approach to identify bias. This workflow uses domain knowledge on predefined validation 

experiments to identify property distributions in a given dataset which are violating physical reality. The difference of the 

expected score and the predicted score are used to calculate a bias score.  
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1. Tanrikulu, Y., Krueger, B., Proschak, E.: The Holistic Integration of Virtual Screening in Drug Discovery. 

Drug Discov. Today 2013, 18, 358-364. 

2. Scior, T., Bender, A., Tresadern, G., Medina-Franco, J.L., Martínez-Mayorga, K., Langer, 

T., Cuanalo-Contreras, K., Agrafiotis, D.K. Recognizing Pitfalls in Virtual Screening: A 

Critical Review.  J. Chem. Inf. Model. 2012, 52, 867-881. 

3. Lagarde, N., Zagury, J-F., Montes, M. Benchmarking Data Sets for the Evaluation of 

Virtual Ligand Screening Methods: Review and Perspectives.  J. Chem. Inf. Model. 2015, 

55, 1297-1307. 

 

C-3: Lessons learned in benchmarking Virtual Screening for polypharmacology. 

E.B. Lenselink 1, L. Burggraaff1, B.J. Bongers1, X. Liu1,  M. Gorostiola-Gonz Ález1, J. van 

Engelen2,  H. Hoos2, J.K. Wegner3, M. Steijaert4, W. Jespers1,5, Hugo Gutiérrez-de-Terán5,  

H.W.T van Vlijmen1,3, A.P. IJzerman1, G.J.P van Westen1.   

1 Division of Drug Discovery and Safety, Leiden, The Netherlands,  2 Leiden Institute of Advanced 

Computer Science, Leiden, The Netherlands, 3 Janssen Pharmaceutica NV, Beerse, Belgium, 4 Open 

Analytics NV, Antwerp, Belgium 5 Department of Cell and Molecular Biology, Uppsala, Sweden 

Polypharmacology is typically regarded as a drawback in drug discovery, as side effects might occur due to 

interactions with other targets than the main target. However, it has been estimated that on average a drug will 

interact with at least 6 targets, questioning the fact if true selectivity exists.1 In November 2017 the Multi-Targeting 

DREAM challenge was launched with the aim to Virtually Screen the ZINC database for molecules that adhere to a 

profile of targets and anti-targets.2  

Here the results will be presented of the rigorous benchmarking we performed prior to running the actual Virtual 

Screen for the DREAM challenge. Our philosophy was to select an optimal workflow per protein target, consisting 

of three successive stages: statistical modelling, ensemble docking, and metadynamics. For the statistical modelling 

we used models3 created on public data (i.e. ExCAPE4 and ChEMBL5). Models were benchmarked and compared, 

and predictions of the best models were used to filter compounds to proceed to the docking stage. Benchmarking of 

docking was performed based on active compounds, inactive compounds, and decoys.6 We selected 5 high enriching 

X-rays for an ensemble, using the Z2 score7 of both the docking scores and SPLIF.8, 9 This ensemble yielded high, 

predictive BEDROC and ROC scores for most targets and anti-targets. Finally, for the primary targets the top 100 

ranking compounds were also scored using binding pose metadynamics enriching the results even further.10 In 

general this successive Virtual Screening workflow can be applied to any target with sufficient data.   

1. J. Mestres; E. Gregori-Puigjane; et al. Data completeness—the Achilles heel of drug-target networks. Nat. 

Biotechnol. 2008, 26, 983-984. 

2. Schlessinger, A.; Abagyan, R.; et al., Multi-targeting Drug Community Challenge. Cell Chem. Biol. 2017, 

24, 1434-1435. 

3. E.B. Lenselink; N. ten Dijke; et al., Beyond the hype: deep neural networks outperform established methods 

using a ChEMBL bioactivity benchmark set. J. Cheminf. 2017, 9, 45. 

4. Sun, J.; Jeliazkova, N.; et al., ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis 

in chemogenomics. J. Cheminf. 2017, 9, 17. 

5. A. Gaulton; L.J. Bellis; et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic 

Acids Res. 2012, 40, D1100-7. 

6. M.M. Mysinger; M. Carchia; et al., Directory of useful decoys, enhanced (DUD-E): better ligands and 

decoys for better benchmarking. J. Med. Chem 2012, 55, 6582-6594. 

7. Sastry, G. M.; Inakollu, V. S.;et al., Boosting virtual screening enrichments with data fusion: coalescing hits 

from two-dimensional fingerprints, shape, and docking. J. Chem. Inf. Model. 2013, 53, 1531-1542. 

8. E.B. Lenselink; W. Jespers; et al., Interacting with GPCRs: Using Interaction Fingerprints for Virtual 

Screening. J. Chem. Inf. Model. 2016, 56, 2053-2060. 

9. Da, C.; Kireev, D., Structural protein–ligand interaction fingerprints (SPLIF) for structure-based virtual 

screening: method and benchmark study. J. Chem. Inf. Model. 2014, 54, 2555-2561. 

10. A.J. Clark; P. Tiwary; et al., Prediction of protein–ligand binding poses via a combination of induced fit 

docking and metadynamics simulations. J. Chem. Theory Comput. 2016, 12, 2990-2998. 
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C-4: Assisting site-directed mutagenesis in silico to optimize ligand-binding 

Hugo Gutiérrez de Terán, Willem Jespers, Silvana Vasile, Johan Åqvist. 

Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 

Uppsala, Sweden. E-mail: hugo.gutierrez@icm.uu.se 

Site-directed mutagenesis (SDM) is a powerful and widely used tool to understand ligand-binding at the structural 

and molecular level. The characterization of ligand binding affinities against a set of mutant proteins, interpreted by 

computational modeling, is a process that has been used in the hit-to-lead optimization of many drug targets, with 

the GPCR superfamily of membrane receptors being a paradigmatic example due to the traditional lack of structural 

information. 

I will outline our recently developed computational scheme, based on free energy perturbation (FEP) simulations, to 

quantitatively and routinely assess the effects of point-mutations on ligand binding (Fig 1).1 The procedure is based 

on an MD sampling of the protein-ligand binding site, using spherical boundary conditions centered on the binding 

site, which makes it computationally efficient. The methodology is now automated and will be soon released as part 

of the Q-gui graphical interface of our MD software Q, where it can be combined with classical FEP simulations on 

ligands series, providing a full picture of the energetics of ligand binding in the scope of mutagenesis data or ligand-

SAR. 

Recent applications include assisting on antagonist design on the A2A and A3 adenosine receptors, and 

deorphanization of receptor GPR139,2 in collaborative projects with medicinal chemists and pharmacologists. I will 

focus here on explaining our the most recent results of this application, centered on understanding agonist binding to 

the type 2 (Y2) neuropeptide Y receptor, to assist on further ligand optimization in collaboration with scientists from 

Novo Nordisk. 

 
 

1. Keranen, H.; Aqvist, J.; Gutierrez-de-Teran, H. Chem Commun. 2015, 51, 3522 

2. Nøhr AC, Jespers W, Shehata MA, et al. Sci Rep. 2017, 7, 1128. 

3. Xu, Vasile et al. Mol Pharmacol. 2018, in press 
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C-5: Structural analysis of chemokine receptor-ligand interactions for computational 
modelling integration in drug design.  

 

M. Arimont1, S. Sun1, M. Vass1, A.J. Kooistra1,2, R. Leurs1,3, I.J.P. de Esch1,3, C. de Graaf1 
1 Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and 

Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 2 Centre for Molecular 

and Biomolecular Informatics (CMBI) Radboudumc, Nijmegen, The Netherlands. 3 Griffin Discoveries 

BV, Department of Medicinal Chemistry, Amsterdam, The Netherlands. 

Construction and application of structural chemokine receptor models are essential for the elucidation of molecular 

determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor 

ligands1,2. We present a comparative analysis of ligand binding pockets in chemokine receptors and their implication 

on modeling receptor-ligand interactions2. This is specially challenging in chemokine receptors as they present 

multiple druggable binding sites, including the minor and major pocket in the orthosteric site (small 

molecules/peptides), the extracellular vestibule (chemokines, antibodies), and even an intracellular binding site 

(small molecules, nanobodies). We will show how this data can be integrated with pharmacological data using 

structural chemoinformatics worflows3,4 and applied in drug discovery. We will also present how the integration of 

new structural information of chemokine receptors with extensive structure-activity relationship and site-directed 

mutagenesis data is necessary for the prediction of the structure of chemokine receptor-ligand complexes that have 

not been crystallized yet. Finally we will illustrate how molecular dynamics simulations and analyses combined with 

the use of structural interaction fingerprints are key tools for optimization of molecular models that can be used for 

protein-based virtual screening approaches. Structure-based ligand discovery and design studies based on chemokine 

receptor crystal structures and homology models illustrate not only the possibilities, but also the challenges to find 

novel ligands for chemokine receptors. 

1. Scholten, D. J.; Canals, M.; Maussang, D.; Roumen, L.; Smit, M. J.; Wijtmans, M.; de Graaf, C.; Vischer, 

H. F.; Leurs, R., Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012, 165 

(6), 1617-1643. 

2. Arimont, M.; Sun, S. L.; Leurs, R.; Smit, M.; de Esch, I. J. P.; de Graaf, C., Structural  

3. Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017, 60 (12), 4735-4779. 

4. McGuire, R.; Verhoeven, S.; Vass, M.; Vriend, G.; de Esch, I. J.; Lusher, S. J.; Leurs, R.; Ridder, L.; 

Kooistra, A. J.; Ritschel, T.; de Graaf, C., 3D-e-Chem-VM: Structural Cheminformatics Research 

Infrastructure in a Freely Available Virtual Machine. J Chem Inf Model 2017, 57 (2), 115-121. 

5. Kooistra, A. J.; Vass, M.; McGuire, R.; Leurs, R.; de Esch, I. J.; Vriend, G.; Verhoeven, S.; de Graaf, C., 

3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug Discovery. ChemMedChem 

2018. 

 

C-6: Generation of Structure-based Pharmacophore Models in Protein Binding Sites 
Obtained from Molecular Dynamics Simulations: Towards Understanding KD of Hsp90 

Ligands 

T. Seidel1, D. Schütz2, M. Körbel1, A. Garon1, M. Wieder1, G. Ibis2, G. F. Ecker1, T. Langer1 

1 University of Vienna, Vienna, Austria, 2 Inte:Ligand GmbH, Vienna, Austria 

Structure-based pharmacophore models are usually derived from known three-dimensional structures of active 

ligands (i.e. small organic molecules) bound to a protein target of interest in their active conformation1. In many 

different application domains such models have been proven to be useful as selective in silico screening filters.2   

Recently, we have extended the static pharmacophore approach by a dynamic one, deriving interaction models from 

molecular dynamics trajectory snapshots3 and including also a novel consensus screening approach, which was 

shown to be superior to previous pharmacophore-based virtual screening methods.4 

One of the main benefits of performing molecular dynamics simulations of protein-ligand complexes is the 

possibility to detect global changes in protein geometry, and thus enabling the observation of emerging pockets of 
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potential interest for the formation of additional ligand-protein interactions. To address this challenge, we have 

developed an algorithm that is able to detect transient protein pockets and to place pharmacophore features in such 

empty target binding sites without the guidance of a known bound-state ligand structure. The generated features are 

placed and oriented in the protein pocket in a way that an optimal interaction with complementary binding partners 

in the receptor environment is ensured. The thus derived dynamic apo pharmacophore models provide invaluable 

information that can be put to good use for the de novo design of new ligands as well as for the refinement of 

existing lead structures in the drug development process.  

Details about the algorithm developed together with the results of its validation with a series of protein conformation 

snapshots obtained from molecular dynamics simulations of Hsp90 ligand complexes will be presented.  

1. Wolber, G.; Langer T. LigandScout: 3D pharmacophores derived from protein-bound ligands and their use 

as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160-169. 

2. Langer, T. Pharmacophores in Drug Research. Mol. Inf., 29, 470-475. 

3. Wieder, M.; Perricone, U.; Boresch, S.; Seidel, T.; Langer, T. Evaluating the stability of pharmacophore 

features using molecular dynamics simulations. Biochem. Biophys. Res. Comm. 2016, 470, 685-689.  

4. Wieder, M.; Garon, A.; Perricone, U.; Boresch, S.; Seidel, T.; Almerico, A.M.; Langer, T. Common Hits 

Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. J. Chem. Inf. 

Model. 2017, 57, 365-385. 

 

C-7: How significant are unusual intermolecular interactions? 

Bernd Kuhn, Oliver Korb 

Roche Pharmaceutical Research and Early Development, Innovation Center Basel, F. Hoffmann-La 

Roche Ltd, 4070 Basel, Switzerland 

In recent years a large number of novel interaction types have been postulated to have a stabilizing effect on protein-

ligand complex formation. However, the significance for some these “unusual” interactions has yet to be validated 

with experimental and theoretical studies of model systems as well as statistical analyses of crystallographic 

databases. We have pursued the latter approach and extended the recently published line-of-sight analysis by Taylor1 

to protein-ligand complexes from the Protein Data Bank. With this method confounding secondary interactions are 

pruned out and statistically significant interaction propensities for different functional groups can be derived. In 

addition this approach provides insights into the geometric preferences of intermolecular contacts.  

As a result of our studies we will present crystal structure based statistical analyses of different interaction types and 

highlight preferred protein environments of selected functional groups of relevance for medicinal chemistry. This 

will be complemented by illustrative examples from drug discovery projects. 

1. Taylor, R. Which Intermolecular Interactions Have a Significant Influence on Crystal Packing? 

CrystEngComm 2014, 16, 6852-6865. 

 

C-8: Interaction Pattern Analysis – What are we Missing? 

A. Naß 1, G. Wolber 1 

1  Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Berlin, 

Germany 

The main principles found in almost all high-affinity protein-ligand complexes are high steric complementarity, high 

complementarity of surface properties and an energetically favourable ligand conformation. 

However, static structures only show a small part of the whole picture: For example is the entropic contribution to 

the binding energy of a ligand usually not observable in static structures. Further have flexible protein parts been 

shown to prefer flexible ligand moieties over rigid ones which can hardly be investigated with one static structure. 

Only a few methods like the recently developed Dynophores1 (dynamic pharmacophores based on molecular 

dynamics data) take into account the flexibility of both protein and ligand for interaction analysis. 
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Unfortunately, classic interaction analysis tools are mainly focusing on one of the three principles discovered in high 

affinity binding complexes neglecting the steric complementarity and favourable ligand conformation. 

Consequently, a tool was created and implemented in R that can quantify shape complementarity of a ligand to a 

protein over a molecular dynamics simulation of the bound ligand. The tool further supports the calculation of shape 

fit per ligand atom and therefore allows statements about favourable and unfavourable parts of the ligand in terms of 

shape fit. Ligand strain energy is monitored simultaneously to detect good shape fit on the expense of extremely 

unfavourable ligand conformations due to trapping of the ligand in the protein binding site. 

The tool was validated on slightly selective PTP1B ligands to explain the observed activity differences in PTP1B 

and the closely related TC-PTP which are not explainable by interaction based methods.  

Since shape complementarity could also be a valuable means to increase selectivity in cases where no ligand is 

available as starting point, a second tool was developed: It allows identification of selectivity relevant binding site 

areas especially for cases where interaction feature patterns are highly similar and facilitates exploitation of the 

discovered differences for virtual screening. Calculations are based on clustering of binding site shape point maps 

extracted from molecular dynamics frames with the help of the open source tool POVME22. The binding site shape 

clustering tool was also validated on the test case of PTP1B/TC-PTP in order to identify active site inhibitors of 

PTP1B with increased selectivity.  

Both tools developed in this study address the issue of selectivity in a flexible protein-ligand context with different 

scenarios of available input data and therefore provide novel opportunities to design ligand selectivity in challenging 

cases. 

  

1. Bock, A.; Bermudez, M.; Krebs, F.; Matera, C.; Chirinda, B.; Sydow, D.; Dallanoce, C.; Holzgrabe, U.; De 

Amici, M.; Lohse, M. J.; Wolber, G.; Morh, K. Ligand Binding Ensembles Determine Graded Agonist 

Efficacies at a G Protein-Coupled Receptor. J. Biol. Chem. 2016, 291(31), 16375-16389. 

2. Durrant, J. D.; de Oliveira, C. A.; McCammon, J. A. Povme: an Algorithm for Measuring Binding-Pocket 

Volumes. J. Mol. Graph. Model. 2011, 29(5), 773-776. 

 

C-9: Hydrogen bonds as determinants of structural stability 

M. Majewski 1, S. Ruiz-Carmona 1, X. Barril 2 
1Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain, 2Catalan 

Institution for Research and Advanced Studies (ICREA), Spain  

Structural stability is a fundamental property of protein-ligand complexes that so far has been ignored in drug 

design. It can be provided by hydrogen bonds (HBonds), thanks to their sharp distance and angular dependencies1. 

Certain HBonds present strong opposition to small structural distortions and can act as kinetic traps. The local 

environment hinders the transition from a direct HBond to a water-bridged interaction2. As an early unbinding event, 

rupture of the so-called water-shielded HBonds can influence the whole dissociation process. The concept has been 

recently implemented in the Dynamic Undocking (DUck)3, a new method consists of series of steered molecular 

dynamics. During the simulation, the ligand is being pulled from the bound to the Quasi-Bound state, in which the 

ligand has just broken the most important HBond with the receptor. The value of work consumed in the process 

(WQB) is an effective factor associated with structural stability.  

Here we present a first large scale assessment of robustness of HBonds. We have calculated WQB for every single 

HBond in a subset of 77 protein-ligand complexes from the Iridium data set4 (total 341 HBonds). HBond-driven 

structural stability is very common in protein-ligand complexes. Strong HBonds can be found in 75% of complexes 

and tend to group in fragment-sized structural anchors. For the remaining structures, with weak HBonds, other 

stability-providing interactions have been identified. Furthermore, additional calculations have shown that we can 

modulate the strength of the HBond by modifying the ligand. Manipulating the microenvironment around a 

HBond has important implication for structural stability and is a useful drug design principle. 

 

1. Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 

2010, 53, 5061-5084. 

2. Schmidtke, P.; Luque, F. J.; Murray, J. B.; Barril, X. (2011). Shielded hydrogen bonds as structural 

determinants of binding kinetics: application in drug design. J. Am. Chem. Soc., 2011, 133, 18903-18910. 
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3. Ruiz-Carmona, S.; Schmidtke, P.; Luque, F. J.; Baker, L., Matassova, N.; Davis, B.; Roughley, S.; Murray, 

J.; Hubbard, R.; Barril, X. Dynamic undocking and the quasi-bound state as tools for drug 

discovery. Nature Chemistry, 2017, 9, 201. 

4. Warren, G. L.; Do, T. D.; Kelley, B. P.; Nicholls, A.; Warren, S. D. Essential considerations for using 

protein-ligand structures in drug discovery. Drug Discovery Today, 2012, 17, 1270-1281. 

 

C-10: Selectivity determining features in proteins with conserved binding sites - a 
case study using N-myristoyltransferase as model system 

R Brenk 1, FC Kersten 2 
1 University of Bergen, Department of Biomedicine, Bergen Norway, City, Country, 2 Johannes Gutenberg 

University, Institute of Pharmacy, Mainz, Germany 

One particular challenge in structure-based design is how to derive selective inhibitors for proteins with conserved 

binding sites. To investigate this topic on the molecular level, we studied a model system of two related enzymes, 

namely N-myristoyltransferase (NMT) from L. major and H. sapiens The binding sites of both enzymes are highly 

conserved (Figure 1). Nevertheless, unselective and selective inhibitors were developed.1–3 

 

Figure 1 Superposition of L. major and H. sapiens 
NMT binding sites together with unselective ligand. 

We used a combination of molecular dynamic simulations, isothermal titration calorimetry, enzyme inhibition assay, 

site-directed mutagenesis, and X-ray crystallography to analyse protein dynamics, water network formation and their 

changes upon ligand binding. Using this approach, for two compound series to two different selectivity-determining 

features were identified. For one series, a change in protein flexibility upon ligand binding seemed to responsible for 

selective inhibition. In  the other compound series, selectivity was caused by the ability to displace a highly 

conserved water molecule. Based on these finding, a virtual screening for selective compounds was conducted 

resulting in three hit compounds with the desired selectivity profile. 

1. Frearson, J. A.; Brand, S.; McElroy, S. P.; Cleghorn, L. A.; Smid, O.; Stojanovski, L.; Price, H. P.; Guther, 

M. L.; Torrie, L. S.; Robinson, D. A.; Hallyburton, I.; Mpamhanga, C. P.; Brannigan, 

2. J. A.; Wilkinson, A. J.; Hodgkinson, M.; Hui, R.; Qiu, W.; Raimi, O. G.; van Aalten, D. M.; Brenk, R.; 

Gilbert, I. H.; Read, K. D.; Fairlamb, A. H.; Ferguson, M. A.; Smith, D. F.; Wyatt, P. G. Nature 2010, 464 

(7289), 728. 

3. Brand, S.; Norcross, N. R.; Thompson, S.; Harrison, J. R.; Smith, V. C.; Robinson, D. A.; Torrie, L. S.; 

McElroy, S. P.; Hallyburton, I.; Norval, S.; Scullion, P.; Stojanovski, L.; Simeons, 

4. F. R.; van Aalten, D.; Frearson, J. A.; Brenk, R.; Fairlamb, A. H.; Ferguson, M. A.; Wyatt, P. G.; Gilbert, I. 

H.; Read, K. D. J. Med. Chem. 2014, 57 (23), 9855. 

5. Brannigan, J. A.; Roberts, S. M.; Bell, A. S.; Hutton, J. A.; Hodgkinson, M. R.; Tate, E. W.; Leatherbarrow, 

R. J.; Smith, D. F.; Wilkinson, A. J. IUCrJ 2014, 1 (4), 250. 
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C-11: Active Search for Computer-Aided Drug Design 

S. Oatley 1, D. Oglic 2,3, S. Macdonald 4, T. McInally 1, R. Garnett 5, T. Gärtner 2, J. Hirst 1 
1 School of Chemistry, University of Nottingham, Nottingham, UK, 2 School of Computer Science, 

University of Nottingham, Nottingham, UK, 3 Institut für Informatik III, Universität Bonn, Bonn, 

Germany, 4 GlaxoSmithKline, Stevenage, UK, 5 Department of Computer Science and Engineering, 

Washington University in St. Louis, St. Louis, USA 

Chemical space is large, to the point of precluding its explicit enumeration. Thus, it represents a so-called 

intensionally defined design space. Search strategies for intensionally designed spaces are a current area of interest 

in machine learning. In the context of a drug design problem, we have investigated the application of a data-driven 

adaptive Markov chain approach, where the acceptance probability is given by a probabilistic surrogate of the target 

property, modelled with a maximum entropy conditional model.[1,2] We apply the approach to a lead discovery search 

for inhibitors of an αv integrin, using a molecular docking score as the optimisation function. αv integrins are 

currently an important target for the treatment of a number of fibrotic diseases e.g. idiopathic pulmonary fibrosis, an 

increasingly prevalent lung disease. These integrins are large, bidirectional transmembrane signalling proteins that 

share a common RGD binding motif. Our algorithm is (i) soundly based in machine learning; (ii) proposes structures 

from an implicitly defined space of potential designs; (iii) is guaranteed to converge; and (iv) achieves a large 

structural variety of proposed target structures, some of which provoke significant interest from a medicinal 

chemistry perspective. 

 

Figure 1. Overview of the machine learning alogirthm used. 

The algorithm is summarised in Figure 1. The parent compound (Figure 2) is substituted, with a  bias  toward  lower  

molecular  weight,  along  with  other  restrictions  from  synthetic and medicinal chemistry considerations. The 

Markov chain Monte Carlo algorithm is designed to propose compounds that maximally increase the known 

information. This is achieved by accepting new compounds according to a Metropolis criterion based on an estimate 

of theprobability the current model predicts the compounds as hits. Once the Markov chain has been sufficiently 

mixed, the compound is evaluated in silico and the information returned used to update the model. This iterates until 

a number (budget) of evaluations has been reached. Using this active algorithm shows, with as few as 100 

evaluations, an approximately two-fold improvement in predicting hits over standard Monte Carlo. 

Molecules are represented as nodes (atoms) and vertices (bonds), i.e., as graphs, according to the Weisfeiler-Lehman 

graph kernel. Compounds are proposed and generated by the algorithm and passed to the in silico ‘oracle’, where 3D 

coordinates are generated and the protonation state is set to that at pH 7.4. Conformers are generated using OpenEye 

Omega. These are passed to the molecular docking program, OpenEye FRED[3], to be docked to an αvβ6 crystal 

structure, 4UM9, from the RCSB database. The search space was centred on the Thr221 residue in the centre of the 

binding site and extended past important features, the Mg2+ ions and the Asp218 residue. This gave a total search 

volume of 17,010Å3. The search was performed using the chemgauss4 scoring function with a final grid spacing of 

0.5Å. 
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A docked compound can be seen in Figure 3, showing a 3-Cl substituent. Important interactions with the Asp218 

residue and chelation with the central Mg2+ are present, with distances of 1.83 Å and 2.65 Å, 2.94Å, respectively. 

Across five simulations, with a search space of around 185,000 compounds and an oracle budget of 500, compounds 

with high activity from previous synthetic efforts[4] were discovered, some multiple times[2] in addition to previously 

mentioned novel compounds of significant interest to medicinal chemists. 

  

Figure 2. The parent compound considered in this 

study; green circles denote points where substituents 

could be attached. 

Figure 3. 3-Cl substituent docked in the binding site, 

Mg2+ shown as CPK and Asp218 as stick, displayed 

using OpenEye VIDA. 

1. Oglic, D.; Garnett, R.; Thomas, G. Active Search in Intensionally Specified Structured Spaces. Proc. 31th 

Conf. Artif. Intell. (AAAI 2017) 2017, 2443–2449. 

2. Oglic, D.; Oatley, S. A.; Macdonald, S. J. F.; McInally, T.; Garnett, R. Active Search for Computer-Aided 

Drug Design. Mol. Inform. 2018, In Press. 

3. McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2011, 51 (3), 

578–596. 

4. Adams, J.; Anderson, E. C.; Blackham, E. E.; Chiu, Y. W. R.; Clarke, T.; Eccles, N.; Gill, L. A.; Haye, J. J.; 

Haywood, H. T.; Hoenig, C. R.; Kausas, M.; Le, J.; Russell, H. L.; Smedley, C.; Tipping, W. J.; Tongue, T.; 

Wood, C. C.; Yeung, J.; Rowedder, J. E.; Fray, M. J.; McInally, T.; Macdonald, S. J. F. Structure Activity 

Relationships of αv Integrin Antagonists for Pulmonary Fibrosis by Variation in Aryl Substituents. ACS 

Med. Chem. Lett. 2014, 5 (11), 1207–1212. 

 

C-12: Conformational sampling of macrocycles in both the solid- and solution-states 

Paul C. D. Hawkins 1 & Stanislaw Wlodek 1 
1 OpenEye Scientific, Santa Fe, USA. 

Molecules containing large rings, or macrocycles, have become of greater and greater interest to the drug discovery 

community over the past decade. A key part of productively exploiting this class of molecules as therapeutics is 

understanding their conformational landscape, and there have been a number of different approaches to this problem 

presented recently.1,2 Here we will present a new approach to macrocycle conformation sampling based on distance 

geometry, OMIGEN. In the most extensive comparison performed to date in this area we evaluate OMIGEN against 

a wide variety of other algorithms in reproducing conformations found in the solid-state, the most popular approach 

to validating conformer generators.  

While conformations found in the solid-state are easy to validate against, and are relevant to a number of problems 

in macrocycle design, including pose prediction by docking and structure-guided lead optimization, generating 

conformations relevant to the solution state is also important. We will present preliminary data on the use of distance 

geometry to generate conformations consistent with experimental data from NMR experiments. 
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1. Sindikhara, D.; Spronk, S. A.; Day, T.; Borrelli, K.; Cheney, D. L.; Posy, S. L. Improving Accuracy, 

Diversity and Speed with Prime Macrocycle Conformational Sampling. J. Chem. Inf. M odel. 2017, 57, 

1881-1894. 

2. Coutsias, E. A.; Lexa, K. W.; Wester, M. J.; Pollock, S. N.; Jacobsen, M. P. Exhaustive Conformational 

Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics. J. Chem. Theory Comput. 2016, 

12, 4674-4687. 

 

 

C-13: Automated Fragment Evolution (FrEvolAted) Applied to Fragments Bound to 
NUDT21  

Moira Rachman 1, Serena Piticchio 1, Xavier Barril 1,2   

1 Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Av. Joan XXIII 27-31, 

08028 Barcelona, Spain, 2 Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís 

Companys 23, 08010 Barcelona, Spain  

In the last twenty years, FBDD has proven to be a successful method, evident from resulting drugs that have already 

been marketed and those currently undergoing clinical trials.1 FBDD is an appealing approach due to its ability to 

explore a broader chemical space, however, once a fragment has been found to bind, growing the fragment into a 

lead-like compound is a challenge.2,3  

For this reason, we have developed FrEvolAted (Automated Fragment Evolution), a computational procedure that 

automatically evolves fragments into lead-like molecules, whereby, the evolved ligands are extracted from 

commercially available or synthetically tractable ligand databases. The FrEvolAted workflow (Figure 1) includes, I) 

similarity searching of ligands containing a maximum of two heavy atoms more, II) tethered docking with rDock4, 

whereby the main scaffold does not deviate from the initial fragment, III) dynamic undocking (DUck5) utilizing 

crucial receptor-ligand information and IV) MMGBSA-minimization for consensus scoring. In this work, we apply 

FrEvolAted to fragments bound to the NUDT21 protein provided by XChem and compare the results to a more 

traditional fragment growing approach in terms of hit rate and novelty.   

 

Figure 1. Schematic overview of the FrEvolAted (Automated Fragment Evolution) platform.   

1. Erlanson, D. A.; Fesik, S. W.; Hubbard, R. E.; Jahnke, W.; Jhoti, H. Nat. Rev. Drug Discov. 2016.  

2. Schulz, M. N.; Hubbard, R. E. Curr. Opin. Pharmacol. 2009, 9 (5), 615–621.  

3. Hall, R. J.; Mortenson, P. N.; Murray, C. W. Prog. Biophys. Mol. Biol. 2014, 116 (2–3), 82–91.  

4. Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; 

Barril, X.; Hubbard, R. E.; Morley, S. D. PLoS Comput. Biol. 2014, 10 (4), 1–7.  

5. Ruiz-Carmona, S.; Schmidtke, P.; Luque, F. J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray, 

J.; Hubbard, R.; Barril, X. Nat. Chem. 2017, 9 (3), 201–206.  
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D-1: Hit Dexter 2.0: Machine Learning for Triaging Hits from Biochemical Assays 

J. Kirchmair 1, C. Stork 1, J. Wagner 1, N.-O. Friedrich,1 C. de Bruyn Kops1 and M. Šícho 1,2 
1 Universität Hamburg, MIN Faculty, Department of Computer Science, Center for Bioinformatics, 

Hamburg, Germany, 2 CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Laboratory of 

Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology 

Prague, Prague, Czech Republic 

High-throughput screening is a key technology in early drug design that enables the experimental testing of tens of 

thousands of compounds per day.1 However, false-positive signals triggered by badly behaving compounds—

frequent hitters, pan-assay interference compounds (PAINS), aggregators and others—continue to pose a major 

pitfall in early drug discovery and still lead to a substantial number of false hits reported as valid active compounds 

in the scientific literature.2 Few computational approaches that allow the identification of badly behaving compounds 

exist, and those that do offer limited applicability and accuracy. 

In this contribution we report the further development of Hit Dexter, a free web service that allows the identification 

of badly behaving compounds with high accuracy.3 The initial release of Hit Dexter included two extremely 

randomized tree classifiers trained on a well-prepared dataset of 311k compounds that have been tested on at least 50 

different proteins. Hit Dexter is able to discriminate non-promiscuous from promiscuous and highly-promiscuous 

compounds of large external test sets with MCC and AUC values of up to 0.67 and 0.96, respectively. 

Since the initial release of Hit Dexter we have refined the data preparation and modeling procedures. We have also 

added several new components that allow, e.g., the identification of true promiscuous binders that may be of 

particular interest in the context of polypharmacology and drug repurposing. In this talk we will also provide 

evidence that the reach and accuracy of the established methods for the identification of badly behaving compounds 

are not sufficient and showcase their limitations in case studies. 

The talk will conclude with the introduction of the Hit Dexter 2.0 web service, which, for the first time, will provide 

researchers a simple tool for testing the likelihood of their hit compounds of being (i) true promiscuous binders, (ii) 

badly behaving compounds or (iii) “dark chemical matter”. Importantly, Hit Dexter 2.0 reports detailed information 

on the data underlying a prediction, which will enable researchers to make better-informed decisions on the further 

perusal of their hit compounds. 

1. Macarron, R.; Banks, M. N.; Bojanic, D.; Burns, D. J.; Cirovic, D. A.; Garyantes, T.; Green, D. V. S.; 

Hertzberg, R. P.; Janzen, W. P.; Paslay, J. W.; Schopfer, U; Sittampalam, S. Impact of High-Throughput 

Screening in Biomedical Research. Nat. Rev. Drug Discov. 2011, 10, 188–195. 

2. Baell, J.; Walters, M. A. Chemistry: Chemical Con Artists Foil Drug Discovery. Nature 2014, 513, 481–

483. 

3. Stork, C.; Wagner, J.; Friedrich, N.-O.; de Bruyn Kops, C.; Šícho, M.; Kirchmair, J. Hit Dexter: A 

Machine-Learning Model for the Prediction of Frequent Hitters. ChemMedChem 2017, DOI 

10.1002/cmdc.201700673. 

 

D-2: Recent Advances in Chemical and Biological Search Systems: Evolution vs. 
Revolution 

R. A. Sayle 1, J. W. Mayfield 1, N. M. O’Boyle 1 
1 NextMove Software, Cambridge, United Kingdom 

The fields of cheminformatics and bioinformatics are both embroiled in perpetual wars against the exponential 

growth of the scientific data on which they build.  The number of small molecules available to chemists and of 

sequences (and genomes) analyzed by biologists appear to double at astounding rates.  For example, the number of 

“make-on-demand” molecules available for purchase from Enamine doubles every 6 months (from 171M in April 

2017, to 337M in October 2017, to 647M in April 2018).  This rate of increase is significantly faster than the rates of 

technological hardware advances, such as those predicted by Moore’s law, creating an ever increasing challenge to 

scientific researchers and the informatics and IT groups that support them. 
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The fundamental crux of the problem is that the performance of many applications typically scales proportionally to 

the size of the input data, a situation termed O(n) in computer science.  This means that if a database grows to ten 

times its original size, searching it takes ten times as long (or requires ten times as many computers).  This presents 

two possible strategies; to either make the existing O(n) searches as fast as possible, or to radically change the 

approaches used by switching to “sublinear” methods which have better scaling properties.  In this presentation, we 

term these strategies “evolution” and “revolution” respectively, and describe examples of recent progress in both. 

Chemical similarity searching, using the Tanimoto coefficient to compare binary ECFP fingerprints, is an example 

of O(n) search.  Despite much research effort, and attempts to apply advanced spatial indexing data structures, all 

modern chemical database search systems need to inspect the majority of a database when searching for non-trivial 

numbers of nearest neighbor compounds.  Hence state-of-the-art search systems such as ChemAxon’s madfast and 

Dalke Scientific’s ChemFP attempt to solve the problem by pure brute-force speed.  In this talk, we describe the use 

of optimizing Just-In-Time compilation and advanced sorting techniques to push modern multicore hardware, such 

as Intel/AMD CPUs and NVidia GPUs as fast as they (their memory) will go. 

A more revolutionary strategy in 2D chemical similarity searching is the use of graph databases to greatly accelerate 

the calculation of the Graph Edit Distance (GED) [and Maximum Common Subgraph (MCS)] between query 

molecules and their nearest neighbors in a chemical database.  At the cost of pre-calculating and storing a large 

number of subgraphs, chemical database searching then requires consideration of only a tiny fraction of the original 

database.  This significantly sublinear behavior promises to solve the challenge of exponential database growth.  We 

report progress on constructing a graph database index of chemical space with less than 99 bonds, which currently 

contains about 200 virtual subgraphs for each real input molecule, and which corresponds to over 80 billion 

subgraphs, but requires only 6 terabytes of disk space using advanced compression techniques.  This space-time 

tradeoff would have been impractical a few years ago, but can fit on an single external USB disk today, and should 

even fit in memory (RAM) within the next few years. 

A similar space-time tradeoff is also applicable to the problem of bioinformatics sequence searching.  The traditional 

O(n) sequential scan approaches of BLAST and FASTA can sometimes be replaced with a more efficient sublinear 

search based upon a data structure known as a suffix array.  This data structure effectively encodes all of the 

subsequences in a database efficiently, in much the same way as the chemical subgraphs above.  Although suffix 

arrays have been known for some time, recent advances in storage technology now make them practical for protein 

sequence applications, though such indexing of typical nucleic acid and genomic sequences (probably) remains 

impractical. 

Exponential database growth will always be a technical challenge but evolutionary strategies offer to hold off the 

inevitable in the short term and revolutionary strategies promise a longer-term solution. 

 

D-3: Advancing Automated Synthesis Via Reaction Data Mining and Reuse  

C. A. Nicolaou, T. Masquelin, J. Wang   
 Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN 46285, USA  

Ongoing attempts to identify optimal synthetic routes for compounds of interest, prepare virtual libraries of 

synthesizable compounds1 and automate drug design2 require better tools for synthesis predictability as well as 

robust synthetic route planning and optimization approaches. Algorithmic advances combined with the availability 

of large collections of reaction data has enabled the development of several computational tools for chemical 

synthesis support ranging from simple organic reaction lookup to rule-based reaction planning and retrosynthetic 

analysis3. Of particular interest are retrosynthetic analysis (RA) tools which design synthetic routes by recursively 

identifying synthesizable chemical bonds in a target structure, removing a bond, converting the resulting fragments 

to the necessary reactants and checking for reactant availability. Typical RA methodologies may provide multiple 

theoretical synthetic routes for a target structure and, often, require human expert knowledge to define reaction 

mechanisms and synthesizable bonds to break. Expert chemists are also the recipients of such system results and are 

tasked with the assessment of the proposed routes and the selection of the one(s) with the highest feasibility 

potential. Recent advances in automated synthesis systems4 presents an opportunity to fully automate compound 

design-to-synthesis by submitting select routes for robotic execution. In order to achieve this goal the most 

appropriate route for each target needs to be identified and custom reaction execution workflows need to be 

implemented.   
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In this presentation we describe our efforts to (i) mine corporate reaction data, stored in electronic laboratory 

notebooks (eLN) and automated synthetic systems databases, and compile a corporate synthetic knowledge 

repository; (ii) develop a data-driven RA engine aiming to provide feasible synthetic routes for input chemical 

structures; (iii) assess the proposed synthetic routes using a neural network predictive model to select samples for 

automated synthesis execution. We thoroughly discuss our reaction mining process, the implementation and design 

of our RA engine and the deep learning approach used for synthetic route feasibility assessment. We present results 

from the training of the RA engine using a patent reaction dataset and the application to a collection of approved 

drugs. The RA tool, originally developed to serve in-house needs, is provided to the cheminformatics community in 

an effort to facilitate research in synthetic route design and reaction informatics in general. A discussion on lessons 

learned, issues to be resolved, and future development directions including ongoing work to instantiate system-

specific synthetic workflows for automated synthesis execution concludes the presentation.  

1. Nicolaou, C. A.; Watson, I. A.; Hu, H.; Wang, J. The Proximal Lilly Collection: Mapping, exploring and 

exploiting feasible chemical space. J. Chem. Inf. Model. 2016, 56 (7), 12531266.  

2. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2017.  

3. Ravitz, O. Data-driven computer aided synthesis design. Drug Discov. Today: Technol. 2013. 10(3), 443-

449.  

4. Godfrey, A. Masquelin, T. Hemmerle, H. A remote-controlled adaptive medchem lab: an innovative 

approach to enable drug discovery in the 21st Century. Drug Discov. Today 2013, 18, 795−802.  

 

D-4: Revealing important Molecular Fragments in Drug Discovery Using Time Trend 
Analyses  

B. Zdrazil 1, N. Brown 2, R. Guha 3  
1 Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria,  2 BenevolentAI, 

London, UK, 3 National Center for Advancing Translational Sciences (NCATS), National Institutes of 

Health (NIH), Rockville, Maryland, US  

Recently, we analysed data from ChEMBL1 to examine the evolution of scaffold-derived properties, such as the 

number of enumerated compounds, biological activity, and liabilities, over 17 years. Our analysis highlights that 

certain properties such as the number of enumerated compounds, but not liabilities, show statistically significant 

increasing trends for some scaffolds. We also attempted to explain why a scaffold receives more attention over time 

and highlighted that obvious aspects such as synthetic feasibility do not explicitly drive attention.2 A parallel 

investigation on the origins of three-dimensionality in drug-like molecules, revealed a tendency towards molecular 

planarity.3  

Next, we were interested how different parameters for drug-likeness (such as QED, Lipinski rules), molecular 

complexity (such as Fsp³, Principal moment of inertia, Plane of best fit), and solubility have evolved over time. After 

fragmentation of the data compounds were grouped by fragment. Next, we examined the trends of these drug-

discovery relevant properties per fragment. We were interested how well the investigated parameters correlate on 

average and per fragment and which parameters have experienced greatest changes over time. Also, differences in 

the time trends for the major target classes were investigated.   

In summary, trend analyses inform on distinct tendencies in drug-discovery related properties. This analysis can 

suggest directions that the drug discovery community is heading, in terms of relevant fragment and property space. 

In addition, such analyses support the prioritization of fragments in small molecule development projects.  

1. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; 

Bellis, L. J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M. P.; Overington, J. 

P.; Papadatos, G.; Smit, I.; Leach, A. R. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45 

(Database issue), D945–D954.  

2. Zdrazil, B.; Guha, R. The Rise and Fall of a Scaffold: A Trend Analysis of Scaffolds in the Medicinal 

Chemistry Literature. J. Med. Chem. 2017 Dec 27.  

3. Meyers, J.; Carter, M.; Mok, N. Y.; Brown, N. On the Origins of Three-Dimensionality in Drug-like 

Molecules. Future Med. Chem. 2016, 8 (14), 1753–1767.  
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E-1: Strategies for assembling an annotated library for phenotypic screening 

H. Willems 1, S. Andrews1, S. Ashenden2, A. Bender2, A. Gandhi-Kohli 2, A. Merritt3, C. 

Mpamhanga3, J. Skidmore1, P. Sterk 1 
1 Alzheimer’s Research UK Drug Discovery Institute and  2 Centre for Molecular Informatics, University 

of Cambridge, Cambridge, UK, 3LifeArc, Stevenage, UK 

Phenotypic drug discovery involves screening with a functional cellular assay or a cell-based disease model, where 

the specific molecular target is not known. This approach can be more representative of the human disease than a 

target-based assay, but when screening small molecules, subsequent optimization steps can be more difficult because 

there is no protein structure or pharmacophore hypothesis to guide design. One approach to identifying which target 

mediates the response observed for a phenotypic hit is to screen an annotated, or chemogenomic, library. This is a 

collection of small molecules that are known to interact relatively selectively with their primary target. Ideally, 

compounds in an annotated library would be potent, selective, cell permeable and soluble. Multiple, structurally 

diverse ligands with affinity for the same target can be included to help target deconvolution.  

This report describes our efforts to create an annotated library for phenotypic screening by mining the ChEMBL23 

database and the issues we encountered along the way. A key decision point in the process was the definition of 

selectivity: how many targets does a compound need to be tested at before selectivity is a meaningful concept? What 

is an acceptable number of targets to hit if a compound has been in lots of assays? Is selectivity over subtypes 

important for a phenotypic library? Another point of discussion was how to achieve a wide target coverage. GPCR 

and kinase targets have many ligands, and could be overrepresented. Other target types only have few known 

ligands, and target diversity may need to be traded off against drug-likeness of the annotated ligands. Also, several 

tool compounds from our internal collections were not in ChEMBL. This raises questions on what is missed by 

focussing on ChEMBL as a datasource, and what other datasources could be explored.  

On the technical side, we used SQL to extract all potent (<300 nM in a binding assay) small molecules (MW <1000) 

from ChEMBL . A window score and ranking score were then calculated in R using an algorithm published by Bosc, 

Meyer and Bonnet1 to assess selectivity. The scored output  was then processed in KNIME to extract 3 sets of 

‘selective’ compounds: those with 100-fold selectivity over the second best target; those that were tested at more 

than 20 targets and were less than 100-fold selective at no more than 10% of these; and those that had 10-fold 

selectivity over 1 target and > 100-fold over at least 1 other. The 30,000 selective compounds and all potent SGC 

and chemical probe tools compounds2 were checked for commercial availability and pushed through a further 

KNIME workflow to select the most potent and/or selective structures for each target. The library’s target coverage 

was assessed using iTol3. Coverage for GPCR and kinase targets is shown in Figure 1. A total of 448 compounds 

were selected for purchase, covering 297 targets.  

 

Figure 1. GPCR family (left) and kinase family (right) target coverage for the annotated library. The bars on the 

outside of the circle indicate the number of ligands that have been included in the library for that target 
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1. Bosc, N., Meyer, C., Bonnet, P. The use of novel selectivity metrics in kinase research. BMC 

Bioinformatics 2017, 18, 17-29. https://doi.org/10.1186/s12859-016-1413-y 

2. http://www.thesgc.org/chemical-probes; http://www.chemicalprobes.org/ 

3. Letunic, I. and Bork, P. Interactive Tree Of Life (iTOL) v3: an online tool for the display and annotation of 

phylogenetic and other trees. Nucleic Acids Res 2016 doi: 10.1093/nar/gkw290  

 

E-2: Targeting of the disease related proteome by small molecules 

Modest von Korff, Thomas Sander 

Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland, 

How many disease related proteins encoded by the human genome have been already targeted by small molecules? 

This is an open question of high interest in the pharmaceutical industry. Nowadays, databases like ChEMBL and 

SwissProt can be used to answer the question. However, an in-depth analysis of the targets available in the ChEMBL 

database showed that many proteins used in biological test assays were derived from species other than human. This 

triggered a second question. What is the similarity of the human proteins to their non-human counterparts that were 

used for biological testing? If the homology between the human protein and its non-human analog is high enough, it 

can be assumed that the ligand space of both proteins overlaps.  

An exhaustive analysis of the actual ChEMBL 23 library was done to answer these two questions in the dimensions 

of chemical space and proteome space. All molecules in the ChEMBL 23 library were mapped to their target 

proteins. Scaffolds of all mapped compounds were analyzed. From the mapped compounds, the scaffolds were 

analyzed. For all target proteins, the most similar ones from the human genome were searched with the BLAST 

engine from SwissProt. It is a rule of thumb in molecular modeling that up to a BLAST similarity of 0.4 two proteins 

are similar enough to allow homology modeling. The disease related proteome was compiled by the Gene2Disease 

tool.1 This in-house tool relates all approved genes by the Human Genome Organisation Gene Nomenclature 

Committee with all diseases defined by the MeSH tree from the NIH. Gene2Disease analyzed approximately 26 

million records available in the PubMed database to detect protein-gene-disease relations.  

Results of the analysis were captured in a large and sparse ChemProteome matrix, with rows containing molecular 

structures and columns containing disease related proteins connected to the respective diseases. If the biological 

activity of a small molecule was tested on a target protein, the corresponding field in the matrix was filled with the 

biological test value. Analysis of this matrix  showed that no bioactivity value was found in the ChEMBL database 

for > 80% of disease related proteins. Including the chemical space which covered homologous proteins did not 

significantly increase the percentage of covered proteome.  

In conclusion, there is a huge unexplored chemical space potentially targeting disease related proteome. Many 

protein targets are waiting to be exploited, while our ChemProteome matrix shows which potential non-exploited 

targets are linked to diseases. 

1. Korff, M. v.; Fink, T.; Sander, T., A new relevance estimator for the compilation and visualization of 

disease patterns and potential drug targets. In Pacific Symposium for Biocomputing, Hawaii, 2017. 

 

http://www.thesgc.org/chemical-probes
http://www.chemicalprobes.org/
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E-3: Gearing Transcriptomics Towards High-throughput Screening: Compound 
Shortlisting From Gene Expression using in silico information 

Natalia Aniceto 1,2, Andreas Bender 1, Florian Nigsch 2 
1 Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom, 2 Chemical 

Biology and Therapeutics Informatics, Novartis, Basel, Switzerland. 

The ability to efficiently screen large libraries compounds in order to find candidates that will exhibit a specific gene 

expression profile of interest is potentially very useful, and doing so without requiring experimental data is very 

appealing. Here we propose a new approach that creates shortlists of compounds for a query gene expression 

signature. This approach uses a previously proposed variant of the k-NN procedure (called variable-NN) where a test 

signature results from the weighted average from the signatures of surrounding neighbours.1 However we propose an 

added modification to this method, where predicted signatures are submitted to a quality (or confidence) criterion 

based on standard deviation of predictions.  

Two transcriptomics datasets were used in this work, LINCS2 and a Novartis internal transcriptomics panel 

(PANOMICS), and two different similarity measures were tried, calculated from structural and biological (predicted) 

signatures, in order to explore the feasibility of a recently available in silico biological signature.3  

The signatures for the full dataset, obtained from the variable-NN procedure, were ranked by similarity to target 

(desired) signatures. This process showed to consistently enrich the top of the ranked compound lists with the 

compounds that match each of the target signatures. Obtained median ranking percentiles of true compound-

signature matches, which were originally consistent with random sorting when confidence is not taken into account, 

were as high as 90% when confidence was used to correct similarity. This translates into obtaining shortlists formed 

of the top 10% of ranked compounds that are likely to contain the best compound candidate. This process allows 

filtering target signature queries according to reliability in such a way that correlates with compound enrichment, 

and different levels of trade-off between coverage and compound enrichment can be selected by the user.    

The use of confidence criteria to filter signatures was pivotal in the ability to enrich the top of the ranked lists with 

the compounds correctly matching the target signatures, where, for example, we were able to locate 20% of the 

LINCS signatures for which a shortlist formed by the top 10% of the full compound list would likely contain the 

compound that more closely yields each of those query signatures. This approach allows locating candidates for a 

target gene signature purely from in silico information, thus enabling high-throughput virtual screening of 

compounds libraries to find compounds associated with a gene expression profile of interest. 

1. Liu, R.; AbdulHameed, M. D. M.; Wallqvist, A. Molecular Structure-Based Large-Scale Prediction of 

Chemical-Induced Gene Expression Changes. J. Chem. Inf. Model. 2017, 57, 2194–2202. 

2. Subramanian, A.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 

Profiles. Cell. 2017, 171, 1437–1452.e17. 

3. Martin, E. J.; Polyakov, V. R.; Tian, L.; Perez, R. C. Profile-QSAR 2.0: Kinase Virtual Screening Accuracy 

Comparable to Four-Concentration IC50s for Realistically Novel Compounds. J. Chem. Inf. Model. 2017, 

57, 2077–2088. 

 

E-4: Discrimination of G–protein coupled receptors and their conformational states 
using intramolecular interaction  

F. Koensgen 1, F. Da Silva, E. Kellenberger 
1 Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS- University of STRASBOURG, 

 2 Medalis Drug Discovery Center, Illkirch, France 

G–protein coupled receptors (GPCR) are membrane receptors able to transmit stimuli to cells. The molecular 

mechanism of signal transmission involves the receptor coupling to effector in response to ligand binding, and this 

depends on the receptor conformational state. To date, the 3D-structures of 50 different GPCRs have been 

characterized by X-ray crystallography and the dynamics of some of them have been extensively studied by 

molecular dynamics simulation, suggesting general mechanism of activation/inactivation.1 
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Here we propose a new method to compare different GPCR structures, independently of predefined structural or 

functional determinants. This method is based on the detection and comparison of intramolecular non-covalent 

interactions in the seven transmembrane domains (TM).  

In more details, the analysis of a 3D–structure involves the extraction of TM coordinates followed by the 

representation of hydrogen bonds (labeled with inter–helix or intra–helix, and with with sidechain or within 

backbone), ionic bonds and aromatic bonds as either a graph or a fingerprint built from Ballesteros-Weinstein 

numbering.2 Comparing two 3D–structures does not require that they are described in a common frame. Two graphs 

are aligned for the bestfit superimposition of the maximum common substructure. Similarity between two 

fingerprints is calculated using the Tanimoto coefficient.   

We have applied the method to the classification of 215 GPCR structures available in the Protein DataBank. 

Networks built from the comparison of graphs showed that with sidechain inter/intra–helix hydrogen bonds are 

sufficient to differentiate GPCRs. All polar interactions except within backbone intra–helix hydrogen bonds well 

differentiate the activation states of a GPCR. Global analysis of interactions suggested specific signatures of GPCRs 

and their activation state. 

We have also applied the method to the analysis of two molecular dynamics trajectories where a GPCR experiences 

a transition from the active to the inactive state3,4 The all-against all comparison of frames delimited a few clusters. 

The characterization of clusters by consensus interaction fingerprints revealed which interactions are state–specific. 

In conclusion, we developed a new method able to discriminate GPCR from a simplified 3D-representation (8-46 

interaction points). The same approach also distinguishes conformational states, and has proved to successfully 

cluster and describe the conformational states generated by molecular dynamics simulation.  

1. Manglik, A.; Kobilka, B. The Role of Protein Dynamics in GPCR Function: Insights from the Β2AR and 

Rhodopsin. Curr. Opin. Cell Biol. 2014, 27, 136–143. 

2. Desaphy, J.; Raimbaud, E.; Ducrot, P.; Rognan, D. Encoding Protein–Ligand Interaction Patterns in 

Fingerprints and Graphs. J. Chem. Inf. Model. 2013, 53 (3), 623–637. 

3. Miao, Y.; McCammon, J. A. Graded Activation and Free Energy Landscapes of a Muscarinic G-Protein–

coupled Receptor. Proc. Natl. Acad. Sci. 2016, 113 (43), 12162–12167. 

4. Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. C.; Xu, H.; Borhani, D. W.; Shaw, D. E. 

Activation Mechanism of the Β2-Adrenergic Receptor. Proc. Natl. Acad. Sci. 2011, 108 (46), 18684–

18689. 
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F-1: Comparison and Analysis of Molecular Patterns on the Example of SMARTS 

Robert Schmidt 1, Emanuel S. R. Ehmki 1, Matthias Rarey 1 
1 Universität Hamburg, ZBH – Center for Bioinformatics, Bundesstraße 43 20146 Hamburg, Germany 

Chemical patterns are widely used to filter structural properties in molecular design endeavors. These properties are 

defined in filter sets like PAINS[1] or company-specific filter lists[2]. Although frequently applied, filter sets and their 

use are currently under discussion[3]. For the analysis of filter sets, an algorithmic approach to compare chemical 

pattern with each other would be highly desirable, however, has not been published so far. Here we present a novel 

algorithm, its implementation and application for the calculation of pattern equality, inclusion, and similarity. 

SMARTScompare, the accompanying tool, allows for filter set analysis, pattern hierarchy verification and chemical 

pattern feasibility tests. 

A chemical pattern P can be understood as a description of the infinite set of all molecules matched by it. Two 

patterns can be considered equal or isomorphic when their molecule sets are the same. Based on the subset 

relationship between the sets of matched molecules, patterns can be characterized as more or less specific. Similarity 

of two patterns is expressed via a probability model for atom matching. Since these relations are defined by the set of 

molecules matched, they are independent of the language the patterns are formulated in. 

The comparison of molecular patterns is based on the following strategy: Within a chemical model, the spaces of all 

feasible atom or bond states are enumerated. Based on these enumerations, each node and edge of a chemical pattern 

can be described by a fingerprint representing all compatible atom or bond states. Equality, subset relations and 

similarity are easy to calculate on fingerprints. After the assignment of fingerprints, a maximum common subgraph 

(MCS) algorithm is applied resulting in the maximum common subpattern (MCSP). Based on the MCSP, subset 

relations and similarity scores are computed. The approach naturally allows for asymmetric similarity scores, 

providing an estimation of the coverage of one pattern in another. 

The algorithm is implemented in a new software named SMARTScompare designed for similarity assessments and 

subset classifications of SMARTS[4] patterns. It supports most of its features, including recursion and the negation of 

properties. Although possible in theory, isotopes, radicals and chirality are not supported by the algorithm so far. 

Besides pattern comparison, SMARTScompare detects chemically infeasible structures in patterns, meaning all 

kinds of incorrect valence states or impossible property combinations. Beyond that, redundant formulations of 

SMARTS recursion are detected. 

One main application of SMARTScompare is the analysis of structural filters for molecular screening applications. 

We analized similarity and pattern inclusion in between eight structural filter sets[5]. For example, quinone patterns 

showed high similarity scores and are manually labelled what makes them excellent test cases. Additionally, their 

heterosubstituted derivatives (e.g. quinonimines) cause complex patterns making them incredibly hard to read for 

humans. SMARTScompare found 14 patterns in seven filter sets including dyes with quinone-like substructures. 

Besides general pattern comparisons, SMARTScompare can verify hierarchically structured pattern collections. 

Knowledge-based conformation generation relies on statistical analysis of available data, like for example the 

Torsion Library[6]. SMARTScompare can verify an assigned class membership and even reorder patterns within such 

classes. We were able to identify a few examples of formerly missed subset relations. The software helps to avoid 

common mistakes when writing SMARTS and removes redundancy in recursive SMARTS patterns as well as 

pattern collections. Furthermore SMARTScompare allows for similarity search and in-depth discussion of patterns 

for similar structural properties. 

1. Bell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds 

(PAINS) from screening libraries and for their exclusion in bioassays  Journal of Medicinal Chemistry 

2010, 53, 2719-2740. 

2. Bruns, R.; Watson, I., Rules for Identifying Potentially Reactive or Promiscuous Compounds Journal of 

Medicinal Chemistry 2012, 66, 9763-9772 

3. Capuzzi, S.; Muratov, E. N.; Tropsha, Alexander, Phantom PAINS: Problems with the Utility of Alerts for 

Pan- Assay interference CompoundS Journal of Chemical Information and Modeling 2017, 57, 417-427. 

4. Daylight Theory Manual. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (accessed Feb. 

6, 2018) 

5. Gaulton, A.; Hersey, A.; Nowotka, M; et al. The ChEMBL database in 2017, Nucleic Acids Reseach 2017, 

45, D945-D054 

6. Schärfer, C.; Schulz-Gasch, T. Ehrlich, H.C.; Guba W.; Rarey M.; Stahl M., Torsion angle preferences in 

druglike chemical space: A comprehensive guide, Journal of Medicinal Chemistry 2013, 56, 2016-2028 

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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7. Schomburg, K; Ehrlich, H. C.; Stierand, K; Rarey, M., From Structure Diagrams to Visual Chemical 

Patterns, Journal of Chemical Information and Modeling 2010, 50, 1529-1535 

 

 

 

Figure 1: Results of the search for Quinones in the filter sets referenced by ChEMBL[5]. The pattern on the left is 

annotated as Quinone and was detected by SMARTScompare. The second pattern is not annotated as Quinone, but 

contains a Quinone substructure. The pattern on the right was not found by SMARTScompare. We consider its 

annotation as false or incomplete since it contains a quinomethane substructure. Pattern depictions are generated 

with SMARTSViewer[7]. 

 

F-2: Anisotropic Atom Reactivity Descriptors for the Prediction of Liver Metabolism, 
Ames Toxicity and Hydrogen Bonding 

Andreas H. Göller 1, Arndt Finkelmann 2, Lara Kuhnke 3, Christoph Bauer 2 
1 Bayer AG, Computational Chemistry, Wuppertal,Germany, 2 ETH Zürich, Dept. of Chemistry and 

Applied Biosciences, Switzerland, Zurich, Switzerland, 3 Bayer AG, Computational Chemistry, 

Berlin,Germany 

Contrary to many other ADMET properties of small molecules which are well-described by molecular descriptors, 

the identification of atoms susceptible to metabolic reactions or the activation of primary aromatic amines (pAA) via 

N-hydroxylation requires atomic reactivity descriptors and atomic resolution machine learning.     

We here report on the application of our recently developed sets of atomic descriptors that encode the anisotropic 

electron density distribution using conformation-independent quantum-mechanical atomic charge schemes (see 

Figure 1).1 

First example is site-of-metabolism prediction. We have extended our cytochrome P450 model2 to phase II 

metabolism by incorporation of about 25,000 carefully cleaned metabolic transformations from the Accelerys 

Metabolite database, resulting in cross-validated atom-position Matthews correlation coefficients of 0.61 and 0.76 

for phase I and phase II, respectively, and MCC of 0.41 for a validation set of recent compounds collected from 2015 

and 2016, not being part of the training set.   
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Figure 1: Anisotropic circular descriptors are created be either topological or 3D real-space binning of atomic 

properties like e.g. atomic charges (left) and mapping to a linear vector (right).   

Second example is the prediction of the activation of PAA in the Ames assay with S9 mix. There, the first reactive 

step is N-hydroxylation, leading finally to the formation of a reactive nitrenium ion that can bind to the negatively 

charged DNA. Here, we successfully combined an ECFC-6 fingerprint counts, HOMO-LUMO gap and an atom 

reactivity model. 

Third example is the prediction of maximal hydrogen bond acceptor strengths from chemical structure alone, again 

taking advantage of the anisotropy and conformer-independence of our novel descriptors, with the aim to extend the 

concept to the prediction of hydrogen bond donors.   

1. Finkelmann, A.R.; Göller, A.H.; Schneider, G. Robust molecular representations for modelling and design 

derived from atomic partial charges. Chem. Commun. 2016, 52, 681-684. 

2. Finkelmann, A.R.; Göller, A.H.; Schneider, G. Site of metabolism prediction based on ab initio derived 

atom representations. ChemMedChem, 2017, 12, 606-612. 

 

F-3: Exploring 3D molecular shape using spectral geometry 

M Seddon 1, D Cosgrove2, M Packer 3, V Gillet 1 
1 University of Sheffield, Sheffield, UK, 2 CozChemIx Limited, Macclesfield, UK, 3 AstraZeneca, 

Cambridge, UK 

Three-dimensional molecular shape is a key determinant of molecular interactions1. To date, widespread use of 3D 

similarity methods in drug development has been hampered by computational complexity surrounding structure 

alignment and molecular flexibility. Structure alignment is either carried out at runtime, thus incurring a computation 

cost, or avoided through the use of 3D shape descriptors, which results in a loss of information. Typically, 3D shape 

comparison treats the molecules as rigid bodies and flexibility is taken into account using conformation ensembles to 

sample conformational space, which significantly increases the computational cost of 3D similarity searching on 

large molecular databases.  

Spectral geometry provides a framework for exploring concepts of flexible 3D shape2. In brief, spectral geometry 

treats the surface of a 3D shape as a curved 2D surface and encodes the geometric properties in the spectrum of the 

Laplace-Beltrami Operator over that surface. The field of spectral geometry originates in 3D computer vision where 

typical use cases are to identify the same figure in different poses. These methods are of particular interest for high 

throughput virtual screening because they produce rich descriptors of 3D shape that are alignment-invariant and also 

invariant to a specific class of flexibility, called isometric deformation. Furthermore, the conceptual framework has a 

large amount of promise for investigating the relationship between 3D molecular shape and conformational variation 

in a mathematically robust manner. 

We have used the spectral geometry framework to explore the relationship between conformational variation and 

molecular shape. In particular, the extent to which the variation in conformational shape can be captured by the 

isometric deformation assumption was explored. Furthermore, the chemistry of these variations was investigated to 

identify the cases in which these methods are optimal. Our results suggest a method of determining when two 

conformations of a molecule are sufficiently different to be considered different shapes in spectral geometry. Finally, 

we implemented an alignment invariant shape descriptor for the purpose of high throughput virtual screening and 

compared its performance to open source implementations of a standard alignment based shape comparison method3 

and a shape descriptor4. We show that the spectral geometry descriptors outperform these methods using the 

Directory of Useful Decoys Enhanced5 (DUD-E) data set. 
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1. Nicholls, A.; McGaughey, G. B.; Sheridan, R. P.; Good, A. C.; Warren, G.; Mathieu, M.; Muchmore, S. 

W.; Brown, S. P.; Grant, J. A.; Haigh, J. A.; Nevins, N.; Jain, A. N.; Kelley, B. J. Med. Chem. 2010, 53 

(10), 3862–3886. 

2. Biasotti, S.; Cerri, A.; Bronstein, A.; Bronstein, M. Comput. Graph. Forum 2015, n/a-n/a. 

3. Grant, J. A.; Gallardo, M. A.; Pickup, B. T. J. Comput. Chem. 1996, 17 (14), 1653–1666. 

4. Ballester, P. J. Future Med. Chem. 2011, 3 (1), 65–78. 

5. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 2012, 55 (14), 6582–6594. 

 

 

F-4: Creating atom-to-atom mapping in chemical reaction using machine learning 
methods 

T. Madzhidov 1, A. Khayrullina 1, R. Nugmanov 1, I. Baskin 2, A. Varnek 3 

1 A.M. Butlerov Insitute of Chemistry, Kazan Federal University, Kazan, Russia, 2 Faculty of Physics, 

M.V.Lomonosov Moscow State University, Moscow, Russia, 3 Laboratory of Chemoinformatics, 

University of Strasbourg, Strasbourg, France 

The fundamental first step in the computer analysis of  chemical reactions is determination of the correspondence 

between atoms of substrats and products, called the atom-atom mapping (AAM). AAM is used to find the changing 

part of substrate and product molecules, i.e. the reaction center1. Knowing reaction center it is possible to run 

advanced reaction search, like substructure and similarity search, establish reaction type, etc. The most well-known 

and consummate algorithms are implemented in EPAM Indigo, Accelrys Automapper, JChem Standardizer and 

ICMap programs. All of them are based on maximum common substructure (MCS) detection; however other 

approaches exist as well1.  

Known programs are based on complex heuristics that guarantee correctness of AAM on most cases. Our idea was to 

create an algorithm that could learn how to create AAM based on known reactions with correct AAM. In this work 

we propose a novel approach to find optimal AAM that is based on application of machine learning techniques. The 

task is formulated as classification: for every pair of reagent-product atoms one need to establish whether their 

mapping is correct. To train the classifier for each reaction, pairs of atoms were generated that correspond to the 

correct and incorrect AAM. A simple probabilistic "Naive" Bayesian (NB) and shallow neural network (Multi-layer 

Perceptron) classifiers were used. The attribute vector for every reagent-product atom pair contains information on 

environment of both atoms, represented by fragment descriptors of different topology: sequences, augmented atoms 

and their combinations. For a given atom pair from the test set the probability that this pair corresponds to correct 

AAM is returned. Using Munkres algorithm mapping of atoms from product to reagent that correspond to maximum 

likelihood was identified. Special approaches were added to correctly handle molecular symmetry. 

The proposed approach was implemented and tested on 5 reaction types: substitution (SN2), elimination (E2), 

rearrangement (tautomeric transformation), cycloaddition (Diels-Alder) and esterification reactions. Cross-validation 

was used for validation of our approach and the ratio of correctly assigned AAM was used as a quality metric. Our 

approach was compared with other programs for AAM identification. Despite in this work we used the simplest 

machine learning methods it already showed quality at the level of commercial tools in the creation of AAM. The 

quality of produced AAM is almost the same as for ChemAxon Automapper on most datasets and in 4 of 5 reactions 

significantly outperforms Indigo Automapper. Failure in tautomeric reaction AAM creation by our approach is 

caused by the fact that dataset was small and diverse. For esterification reaction our approach outperforms both 

commercial tools.  

Thus, we proposed and implemented the first atom-to-atom mapping determination tool that learns how to create 

AAM on the basis of known reactions. 
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Fig.1 Percentage of correct AAM produced by our approach using Naïve Bayes classifier (NB A&B and NB 

AkronB, that differ in a way of fingerprint generation), shallow neural network (MLP A+B+A&B) vs commercial 

MCS-based tools ChemAxon JChem Automapper (ChemAxon) and EPAM Indigo Automapper. 

 

1. Chen, W. L.; Chen, D. Z.; Taylor, K. T. Automatic Reaction Mapping and Reaction Center Detection. 

Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013, pp 560–593. 
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P-01: Accelerating problem solving and decision making in medicinal chemistry 
through visualisation 

Paul C. D. Hawkins 1 & Krisztina Boda 1 
1 OpenEye Scientific, Santa Fe, USA. 

Modern ligand discovery and optimization projects, and chemists involved in those projects, rely heavily on complex 

three-dimensional data for success. Whether this data is obtained from experiment (structural data from 

crystallography), or computation (active site pose and interaction predictions, molecular simulations, quantum 

mechanics) it is valuable and frequently expensive to obtain. Efficient conversion of this 3D data into 

comprehensible information and then into actionable knowledge to drive the project is a problem that is exacerbated 

by a language barrier; the natural language of project chemists is 2D, while the native form of the highest value data 

that they use is 3D. 

Here we present an approach to the effective and efficient visualization of 3D data in 2D in order to accelerate the 

process of decision making in ligand design. Examples of this approach will be provided for data often analysed in 

2D (crystallography, pose prediction) and from methodologies that, while commonly used in medicinal chemistry, 

are not generally interpreted in 2D, including molecular dynamics and quantum mechanics. 
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P-03: Nanomaterial safety data integration with substance data model and federated 
search  

Nina Jeliazkova1, Nikolay Kochev1,2 , Vesselina Paskaleva2, Gergana Tancheva2, Penny 

Nymark3,4 , Margarita D. Apostolova5, Andrea Haase 6 
1Ideaconsult Ltd, 4 A. Kanchev str., Sofia 1000, Bulgaria, 2Department of Analytical Chemistry and 

Computer Chemistry, University of Plovdiv, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria, 3Karolinska 

Institutet,Institute for Environmental Medicine, Nobelsväg 13 Stockholm, Sweden, 4Misvik Biology, 

Toxicology Division, Karjakatu 35b, Turku, Finland, 5Medical and Biological Research Lab., Institute of 

Molecular Biology – Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, Sofia 1113, Bulgaria, 
6German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-

Dohrn-Strasse 8-10, 10589 Berlin, Germany 

The basis of most public chemical databases is the direct link between the chemical structure and properties. This 

paradigm has been used for several decades, providing a platform for virtual screening and modelling of the 

properties of small molecules. However this approach is too restrictive for many challenging cases, including 

nanomaterials and industrial chemicals, which may have complex compositions. The REACH definition of a 

substance encompasses all forms of substances and materials on the market, including nanomaterials. The 

nanomaterial safety assessment has become an important task following the growth in production of engineered 

nanomaterials (ENMs) and the increased interest in ENMs from various academic, industry and regulatory parties. 

Nanomaterials data management is also challenged by the lack of agreed representation of nanomaterials, e,g, the 

graph theoretic representation of well-defined chemical structures and linear notations such as SMILES and InChI 

are unsuitable for representing nanomaterials. We present experience with integrating large sets of nanosafety data 

generated from past NanoSafety Cluster projects with the help of a substance data model, implemented in the 

eNanoMapper database 1. This data model is also successfully used to handle chemical substances and safety data 

from ECHA dossiers 2.  

Data generated by multiple nanosafety projects is compiled, annotated and imported into separate eNanoMapper 

database instances. These databases offer a user friendly web interface and REST API 1 and serve as building blocks 

to provide federated search across all or subsets of the database instances, enabled by Apache Solr backend. The 

eNanoMapper ontology3 is used for harmonisation of the terminology and as a synonym list for query expansion. 

While multiple structured import formats are supported (IUCLID, RDF, JSON), the nanosafety data from past and 

ongoing projects use custom spreadsheet templates, currently encompassing over 1000 Excel files. Import of Excel 

files is enabled by a configurable parser that maps the spreadsheet data via external configuration files. Multiple 

export formats are supported, including tab delimited files, RDF and ISA-JSON. Free text and faceted search 

applications, with public and restricted access for different subsets of data, are available at 

https://search.data.enanomapper.net. The NanoReg2 integrated database (Figure 2) is online at 

https://search.data.enanomapper.net/nanoreg2  and allows project partners to access data from past EU FP7 funded 

projects (NANoREG http://www.nanoreg.eu/ , MARINA, NanoGenotox, Nanotest) through a common view and 

faceted search. The database is actively used by project partners, helping to identify and, where possible, resolve a 

range of data quality and completeness issues.  

Acknowledgment: This project has received funding from the European Union’s Horizon 2020 Research and 

Innovation programme under Grant Agreement No. 646221. 

1. Jeliazkova, N.; Chomenidis, C.; Doganis, P.; Fadeel, B.; Grafström, R.; Hardy, B.; Hastings, J.; Hegi, M.; 

Jeliazkov, V.; Kochev, N.; Kohonen, P.; Munteanu, C. R.; Sarimveis, H.; Smeets, B.; Sopasakis, P.; Tsiliki, 

G.; Vorgrimmler, D.; Willighagen, E. Beilstein J. Nanotechnol. 2015, 6, 1609–1634. 

2. Jeliazkova, N.; Koch, V.; Li, Q.; Jensch, U.; Reigl, J. S.; Kreiling, R.; Georgiev, I.; Hubesch, B. Toxicol. 

Lett. 2016, 258, S114–S115. 

3. Hastings, J.; Jeliazkova, N.; Owen, G.; Tsiliki, G.; Munteanu, C. R.; Steinbeck, C.; Willighagen, E. J. 

Biomed. Semantics 2015, 6 (1), 10. 

https://search.data.enanomapper.net/
https://search.data.enanomapper.net/nanoreg2
http://www.nanoreg.eu/
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Figure 2. Screenshot of NanoReg2 database free faceted search application. The material, composition and studies 

links for each nanomaterial entry lead to the corresponding eNanoMapper database instance. 

 

P-05: Can we agree on the structure represented by a SMILES string? A benchmark 
dataset 

N O’Boyle 1, J Mayfield 1, R Sayle 1 
1 NextMove Software, Cambridge, UK 

Let us start with a question for the reader: How many hydrogens are on the nitrogen in the molecule described by the 

SMILES string “N(C)(C)(C)C”? When we asked this question recently on Twitter, only two out of 25 respondents 

correctly answered. 

In February 1988, Dave Weininger published a description of the SMILES language in the Journal of Chemical 

Information and Computing Science,1 and in the 30 years since then, SMILES has become one of the de facto 

standards for exchanging chemical information. It has a concise yet expressive form that remains reasonably human-

readable, and it is convenient for a broad spectrum of use cases whether copying and pasting a single SMILES string 

into a webapp, or for storing millions of molecules in a database. As a result, SMILES readers and writers abound in 

every chemistry toolkit and application. 

Here we investigate to what extent these SMILES readers agree on the structure represented by a SMILES string. 

Our goal is to highlight corner cases and foster a consensus on their handling, with the ultimate goal of improving 

information exchange between chemistry tools. For this reason, we focus exclusively on SMILES reading – until we 

can agree on the meaning of a particular SMILES string, there is little point in discussing SMILES writing. 

Our benchmark dataset2 consists of almost 50 thousand scaffolds derived from structures in ChEMBL, and 

converted to aromatic SMILES by a variety of tools. The benchmark test itself is simple: each tool to be tested must 

read each SMILES string and report the number of hydrogens on each atom. 

We describe results for more than a dozen tools, from both the open source and commercial worlds, and highlight 

both the areas of contention and agreement. Furthermore, we show how testing against the benchmark has already 

led to improvements in several toolkits. 
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1. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and 

encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36. 

2. SMILES reading benchmark. https://github.com/nextmovesoftware/smilesreading (accessed Feb 15, 2018). 

 

P-07: Computational Studies of Integrin Inhibitors 

S. Alarfaji 1, T. McInally 1, S. Macdonald 2, J. Hirst 1 
1 School of Chemistry, University of Nottingham, UK, 2 GlaxoSmithKline, Stevenage, UK 

Compounds containing amides play a key role in the pharmaceutical industry and have been used widely in the 

treatment of diabetes and have been shown to limit tumour growth. Two- and three-dimensional quantitative 

structure-activity relationships (2D/3D-QSARs) were used to model the correlation between the physicochemical 

properties of some amides and their biological activity (pIC50) to predict the activities of new molecules. An 

autocorrelation based method, topological maximum cross correlation1 (TMACC), was employed to build our 2D-

QSARs models. We have generated models across four sets of data, ranging in size from 25 to 47 molecules on a 

number of integrins subtypes. The results were cross-validated using a leave-one-out (LOO) approach. Using partial-

least-squares regression PLS, a TMACC model with good predictive ability was generated based on training set of 

25 compounds and showed satisfactory statistical results ( , ). Other TMACC models for 40 

and 47 molecules were generated and showed similar but slightly lower predictivity: ( , , 

and ( , , respectively. 3D-QSARs models were also established for the same data sets using 

comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). 

The CoMFA and CoMSIA models were not sensitive to changes in the orientation of the amide structure. The 

TMACC QSARs showed better predictive ability than the 3D-QSARs. 

1. Melville, J.L.; Hirst, J.D., TMACC: Interpretable Correlation Descriptors for Quantitative Structure-

Activity Relationships. J. Chem. Inf. Mod., 2007, 47, 626–634. 

 

P-09: Fast prediction of the specific conductivity of electrolytes from the molecular 
structure of the solvent 

R. Bouteloup 1, D. Mathieu 1 
1 CEA Le Ripault, Monts 37260, France 

With the development of battery utilization in a lot of devices, the needs to improve their safety and performance are 

in expansion. For this purpose, new liquid electrolytes are investigated, which require new solvents and/or additives. 

In view of screening efficiently the chemical space for suitable candidate compounds, this work exposes a way to 

predict the specific conductivity of a nonaqueous electrolyte solution with a LiPF6 salt.  

The purpose of this method is to predict this property, quickly and simply, with only the 2D structure of each 

molecule of the solvent and their proportions as input parameters. To this aim, we have chosen the Casteel-Amis 

empirical equation 1 to represent the specific conductivity as a function of the salt concentration and the solvent 

composition.  

The four parameters of this equation can be related to properties of the solvent, since in our case, the salt is always 

the same. The two properties that determine the specific conductivity are the ionic mobility and the ionic association. 

To connect them with solvent properties, we approximate that these two can be represented on the basis of the 

viscosity and the dielectric constant of the solvent, respectively. If we can predict them for each solvent, we can 

calculate the specific conductivity. 

For the viscosity, we have developed an additive model, based only on the 2D structure of pure solvents. For the 

dielectric constant of pure compounds, we use the Fröhlich equation 2, that allows to calculate the dielectric constant 

from the molar volume, the refractive index and the orientational parameter gµ² (with µ the dipole moment). To this 

aim, we have developed additive models for these three properties. 
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Figure: Method to predict the 

specific conductivity from 2D 

structures 

 

1. Casteel, J. F.; Amis, E. S. Specific Conductance of Concentrated Solutions of Magnesium Salts in Water-

Ethanol System. J. Chem. Eng. Data 1972, 17, 55-59. 

2. Fröhlich, H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss, 2nd ed.; Oxford at the 

Clarendon Press, 1958. 

 

P-11: Identification of novel sodium-dependent glucose co-transporter 1 inhibitors 
using proteochemometrics  

Lindsey Burggraaff1, Paul Oranje2, Robin Gouka2, Pieter van der Pijl2, Marian Geldof2, Guus 

Duchateau2, Herman W.T. van Vlijmen1,3, Adriaan P. IJzerman1, and Gerard J.P. van Westen1  
1Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, 

Einsteinweg 55, 2333 CC, Leiden, The Netherlands, 2Unilever Research & Development, Olivier van 

Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands, 3Janssen Research & Development, 

Turnhoutseweg 30, 2340 Beerse, Belgium.  

Sodium-dependent glucose co-transporter 1 and 2 (SGLT1/SGLT2) are solute carriers responsible for glucose 

(re)absorption. SGLT2 is a target in the treatment of diabetes type 2 because of its high glucose transporting capacity 
1,2. Additionally, dual inhibitors blocking both SGLT1 and SGLT2, are currently in clinical development 3,4. SGLT2 

blockers exert their function at the renal tubules, whereas SGLT1 is mainly present at the apical side of the small 

intestine 5. In contrast to SGLT2, selective SGLT1 inhibitors have not yet been marketed and are relatively little 

explored.  

Here we aim at finding novel SGLT1 inhibitors to reduce intestinal dietary glucose absorption. We hypothesize that 

inhibition of intestinal SGLT1 requires a lower effective dose compared to inhibition of renal SGLT as the inhibitor 

is not subject to absorption, distribution and metabolism before reaching its target at an effective concentration. 

Solute carriers are complex and their hydrophobic nature in the cell membrane makes them difficult to crystalize. 

Hence, we applied machine learning to detect novel SGLT1 inhibitors as it does not require structural information 6. 

We performed proteochemometrics by implementing 1D protein information into our models using Zscales 7,8.  

We obtained a predictive model with a Matthews correlation coefficient of 0.52, sensitivity of 0.45, specificity of 

0.97, positive predictive value of 0.78, and negative predictive value of 0.87. Subsequent to model training, we 

applied our model in virtual screening to select SGLT1 hit compounds. Of the 40 purchased compounds, 15 were 

experimentally validated in vitro leading to a hit rate of 38% with activities in the low micromolar range.   

1. Clar, C.; Gill, J. A.; Court, R.; Waugh, N. BMJ Open 2012, 2 (5), e001007.  
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2. Rosenstock, J.; Seman, L. J.; Jelaska, A.; Hantel, S.; Pinnetti, S.; Hach, T.; Woerle, H. J. Diabetes, Obes. 

Metab. 2013, 15 (12), 1154–1160.  

3. Sands, A. T.; Zambrowicz, B. P.; Rosenstock, J.; Lapuerta, P.; Bode, B. W.; Garg, S. K.; Buse, J. B.; 

Banks, P.; Heptulla, R.; Rendell, M.; Cefalu, W. T.; Strumph, P. Diabetes Care 2015, 38 (7), 1181–1188.  

4. Rendell, M. S. Expert Opin. Pharmacother. 2017, 14656566.2017.1414801.  

5. Gorboulev, V.; Schürmann, A.; Vallon, V.; Kipp, H.; Jaschke, A.; Klessen, D.; Friedrich, A.; Scherneck, S.; 

Rieg, T.; Cunard, R.; Veyhl-Wichmann, M.; Srinivasan, A.; Balen, D.; Breljak, D.; Rexhepaj, R.; Parker, H. 

E.; Gribble, F. M.; Reimann, F.; Lang, F.; Wiese, S.; Sabolic, I.; Sendtner, M.; Koepsell, H. Diabetes 2012, 

61 (1), 187–196.  

6. Tresadern, G.; Trabanco, A. A.; Pérez-Benito, L.; Overington, J. P.; van Vlijmen, H. W. T.; van Westen, G. 

J. P. J. Chem. Inf. Model. 2017, acs.jcim.7b00338.  

7. van Westen, G. J. P.; Wegner, J. K.; IJzerman, A. P.; van Vlijmen, H. W. T.; Bender, A. Med. Chem. 

Commun. 2011, 2 (1), 16–30.  

8. Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. J. Med. Chem. 1998, 41 (14), 2481–2491.  

 

P-13: Application of 3D-QSAR Methods in Drug Design & Discovery: Two Case 
Studies  

Giulia Chemi 1, Simone Brogi 1, Margherita Brindisi 1, Stefania Butini 1, Sandra Gemma 1, 

Giuseppe Campiani 1  
1 European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of 

Biotechnology, Chemistry, and Pharmacy, DdE 2018-2022, University of Siena, Siena, Italy.  

The purpose of 3D-QSAR (three-dimensional structure activity relationships) technique is to derive the statistically 

significant relationships between molecular structures and biological activities by chemometric methods leading to 

the development of predictive mathematical models. During the time, numerous QSAR approaches have been 

developed for different purposes including the identification or design of new chemical entities for a selected target, 

and the prediction of specific properties or undesirable effects of novel molecules.1 Here we describe two successful 

applications of 3D-QSAR method: i) the discovery of novel compounds by virtual screening with anti-prion profile 

and ii) the assessment of undesirable toxic effect of new chemical entities such as hERG K+ channels liability.  

In the first work, a 3D-QSAR model was developed to screen a library of compounds to find novel chemicals able to 

prevent prion protein misfolding. Prion (PrP) is a protein that, after an incorrect folding, causes not curable 

neurodegenerative disorders: the transmissible spongiform encephalopathies (TSE). There are two forms of that 

protein: the cellular one (PrPC) formed by three α-helices and two short β-sheets; and the pathological variant, the 

misfolded one (PrPSc) β-sheet motif rich protein that tends to accumulate in the brain of infected patients. The 3D-

QSAR model was used as a first filter in a virtual screening protocol to select a limited number of potential 

molecules able to prevent the misfolding of the PrPC. Then the model was combined with a molecular docking 

procedure and the prediction of ADME properties, to choose only that molecules able to bind the protein and to 

cross the blood-brain barrier. In vitro tests led us to select 9 hit compounds that effectively reduced the level of PrPSc 

and showed a non-toxic profile. Among them, one hit showed an interesting activity in preventing the pathological 

transition of PrPC to PrPSc (IC50 = 1.6 µM). This compound can also bind and stain PrPSc aggregates in infected 

ScN2a cells. The combination of this interesting anti-prion cellular profile with a fluorescence imaging behavior, and 

the good brain permeability, suggests that this compound could be considered as a novel prototypic tool useful for 

the development of diagnostic and therapeutic probes for TSE.2   

While in the second protocol, 3D-QSAR has been used to identify an in silico method for predicting, at an early 

stage of the drug discovery trajectory, the capability of compounds to interfere with hERG K+ channels, a well-

known antitarget.3 Blockade of hERG K+ channel has become a severe limitation for the introduction of new drugs 

in the market. In the past, several drugs have been withdrawn due to their relevant affinity for this channel and the 

consequent possible cardiotoxicity. In our work, a 3D-QSAR model was developed, employing a common 

pharmacophore as an alignment rule built on a subset of 22 highly active compounds (threshold Ki: 50 nM) active 

against hERG K+ channel. The sequential model developed with a set of 421 compounds with different span of 

activity (randomly divided in training and test set) proved to be predictive with respect to an external test set of 309 

compounds (r2
ext_ts = 0.86). The model was further validated by applying a decoys set, evaluating the Güner and 

Henry score (GH) and the Enrichment Factor (EF), and by the ROC curve analysis. The outcome demonstrated the 

high predictive power of the inclusive 3D-QSAR model, confirming the validity of this approach to obtain an in 

house tool useful for the design of new molecules with reduced hERG-related cardiotoxicity.   
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1. Cherkasov, A.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To?. J. Med. Chem., 

2014, 57 (12).  

2. Zaccagnini, L.; et al. Identification of Novel Fluorescent Probes Preventing PrPSc Replication in Prion 

Diseases. Eur. J. Med. Chem. 2017, 127, 859-873.  

3. Chemi, G.; et al. Computational tool for fast in silico evaluation of hERG K+ channel affinity. Front. Chem. 

2017, 5:7. 

 

P-15: Applications of in silico approaches to decipher the structure and functions of 
ADAMTS13: En route to novel therapeutics of TTP 

Bogac Ercig 1,2,3, Johana Hrdinova 1,2,3 Kanin Wichapong 1, Chris Reutelingsperger 1,3, Karen 

Vanhoorelbeke 4, Jan Voorberg 2, Gerry A.F. Nicolaes 1,3 
1 Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht 

University, Maastricht, The Netherlands, 2 Department of Plasma Proteins, Sanquin-AMC Landsteiner 

Laboratory, Amsterdam, The Netherlands, 3 PharmaTarget, Maastricht, The Netherlands, 4iLaboratory 

for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium 

A cryptic epitope in the ADAMTS13 spacer domain is targeted in most of the immune TTP patients. Based on these 

findings an auto-antibody resistant, gain-of-function variant (GoF) of ADAMTS13 was designed containing the 

following amino acid substitutions in spacer domain: R568K / F592Y / R660K / Y661F / Y665F1.  Structural studies 

revealed that GoF-ADAMTS13 exists in an open (active), while wt-ADAMTS13 is found in closed (inactive) 

conformation, with the C-terminal CUB domains bound to the spacer domain. Our aim is to employ in silico 

approaches to predict the network interactions between the spacer domain and its binding partners (i.e: CUB 

domains and autoantibodies) which will provide structural and functional data that will be translated into therapeutic 

use. 

The experimental structure of C-terminal CUB domains of ADAMTS13 are not available in Protein Data Bank. The 

YASARA Structure tool was used for homology modeling of the C-terminal CUB1-2 domains2. The anti-

ADAMTS13 autoantibodies were modelled by Bioluminate module in Schrodinger suite. HADDOCK protein-

protein docking were employed to study the interactions of both CUB domains and autoantibodies against spacer 

domain of ADAMTS13. GoF ADAMTS13 mutations were in silico introduced to final poses, next both WT- and 

GoF- ADAMTS13 were subjected to binding free energy calculation with AMBER16 over a 100ns molecular 

dynamics simulation. Subsequently, these poses were investigated to reveal which residues are contributing to 

conformational changes of ADAMTS13.  

A pose with relatively higher binding affinity against WT-ADAMTS13 and lower binding affinity against GoF-

ADAMTS13 at the same time was found to be informative to predict which residues are important for binding of 

CUB domains and autoantibodies. These residue predictions are subjected to in vitro mutation studies in order to test 

changes on conformation, proteolytic activity and resistance against auto-antibodies. 

We have used the available structural bioinformatics tools to predict the nature of conformational changes which 

switches the human ADAMTS13 protein between active and inactive states. The derived knowledge from the 

current study will further be used for the design of novel therapeutics of immune TTP.  

1. Jian, C.; Xiao, J.; Gong, L.; Skipwith, C. G.; Jin, S. Y.; Kwaan, H. C.; Zheng, X. L. Gain-ofFunction 

ADAMTS13 Variants That Are Resistant to Autoantibodies against ADAMTS13 in Patients with Acquired 

Thrombotic Thrombocytopenic Purpura. Blood 2012, 119 (16), 3836–  3843. 

2. Ercig, B.; Wichapong, K.; Reutelingsperger, C. P. M.; Vanhoorelbeke, K.; Voorberg, J.; Nicolaes, G. A. F. 

Insights into 3D Structure of ADAMTS13 : A Stepping Stone towards Novel Therapeutic Treatment of 

Thrombotic Thrombocytopenic Purpura. Thromb. Haemost. 2018, 28–41. 
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P-17: Confidence estimation of ADME properties using conformal prediction 

C. Founti 1, V. Gillet 1, G. Vessey 2 
1 Information School, The University of Sheffield, Sheffield, UK, 2 Lhasa Limited, Leeds, UK 

The impact of predictive models to guide the drug discovery cycle is broadly accepted, particularly for the 

optimisation of ADME properties. The application of QSAR models for property prediction reduces the need for 

iterative in vivo and in vitro testing and consequently saves a significant amount of resources. Building a QSAR 

model that will predict at a suitable level of accuracy for the intended application, however, can be a complex task 

and depends on the composition of the dataset. Furthermore, an inaccurate prediction could lead to a lost opportunity 

for a potent compound and further delays in development.  

Conformal prediction provides a machine-learning framework that integrates confidence estimation in QSAR 

modelling1. For QSAR regression models, the main objective of the framework is to produce compound-specific 

prediction intervals that represent the reliability of the prediction at a user-defined level of confidence. Prediction 

intervals are obtained by training a machine learning algorithm on the proper training set and generating a ranked list 

of nonconformity scores from a calibration set. Compound-specific prediction intervals are obtained by normalising 

the scores with estimates obtained from an error model. The nonconformity score corresponding to a user-defined 

confidence level on the list is then used to calculate the prediction intervals for all future predictions.  

In this study, the validity and efficiency of prediction intervals produced by random forest and support vector 

machine conformal predictors is evaluated for ADME datasets. The normalisation of standard prediction intervals 

using different error models is investigated2, 3 and evaluated against the already established k-nearest neighbor 

algorithm4. 

Abbreviations: 

QSAR: Quantitative Structure Activity Relationship 

ADMET: Absorption, Distribution, Metabolism, Excretion 

*The research leading to these results has received funding from the European Union’s Seventh Framework 

Programme  (FP7/2007-2013) under grant agreement no 612347. 

1. Eklund, M.; Norinder, U.; Boyer, S.; Carlsson, L. Application of Conformal Prediction in QSAR. In: 

Artificial Intelligence Applications and Innovations. AIAI 2012. IFIP Advances in Information and 

Communication Technology; Iliadis L., Maglogiannis I., Papadopoulos H., Karatzas K., Sioutas S., Ed.; 

Springer: Berlin, Heidelberg, 2012; Vol 382.  

2. Sheridan, RP. Three useful dimensions for domain applicability in QSAR models using random forest. J. 

Chem. Inf. Model. 2012, 52: 814-823. 

3. Toplak, M.; Močnik, R.; Polajnar M.; et al. Assessment of Machine Learning Reliability Methods for 

Quantifying the Applicability Domain of QSAR Regression Models. J. Chem. Inf. Model. 2014, 54: 431-

441. 

4. Papadopoulos, H.; Vovk, V.; Gammerman, A. Regression Conformal Prediction with Nearest Neighbours. 

J. Artif. Intell. Res. 2011, 40: 815-840. 

 

P-19: Selectivity profiles in Activity Atlas 

M. Mackey 1, P. Tosco 1 
1 Cresset, Litlington, UK 

At the last ICCS we presented methods for computing activity cliff metrics based on 3D similarity and showed how 

these can be utilized to identify pairs of molecules where small changes in steric or electrostatic potential have a 

disproportionate effect on activity. More recently we have developed the Activity Atlas method, which summarizes 

information obtained from multiple 3D activity cliff pairs. This provides an analysis of the molecular shape and 

electrostatic features which correlate with a change in activity across multiple pairs, highlighting the regions critical 

to binding (Fig. 1) 
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Fig. 1: The Activity Atlas method provides interpretable maps of the SAR around a series. 

In this talk we show how to extend the Activity Atlas method to investigate selectivity. For closely related proteins, a 

reasonable assumption is that the ligand alignment will be conserved. In this case, the Activity Atlas method can be 

used to investigate selectivity. Two methods are presented. In the first, the analysis proceeds separately on the 

different activity values. The resulting models can be compared to give insights into the different activity 

requirements for the subtypes, and hence what changes might increase activity at the desired subtype and/or reduce it 

at the undesired one (Fig. 2).  

 

Fig. 2: The Activity Atlas maps for adenosine A1, A2a and A3. 

Alternatively, the analysis can be performed on activity differences giving a direct readout of the changes leading to 

selectivity (Fig. 3). This method is significantly more powerful at teasing out the direct influences on selectivity, at 

the expense of losing information on whether the highlighted differences increase or decrease the affinity across all 

subtypes. 
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Fig. 3: Activity cliff summary maps for adenosine A2a over A1 selectivity. The maps are superposed to the most 

selective (left, shown in darker gray) and the least selective (right, shown in lighter gray) compounds in the training 

set. 

 

P-21: KnowTox: Risk Assessment by Automated Read-Across and Machine Learning  

Andrea Morger 1, Janosch Achenbach 2, Miriam Mathea 2, Antje Wolf 2, Robert Landsiedel 2, 

Klaus-Jürgen Schleifer 2, Andrea Volkamer 1  
1 In Silico Toxicology Group, Institute of Physiology, Charité, Berlin, Germany, 2 BASF SE, 

Ludwigshafen, Germany  

With new chemicals being synthesized every year, assessment of their toxicological potential, i.e., their harmful 

effects on humans, and the environment is a prerequisite for production and marketing. Most of the toxicological 

testing required by regulations is still requesting animal studies. In this context, in silico methods have great 

potential to reduce time, cost, and ultimately animal testing as they make use of the ever-growing amount of 

available toxicity data.1  

In our KnowTox project, we develop a toxicity prediction tool that makes use of available knowledge from external 

and in-house data to provide rational support for Read-Across, including modern machine learning (ML) techniques 

to come closer to the vision of transforming toxicology into a predictive science. Our major data source is the freely 

available ToxCast2 dataset, consisting of ~8300 compounds, such as pesticides, pharmaceuticals, and industrial 

chemicals, tested on up to 1000 different endpoints, e.g. effects on cell cycle, cytotoxicity, or steroid receptor 

interactions. We will present a workflow – together with a case study – to search the entire ToxCast dataset for 

substances, which are most similar in terms of features and structure to any query compound. Information about 

these substances’ commonalities such as toxicological key events and adverse outcomes, and common structural 

features can automatically be generated. Furthermore, previously identified substructures associated with toxic 

effects3,4 are highlighted to warn the user and either guide the design of less toxic compounds or target subsequent in 

vitro and in vivo testing. For ML application, we adapted an open source standardization workflow to remove 

duplicates, salts, and mixtures, yielding a reduced set of ~7500 clean compounds. Random Forest models for toxicity 

predictions on this dataset are currently trained and evaluated - by exhaustively sampling different combinations of 

fingerprints, ML parameters and data balancing strategies per endpoint - showing promising prediction accuracies.  

Identification of sufficiently similar chemicals will support rationales for Read-Across5, and accurate toxic 

mechanism or endpoint predictions will guide further toxicity testing or the deselection of most likely harmful 

compounds in an early stage of the often lengthy research and development process. Our combined prediction tool 
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can, together with the experience of toxicologists, help to improve efficiency and reduce the need for animal testing 

for toxicological assessments in development projects and regulatory product registration.  

1. Mayr, A. et al. DeepTox: Toxicity Prediction using Deep Learning. Front. Environ. Sci. 2016, 3, 80.  

2. Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. 

Toxicol. 2016, 29(8), 1225-1251.  

3. Sushko, I. et al. ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with 

potential adverse reactions. J. Chem. Inf. Model. 2012, 52(8), 2310-2316.  

4. Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds 

(PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53(7), 2719-

2740.  

5. Teubner W.; Landsiedel R. Read-across for hazard assessment: The ugly duckling is growing up. Altern. 

Lab. Anim. 2015, 43, 67-71.  

  

P-23: Machine learning to predict the recruitment profile of intracellular binding 
partners of G Protein Coupled Receptors 

Trung Ngoc Nguyen, Marcel Bermudez, Gerhard Wolber 
 Freie Universität Berlin, Molecular design lab, Institute of Pharmacy, Berlin, Germany 

G protein-coupled receptors (GPCRs) are generally characterized by seven α-helical transmembrane domains (TM1–

7).1 They transfer diverse extracellular stimuli into intracellular downstream signals. The perception of GPCRs as 

mere on-off switches for a given pathway has changed drastically over the last decade.2 Today we know that GPCRs 

are highly dynamic signaling machines with multiple signaling pathways like G protein activation and β-Arrestin 

recruitement.3 Due to significant progress in structural elucidation of GPCRs, ligand design using structure-based 

modeling became more feasible. However, the identification of small organic molecules binding to the extracellular 

part is only loosely coupled to the desired pharmacological effect. A prominent example is TRV-130 (Oliceridine)4, 

which is a biased orthosteric ligand for μ-opioid receptor and has a preferred activation of Gi-protein instead of ß-

arrestin resulting in a more effective pain medication with less side effects. Currently, such ligands can only be 

discovered by serendipity, because no comprehensive models for predicting intracellular effects upon extracellular 

ligand binding exists so far. 

The presented study aims at identifying and utilizing structural properties of class A GPCRs to predict specific 

signaling induced by different ligands. Starting with the extraction of three-dimensional structural descriptors from 

195 different crystal structures of 40 GPCRs, supervised machine learning5 algorithms are used to predict the 

recruitment profile of intracellular binding partners. Additional descriptors are generated through molecular 

dynamics simulations6 with different ligands with known intracellular recruitment profiles. We present a comparison 

of static and dynamic structural descriptors in the context of different machine learning algorithms with respect to 

their ability to predict intracellular binding partner selection and the resulting signaling bias. 

1. Szczepek, M.; Beyrière, F.; Hofmann, K. P.; Elgeti, M.; Kazmin, R.; Rose, A.; Bartl, F. J.; Stetten, D. von; 

Heck, M.; Sommer, M. E. et al. Crystal structure of a common GPCR-binding interface for G protein and 

arrestin. Nature communications 2014, 5, 4801. 

2. Pavlos, N. J.; Friedman, P. A. GPCR Signaling and Trafficking: The Long and Short of It. Trends in 

endocrinology and metabolism: TEM 2017, 28, 213–226. 

3. Hilger, D.; Masureel, M.; Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nature 

structural & molecular biology 2018, 25, 4–12. 

4. Chen, X.-T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C. L.; Rominger, D. H.; Koblish, M.; 

Dewire, S. M.; Crombie, A. L. et al. Structure-activity relationships and discovery of a G protein biased μ 

opioid receptor ligand, (3-methoxythiophen-2-yl)methyl({2-(9R)-9-(pyridin-2-yl)-6-oxaspiro-4.5decan-9-

ylethyl})amine (TRV130), for the treatment of acute severe pain. Journal of medicinal chemistry 2013, 56, 

8019–8031. 

5. Jordan, M. I.; Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science (New York, 

N.Y.) 2015, 349, 255–260. 

6. Bermudez, M.; Mortier, J.; Rakers, C.; Sydow, D.; Wolber, G. More than a look into a crystal ball: Protein 

structure elucidation guided by molecular dynamics simulations. Drug discovery today 2016, 21, 1799–

1805. 
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P-25: Estimation of electrophilicity for warheads of covalent protease inhibitors 

S. Pach, C. Tauber, J. Rademann, G. Wolber 

Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise 

Straße 2+4, Berlin 14195, Germany 

Enteroviral infections are associated with increased risk of neurological and cardiac complications. The enteroviral 

cysteine protease C3pro is involved in processing of viral polyprotein during the replication into functional 

components of viral particles. Therefore, it represents a promising target to fight enteroviral infections efficiently. 

Our goal is to target viral proteases by covalent inhibition. 

Covalent inhibitors have improved efficiency of enzyme inhibition compared to non-covalent ones [1]. Furthermore, 

they possibly allow targeting of “undruggable” binding sites and lower the risk of resistance development [2]. 

Efforts to find a suitable warhead are typically based on “trial and error” chemical synthesis and in-vitro testing. 

Hence, there is a need for a rational in-silico method describing mechanisms of covalent binding to enzymes. 

We investigate the activity of eleven Michael acceptors on C3-Protease. Considering only electronic effects as 

described by classical chemical theories (e.g. the HSAB-Concept) only fails to explain activity trends. For this 

reason, we developed a geometric descriptor based on the reaction mechanism between electrophile warhead and 

nucleophile protease-active site. The change of essential angles between different steps of reaction shows that 

reactivity of electrophiles and thereby reaction kinetics depends on steric parameters (Fig. 1). Our novel approach 

expands the classical view on covalent ligand-enzyme-interaction (Fig. 2) and allows prediction of electrophile 

quality, including electronic and steric effects during the binding reaction. 

 

Fig. 1: Measurement of double-bond-
plane-angle for non-covalent complex 
and intermediate 

 

Fig. 2: Classic description of reaction 
mechanism (black) and extended path 
(grey) between ligand (L) and enzyme 
(E) [mod. After 1] 

 

1. Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug 

Discovery [Online] 2011, 10, 307−317. 

2. Bauer, R. A. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and 

designed therapies Drug Discovery Today [Online] 2015, 20 (9), 1061-1073. 
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P-27: A web-based informatics platform for PhysChem/ADME/Tox property 
predictions 

A. Sazonovas 1,2, K. Lanevskij 1,2, R. Didziapetris 1,2 
1 VšĮ „Aukštieji algoritmai“, A.Mickevičiaus 29, LT-08117 Vilnius, Lithuania, 2 ACD/Labs, Inc., 8 King 

Street East, Toronto, Ontario, M5C 1B5, Canada  

Percepta for ACD/Portal is a new platform that builds upon the well established components of ACD/Labs Percepta 

desktop software – reliable predictive algorithms for a multitude of physicochemical, ADME, and safety-related 

properties, powerful data mining, visualization, compound profiling and risk assessment capabilities, as well as 

ACD/Structure Design Engine for generating libraries of virtual analogs compatible with the desired characteristics. 

Percepta for ACD/Portal combines these features with flexible network-based deployment, raising software 

interactivity to a new level and offering some exciting features. This work brings particular focus to the components 

of the web version of Percepta that leverage the power of high performance computing in a server environment. The 

server-side architecture of ACD/Portal relies on multiple calculation units (kernels) that enable parallel processing of 

very large amounts of data in real time. These capabilities paved the road for new developments in several key areas. 

The addition of a quick exploration of the predicted property values for a multitude of structural analogs of a 

compound enables on-the-fly liability checking, i.e. identifying the areas of the molecule potentially responsible for 

unfavorable ADME/Tox characteristics. Adaptation of the ACD/Structure Design Engine to the employed 

architecture gave rise to a new generation of this tool that enables extensive enumeration of substituent property 

space in accordance with specific user-defined constraints at up to four independently varying substituent positions 

at the same time. Along with a built-in database of more than 104 building blocks, this leads to exploration of up to 

1016 virtual analogs, which is actually feasible in real time inside Percepta for ACD/Portal. Such broadened scope of 

the chemical space investigated greatly enhances the potential of encountering new compounds with the most 

favorable property profiles.  

 

P-29: Development of a novel structure descriptor combining molecular shape and 
surface properties  

A. Schultz 1, K. Baumann 1  
1 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 

Beethovenstr. 55, 38106 Braunschweig, Germany 

Molecular shape and the spatial localization of potential binding partners play a major role in a molecule’s 

interaction with its complementarily shaped target. Methods using the 3D geometry to represent a molecule can be 

divided into alignment-based and alignment-independent approaches. The alignment-based methods have the 

drawback of  high computational costs and potential bias due to the process of finding the optimal alignment prior to 

computing their respective descriptors, while the alignment-independent approaches are often more difficult to 

interpret visually. A challenge faced by both, alignment-based and alignment-independent methods, is the 

conformational flexibility that needs to be taken into account when dealing with 3D representations of molecules. 

The standard  approach is to create a relatively large ensemble of conformers per molecule and to use this ensemble 

for the intended study. The downside of the ensemble method is the computational cost required to generate 

appropriate conformers as well as the exponentially rising amount of calculations for encoding and numerically 

processing the ensembles for machine learning.   

For the representation and comparison of the 3D shapes of macroscopic objects, Gal et al. developed the local 

diameter function which is not only invariant to scaling, translation and rotation but is also insensitive to 

transformations which are based on skeletal articulated movement1.   

In the following, we describe the adaptation of the local diameter function to molecular shapes and the development 

of a descriptor based on this adapted function. Starting with a triangulated mesh of the molecular surface the 

molecule’s diameter in the neighborhood of each vertex is calculated using a cone of rays traveling through the 

molecule yielding a shape representation. Furthermore, properties of RDKit’s Chemical Features2 and local 

hydrophilicity/lipophilicity are mapped onto the molecular surface. Properties on the local surface touched by a 

cone’s origin and base are recorded together with the local diameter value and merged into one descriptor. The novel 
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descriptor is applied to several benchmark datasets and compared to established approaches. The most critical 

hyperparameters (cone angle, number of rays) of the novel descriptor are systematically varied and their influence on 

predictive power is demonstrated.   

1. Gal, R.; Shamir, A.; Cohen-Or, D. Pose-Oblivious Shape Signature. IEEE Trans. Vis. Comput. Graph. 

2007, 13, 261-271.  

2. The RDKit: Open-source cheminformatics; http://www.rdkit.org (accessed Jan 30, 2018). 

 

 

P-31: Classification of corneal permeability of drug-like compounds using data 
mining and machine learning  

João Meireles 1, Carlos Simões1, Rui Brito 1,2  
1 BSIM Therapeutics, Coimbra, Portugal, 2 Chemistry Department, University of Coimbra, Coimbra, 

Portugal  

The eye cornea works as a protecting barrier against the penetration of xenobiotics, including drugs. The 

determination of corneal permeability by experimental means is a time-consuming and expensive process, requiring 

fresh biological tissue and significant amounts of pure compounds. As such, the ability to predict the corneal 

permeability of drug candidates from their molecular properties in silico would be a valuable instrument in the 

development of new drugs for ophthalmologic indications, as illustrated by previous efforts by a few researchers 1,2.  

The main goal of this work is to find mathematical functions that map selected chemical features onto corneal 

permeability through a careful use of machine learning and data mining techniques.  

Through interaction with an ophthalmologist and mining of scientific literature and patent data, we assembled a set 

of 70 compounds: 35 of which are known to be capable of penetrating the cornea at therapeutic concentrations 

(cornea_positive or “+” class) and 35 are unable to do so (cornea_negative or “–” class). The molecules in the set 

were built, clean and processed into lowenergy three-dimensional structures using open source tools, including 

Avogrado, OpenBabel and MOPAC. For each compound, 3082 molecular descriptors were then computed using 

well-known packages such as CDK, MOLD2, OpenBabel and PaDEL. With the exception of the compound name 

and its ocular permeability class, all data is numeric.  

The characteristics of the resulting data set pose several challenges to mathematical analysis: 1) there are many more 

features (variables) than samples; 2) the variables are highly correlated, and 3) many variables show non-symmetry, 

significantly different scales and ranges, a great number of zero entries, modes, etc. Thus, our first concern was the 

cleaning-up and transformation of the data using robust statistical tools. Since our main goal is to understand how 

corneal permeability is related to certain chemical features, yet not with others, in this study we use feature selection 

and global optimization methods to uncover the most relevant attributes. We explore many different types of 

variable selection to derive multiple predictive models: 1) filtering information based on the distribution properties 

of the chemical features, using less restrictive statistical assumptions like nonparametric tests, 2) filtering the 

attributes based on ensemble strategies, 3) averaging the quality of the variables according to their conditional 

dependencies, 4) building robust linear latent variables, and 5) exploring multidimensional scaling, stochastic 

proximity embedding, and other nonlinear dimensionality reduction methods.  

Given the small size of the data set, model validation is carried out via leave-one-out cross-validation (LOO-CV) 

and bootstrap with several repetitions – yielding highly accurate predictions. Moreover, we compare the 

performance of our machine learning-based classifiers using robust non-parametric tests.  

Considering previous attempts to predict cornea permeability, our strategy brings the advantage of not making 

unrealistic assumptions about the molecular data and combines the strengths of multiple approaches to interpreting 

the proposed predictive models. 

1. Kidron, H.; Vellonen, K. S.; Del Amo, E. M.; Tissari, A.; Urtti, A. Prediction of the Corneal Permeability 

of Drug-like Compounds. Pharm. Res. 2010, 27 (7), 1398–1407.  

2. Ghorbanzad’E, M.; Fatemi, M. H.; Karimpour, M.; Andersson, P. L. Quantitative and Qualitative Prediction 

of Corneal Permeability for Drug-like Compounds. Talanta 2011, 85 (5), 2686–2694.  

 

http://www.rdkit.org/
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P-33: Coarse-grained approaches for prediction of solubility and membrane 
permeability of large drugs: The Why and the How 

Johannes (Hans) G.E.M. Fraaije 1 
1 Culgi BV and Leiden University, Leiden, The Netherlands.  

Drug discovery is currently addressing molecular compounds that are larger than could be anticipated at the times of 

the seminal Lipinsky contribution1. One may think of protein-protein interaction inhibitors, kinase inhibitors, and all 

biologicals. Age-old statistical methods to predict development qualifiers such as solubility2 and membrane 

permeability (reviewed in 3-4), date from the times that pre-date the new chemistries. They are, without exception, 

calibrated on data for small molecules, and for that reason must be considered of less relevance now. Unfortunately, 

many a commercial or free software bases its algorithms on the older methods, for lack of anything better. The 

necessary experimental data for the new molecules is simply not available (in the public domain) to the extent 

necessary for a data-driven approach. For this reason, more modern data-driven approaches such as artificial 

intelligence, to supplant the existing QSPR models, are very difficult if not impossible to develop.   

Even if data would be public, one realizes quickly that the necessary database would have to be extensive to be of 

use. The drift to larger and larger molecules is driven by the quest for selectivity, to address targets that before were 

considered undruggable. Selectivity translates into large molecules, with many handles to find an exquisite and 

unique binding pattern. The same many-handles property translates into great many more potential combinations of 

side-groups (and scaffolds) than any calibration subset could cover. At the same time, a literature survey points to 

reliable solubility data for large drug-like molecules measured in the hundreds, and, similar, public membrane 

permeability datasets have perhaps an even smaller number3-4 of trustworthy datapoints. An illustrative example is 

from the burgeoning field of protein-protein inhibitors. Such inhibitors (modified peptides) suffer greatly from lack 

of membrane permeability5. A data-driven approach would not only need to take into account the extremely large 

chemical space but also the flexibility of the molecules, and potential folding in the membrane; this seems almost 

impossible. Therefore, however unfortunate, purely datadriven approaches cannot work, not now, and not in the 

foreseeable future.   

When data is scarce, the only alternative we have is a physics-based approach3-4, such as we discuss here. The 

physics-based modeling we propose rests on the coarse-grained paradigm6-7, that lumps groups of atoms into small 

fragments. Efficient simulation algorithms then use the fragments for the calculation of thermodynamic interactions. 

Our coarse-grained algorithms permit the complete calculation of solubility and permeability for a large drug-like 

molecule (up to MW 10000) in one go, in a mere few minutes on an ordinary desktop computer. The algorithm 

includes automated ways for calculation of charge distribution, the cutting of molecules into pieces and, the 

calculation of thermodynamics and diffusion through thermodynamic integration. A dynamics simulation is a basis 

for the thermodynamics and diffusion calculation, and automatically includes flexibility, differential folding, 

regrouping, etc., and makes no a priory assumption regarding positioning of fragments. Apart from the original 

calibration on datasets outside the pharma-domain, very few additional parameters are needed for finetuning to the 

applications at hand, which makes the method excellently suited for the scarce-data problems in solubility and 

membrane permeability.  

Application of the method includes calculation of diffusion coefficients of more than 11k molecules7, with a rather 

astonishing agreement with earlier empirical laws. The figure shows the correlation between simulated and 

experimental results. We obtained the results in a few minutes per molecule on a single PC-core.  While the new 

method is physics-based, the computational speed is on par with typical QSPR calculation times and makes the 

method suitable for virtual screening studies. The inserted Wilke-Chang empirical relation is from the 1950’s. Our 

study is the first time to recover such correlation by either theory or simulation.  

From a theoretical perspective, there is no difference in our method between that of solubility and membrane 

permeability prediction. Both algorithms rely on the same coarse-graining protocol, with the same set of parameters. 

We will present the method of calculation and illustrative examples from the prediction of kinase-inhibitor and 

peptide solubility, and membrane permeability.  

Culgi is sponsored by a consortium of industries from personal and home care industries, oil industries and chemical 

industries.   
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Figure 1 Coarse-grained prediction of diffusion 

coefficients. Each point takes a few minutes 

calculation time on one core. 

1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches 

to estimate solubility and permeability in drug discovery and development settings. Advanced Drug 

Delivery Reviews 1997, 23 (1-3), 3-25.  

2. Jorgensen, W. L.; Duffy, E. M., Prediction of drug solubility from structure. Advanced Drug Delivery 

Reviews 2002, 54 (3), 355-366.  

3. Leung, S. S. F.; Mijalkovic, J.; Borrelli, K.; Jacobson, M. P., Testing Physical Models of Passive Membrane 

Permeation. J Chem Inf Model 2012, 52 (6), 1621-1636.  

4. Leung, S. S. F.; Sindhikara, D.; Jacobson, M. P., Simple Predictive Models of Passive Membrane 

Permeability Incorporating Size-Dependent Membrane-Water Partition. J Chem Inf Model 2016, 56 (5), 

924-929.  

5. Matsson, P.; Kihlberg, J., How Big Is Too Big for Cell Permeability? J. Med. Chem. 2017, 60 (5), 1662-

1664.  

6. Fraaije, J. G. E. M.; Van Male, J.; Becherer, P.; Serral Gracià, R., Coarse-Grained Models for Automated 

Fragmentation and Parametrization of Molecular Databases. J. Chem. Inf. Model. 2016, 56 (12), 2361-2377.  

7. Fraaije, J. G. E. M.; van Male, J.; Becherer, P.; Serral Gracià, R., Calculation of Diffusion Coefficients 

through Coarse-Grained Simulations Using the Automated-Fragmentation-Parametrization Method and the 

Recovery of Wilke–Chang Statistical Correlation. Journal of Chemical Theory and Computation 2017.  

 

P-35: Molecular Dynamics Fingerprints (MDFP): Combining MD and Machine Learning 
to Predict Physicochemical Properties 

Shuzhe Wang1, Sereina Riniker 1  
1 Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland 

Molecular dynamics fingerprints (MDFP) are a novel approach that combines MD with cheminformatics modeling. 

In brief, short simulations are performed on small molecules followed by extracting statistical moments of calculated 

terms (e.g. potential energy components, radius of gyration, solvent-accessible surface) to form fingerprint vectors. 

Such MDFP are constructed for a set of molecules in different solvents and physical states. Then, using supervised 

machine learning (ML), models can be trained with MDFP as inputs to predict various physicochemical properties, 

e.g. solvation free energy, partition coefficient, vapor pressure, melting point and solubility, which are important 

quantities for both pharmaceutical and environmental research. MDFP are information-rich descriptors that are 

highly versatile and can easily be adapted to the property to be predicted (i.e. which physical states are simulated and 

which terms are calculated). 

Recently,1 we have shown that solvation free energies in different solvents can be predicted accurately using the 

MDFP-based approach. The models performed similarly to other more rigorous in silico methods such as free-

energy perturbation (FEP) and COSMO-RS, with the added benefits of being easier to implement and 

computationally less expensive. From the predicted solvation free energies, partition coefficients in numerous 

mixtures can be obtained. When applied to the molecules in the SAMPL5 blind challenge2 retrospectively, the 
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MDFP-based approach performed better than the submitted approaches.1 We are further testing our approach by 

participating in the current SAMPL6 blind challenge.3 In addition, we present a MDFP-based approach to predict 

vapor pressure. 

1. Riniker, S. Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data To Predict Free-

Energy Differences. J. Chem. Inf. Model. 2017, 57, 726-741. 

2. Bannan, C. C.; Burley, K. H.; Chiu, M.; Shirts, M. R.; Gilson, M. K.; Mobley, D. L. Blind Prediction of 

Cyclohexane–Water Distribution Coefficients from the SAMPL5 Challenge. J. Comput. Aided Mol. Des. 

2016, 30, 927-944. 

3. Mobley, D. L. SAMPL6 Challenge Homepage, https://github.com/MobleyLab/SAMPL6 (accessed Jan 26, 

2018). 

 

P-37: Towards Small Molecule Inhibition of HSP90 Dimerization  

D. Bickel1, E. Ciglia1, S. Bhatia2, F. Hansen3, T. Kurz1, J. Hauer2, H. Gohlke1  
1 Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 

Düsseldorf, Germany, 2 Department of Pediatric Oncology, Hematology and Clinical Immunology, 

Medicinal Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 

3Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Leipzig, Germany  

Protein-protein interactions are known to be involved in a wide variety of physiological and pathophysiological 

processes. Thus, the interest in targeting protein-protein interfaces in drug discovery is increasing steadily.  

The heat shock protein of 90 kDa (HSP90) was shown to be involved in malignant transformation and tumor 

progression in several cancer cell lines. As such, HSP90 represents an attractive target for cancer therapy1. Targeting 

the dimerization interface in the C-terminal domain should provide a novel way to interfere with HSP90 function. 

Here we present an approach for the de novo design of dimerization inhibitors for HSP90.   

The approach is based on a structural analysis of the dimerization interface of HSP90 and prediction of binding 

hotspots, using a structural decomposition of the effective energy of binding, computed by MM-GB/SA 

calculations2. Afterwards, these hotspots were used to guide the development of medium-sized peptide3 and 

peptidomimetic inhibitors4. These were tested in enzymatic and cellular assays, demonstrating their ability to inhibit 

HSP90 dimerization as well as anti-proliferative activity against various tumor cell lines.  

In order to find a set of drug-like small molecule inhibitors, we used the most active peptidic compounds as lead 

structures for a pharmacophore- and shape-based virtual screening. Refining the queries to emphasize interactions 

with previously identified hotspots, we were able to obtain smaller molecules with improved physicochemical 

properties. In a preliminary screening, anti-proliferative activity in the lower µM range could be confirmed for some 

of these compounds. This highlights the possibility to identify drug-like protein-protein interaction inhibitors from 

structural analysis of the dimerization interface.  

1. Whitesell, L.; Lindquist, S. L., HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005, 5 (10), 761-72.  

2. Ciglia, E.; Vergin, J.; Reimann, S.; Smits, S. H.; Schmitt, L.; Groth, G.; Gohlke, H., Resolving hot spots in 

the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90. PLoS 

One 2014, 9 (4), e96031.  

3. Bopp, B.; Ciglia, E.; Ouald-Chaib, A.; Groth, G.; Gohlke, H.; Jose, J., Design and biological testing of 

peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain. Biochim Biophys Acta 

2016, 1860 (6), 1043-55.  

4. Diedrich, D.; Moita, A. J. R.; Rüther, A.; Frieg, B.; Reiss, G. J.; Hoeppner, A.; Kurz, T.; Gohlke, H.; 

Lüdeke, S.; Kassack, M. U., α-Aminoxy Oligopeptides: Synthesis, Secondary Structure, and Cytotoxicity of 

a New Class of Anticancer Foldamers. Chemistry-A European Journal 2016, 22 (49), 17600-17611. 
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P-39: Reverse Virtual Screening Procedure for Identifying the Target of an 
Antiplasmodial Hit Compound  

Simone Brogi 1, Giulia Chemi 1, Stefania Butini 1, Margherita Brindisi 1, Giuseppe Campiani 1, 

Sandra Gemma 1, Soon Goo Lee 2, Joseph Jez 2  
1European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of 

Biotechnology, Chemistry and Pharmacy DdE 2018-2022, University of Siena, 53100 Siena, Italy, 
2Department of Biology, Washington University, St. Louis, USA  

Phenotypic screening has become a crucial approach to discovery novel compounds, especially in the field of anti-

cancer and anti-infective agents. Despite recent advances, phenotypic-driven target identification remains a 

challenging task that could be approached through several methodologies including biochemical methods, genetic 

interactions, computational approaches, or most likely by combining them. In the framework of antimalarials drug 

discovery in my research group, we focused our attention on the MMV Malaria Box compound MMV019918 (1, 1-

[5-(4-bromo-2-chlorophenyl) furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine) for its dual activity against 

asexual stages and gametocytes. After a structure-activity relationship study based on phenotypic screening and 

cytotoxicity evaluation, we selected derivative 2 (1-(5-(2-phenyl-4-chlorophenyl)furan-2-yl)-N(piperidin-4-

ylmethyl)methanamine) as a promising antimalarial agent. To further optimize derivative 2, our next challenge was 

to understand its target and its mechanism of action. To this end, a computational effort for identifying the drug 

target of 2 is described herein. Hit compound 1 and its optimized analogue 2 were used in a reverse docking 

procedure, also known as reverse virtual screening or target fishing. Firstly, we retrieved from the PDB database all 

the proteins relevant for Plasmodium biology (108 crystal structures). Next, compounds 1 and 2 were used to “fish” 

potential targets, employing a high-throughput docking procedure1 using Glide and Prime software2 against the 

mentioned proteins after appropriate preparation. The in silico results indicated a small number of potential targets 

for 1 and 2 due to unfavorable docking scores and ligand binding energies found among the examined docking 

complexes. For one protein (phosphoethanolamine methyltransferase, PfPMT) we noted for both compounds 

favorable in silico scores. Interestingly PfPMT, an enzyme necessary for the phospholipid biosynthesis in all stages 

of the parasite life cycle, is a validated drug target for which few inhibitors, mainly related to the natural substrate 

(AdoMet), have been described so far.3 Gratifyingly, enzymatic assays established that both 1 and 2 inhibited 

PfPMT. Although 1 showed a weak inhibitory profile, compound 2 displayed a significant inhibition of PfPMT 

(70% of residual activity of PfPMT at 100 µM), so it was used as hit compound for developing a novel series of 

antiplasmodial and transmission-blocking agents. According to the composition of the binding site, a structure-based 

approach based on molecular docking and molecular dynamics1 was performed, exploring different decorations of 

the hit molecule 2, also considering the synthetic accessibility. With the introduction of a methoxy group on the 

phenyl ring we obtained one of the best performing molecules (3, (1-(5-(5-chloro-3'-methoxy-[1,1'-biphenyl]-

2yl)furan-2-yl)-N-(piperidin-4-ylmethyl)methanamine)) in terms of computational scores, confirmed by in vitro tests 

against PfPMT (3: 38.7% of residual activity of PfPMT at 100 µM). Briefly, employing diverse computational 

methods we identified PfPMT as drug target for the antiplasmodial hit compound 2, found through a phenotypic 

screening, and we optimized its activity obtaining more potent inhibitors typified by 3. The acquired knowledge 

about PfPMT will allow the rational design of potent PfPMT inhibitors for developing antimalarials with an 

innovative mechanism of action.  

1. Brindisi, M.; et al. Structure-based discovery of the first non-covalent inhibitors of Leishmania major 

tryparedoxin peroxidase by high throughput docking. Sci. Rep. 2015, 5, 9705  

2. Glide, version 6.6; Prime, version 3.9; Desmond, version 4.1, Schrödinger, LLC, Release 2015 

3. Lee, S. G.; et al. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the 

malaria parasite Plasmodium falciparum: an antiparasitic drug target. J. Biol. Chem. 2012, 287(2), 1426-

134   
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P-41: Conformational Sampling and Binding Affinity Prediction of Macrocycles 

Daniel Cappel 1  
1 Schrödinger GmbH, Q7 23, 68259 Mannheim, Germany 

When optimizing ligand binding to a target protein during the drug design process a macrocyclic structure of the 

ligand can provide advantages. Macrocyclisation is an effective way to restrict a compound’s conformational space 

compared to acyclic inhibitors with the potential to improve potency, selectivity and metabolic stability. 

In the context of computationally-driven drug design this diverse class of chemical structures provides some 

challenges when it comes to conformational flexibility. Here we will discuss a method for exploring macrocyclic 

conformational space and the results of a benchmarking study1 for this algorithm. A dataset of 208 structures was 

curated from the Cambridge Structural Database, the Protein Data Bank and the Biologically Interesting Molecule 

Reference Dictionary. A conformational search algorithm using the program Prime reproduces the crystal structure 

conformations in a highly accurate way and is fast compared to other published approaches. The sampling algorithm 

is also used in the context of a membrane permeability prediction protocol for macrocyles.  

Furthermore, results for binding affinity prediction using the FEP+ framework for macrocycles are presented.2 We 

have applied the method to 7 pharmaceutically interesting data sets taken from recent drug discovery projects 

including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in 

excellent agreement with experimental data, with an overall root mean square error (RMSE) of the predictions below 

1 kcal/mol. 

1. Sindhikara, D.; Spronk, S. A.; Day, T.; Borelli, K.; Cheney, D. L.; Posy, S. L. Improving Accuracy, 

Diversity, and Speed with Prime Macrocycle Conformational Sampling. J. Chem. Inf. Model. 2017, 57, 

1881-1894. 

2. Yu, H. S.; Deng, Y.; Wu, Y.; Sindhikara, D.; Rask, A. R.; Kimura, T; Abel, R.; Wang, L. Accurate and 

Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets. J. Chem. Theory 

Comput. 2017, 13, 6290-6300. 

 

P-43: Using FEP (Free Energy Perturbation) Calculations to estimate relative binding 
affinities and selectivity for GPCR targets 

Francesca Deflorian, Benjamin G Tehan, Jonathan S Mason, and Miles Congreve 

Heptares Therapeutics Ltd 

G protein-coupled receptors (GPCRs) are the largest family of membrane proteins. GPCRs are involved in a wide 

variety of cellular functions, serving as key players in cellular signalling. Endogenous ligand binding from outside 

the cell leads to conformational changes of the receptor and consequential pairing with signalling partners in the 

intracellular environment, such as G proteins and β-arrestins, initiating signal transduction and other cellular 

responses. GPCRs mediate an abundant variety of physiological responses throughout the body representing pivotal 

candidate drug targets for the pharmaceutical industry.  

The accurate estimation of protein-ligand binding free energy can be crucial at the lead generation and optimization 

stages of a drug discovery program. Free energy calculations take into account protein flexibility and system 

solvation, both very important aspects in the ligand binding process for GPCRs. In this poster we present the results 

from FEP studies using FEP+ in collaboration with Schrodinger on GPCR targets offering different challenges to the 

methodology.  

The Orexin receptors have binding sites located in the TM domain and water-bridging interactions are crucial for 

ligand binding. We were also interested in selectivity between the subtypes OX1 and OX2 receptors with high 

sequence similarity in the ligand binding region. Using X-ray structures solved using the Heptares StaR® technology 

of the OX1 receptor in complex with several ligands, we conducted both retrospective and prospective FEP+ studies 

with the aim to design selective OX1 antagonists. 

The second target was the calcitonin gene-related peptide (CGRP) receptor, a receptor with a very shallow and 

solvent exposed binding site for non-peptide ligands. In this particular study, the ligands were small molecule 

antagonists and in-house crystallographic structures of the CGRP binding site were used to support the program. 
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P-45: Can I Have Seconds? 

T. Brinkjost1,2, C. Ehrt1,2 , P. Mutzel1, O. Koch2 

1Department of Computer Science, TU Dortmund University, Germany, 
2Faculty of Chemistry and Chemical Biology, TU Dortmund University, Germany 

The automated assignment of secondary structure elements has a long-term history since their first discovery. A 

reliable and in particular consistent assignment is of utmost importance for a multitude of applications in structure-

based drug design and function elucidation such as protein structure alignment1, polypharmacology and conserved 

motifs2, secondary structure prediction3, or the concept of ligand-sensing cores4. A variety of different approaches 

have been developed that rely on either hydrogen bond criteria, geometrical characteristics or a combination of both 

to allow for a reliable assignment.5  

An alternative approach, SHAFT6, was dedicated toward the assignment of helices based on a structural 

classification of different turn types. Herein we will present SCOT (Secondary structure Classification On Turns) 

which optimizes and extends this basic idea to assign various helix types and sheets via a combination of hydrogen 

bond and geometric characteristics.  

Our novel method SCOT utilizes a hierarchical assignment of protein structural elements. Starting from the initial 

level of turn types, we identify right handed alpha-, 310-, pi-, and gamma-helices as well their left-handed 

counterparts for the first two types. Sheets are identified in seed/non-turn regions which interact with each other. 

Furthermore, both, helices and sheets, are annotated with additional kink information. As for helices, kinks are also 

annotated with an individual classification reflecting the classes of the incident helix segments. This information will 

additionally help to compare proteins on the secondary structure level, as in most cases the conformation of helices 

and sheets highly deviates from its ideal one. 

Summarizing, with a classification for turns, helices and sheets, SCOT fulfills all basic needs for a reliable protein 

structure classification which will hopefully be of high interest in structure-based design and protein engineering. 

1. Ma, J.; Wang, S. Algorithms, applications, and challenges of protein structure alignment. Adv. Protein 

Chem. Struct. Biol. 2014, 94, 121-175 

2. Koch, O. The Use of Secondary Structure Element Information in Drug Design: Polypharmacology and 

Conserved Motifs in Protein-Ligand Binding and Protein-Protein Interfaces. Future Med. Chem. 2011, 3(6), 

699-708. 

3. Yang, Y.; Gao, J.; Wang, J.; Hefferman, R.; Hanson, J.; Paliwal, K.; Zhou, Y. Sixty-five years of the long 

march in protein secondary structure prediction: the final stretch? Briefings Bioinf. 2016, bbw129. 

4. Koch, M. A.; Waldmann, H. Protein structure similarity clustering and natural product structure as guiding 

principles in drug discovery. Drug Discov. Today 2005, 10(7), 471-483. 

5. Tyagi, M.; Bornot, A.; Offmann, B.; de Brevern, A. G. Analysis of loop boundaries using different local 

structure assignment methods Protein Sci. 2009, 18(9), 1869-1881. 

6. Koch, O.; Cole, J. An automated method for consistent helix assignment using turn information. Proteins 

2011, 79(5), 1416-1426. 

 

P-47: Virtual Screening of CCR5 Inhibitors as Potential Anti- Colorectal Cancer 
Agents  

M. El-Zohairy 1, Y. Mandour1, H.Adwan2, D. Zolotos1    
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German 

University in Cairo, New Cairo, Egypt, 2 Department of Pharmacology and Toxicology, Faculty of 

Pharmacy and Biotechnology, The German University in Cairo, New Cairo, Egypt 

CCR5 is G-protein-coupled receptor “GPCR” with seven transmembrane loops. This chemokine receptor interacts 

with the corresponding ligand leads to subsequent downstream signaling. CCR5 is commonly expressed by T 

lymphocytes, which acts as a co-receptor in the most commonly transmitted Human immunodeficiency virus “HIV”, 

for their entry to host cell. (1)   
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Recently, it was observed that CCR5 receptor is highly expressed on tumor cells in liver metastatic colorectal cancer. 

Inhibition of this receptor in the patients treated with Maraviroc a CCR5 inhibitor. Showed a decrease in growth 

signals for tumor cells and resulting in slowing down of tumor development. Through interfering with CCL5-CCR5 

axis. (2) (3) (4) (5)  

Our aim is to use virtual screening to detect new potential CCR5 inhibitors that will be more active as anti- 

colorectal cancer agents.   

A Pharmacophore model for CCR5 inhibitors was generated by clustering of CCR5 binding database composed of 

2827 Compounds based on their scaffolds and their finger print similarity. Then the most active representative from 

each scaffold was selected. The 39 selected representatives were aligned on the bioactive conformer of Maraviroc, 

which is obtained from the co-crystalized structure of Maraviroc bound to CCR5 receptor, PDB code “4MBS”. After 

alignment this selected representatives generates a Pharmacophore model using MOE. The generated model was in 

consensus with the reported pharmacophoric features and point mutations of the receptor. The model was validated 

using a test set composed of 1255 compounds. 1160 compounds are actives and 95 compounds are in actives and 

decoys. This model was further used in virtual screening for potential CCR5 inhibitors.   

1. Oppermann, M. (2004). Chemokine receptor CCR5: insights into structure, function, and regulation. 

Cellular Signalling, 16(11), 1201-1210. doi:10.1016/j.cellsig.2004.04.007    

2. Bronte, V., & Bria, E. (2016). Interfering with CCL5/CCR5 at the Tumor-Stroma Interface. Cancer Cell, 

29(4), 437-439. doi:10.1016/j.ccell.2016.03.019     

3. Deming, D. A. (2016). Advances in immunotherapeutic strategies for colorectal cancer commentary on: 

tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 

therapy in cancer patients by Halama et al. Journal for ImmunoTherapy of Cancer, 4(1). 

doi:10.1186/s40425-016-0197-y  

4. Kuritzkes, D., Kar, S., & Kirkpatrick, P. (2008). Maraviroc. Nature Reviews Drug Discovery, 7(15), 15-16. 

doi:10.1038/nrd2490   

5. Pervaiz, A., Ansari, S., Berger, M. R., & Adwan, H. (2015). CCR5 blockage by maraviroc induces 

cytotoxic and apoptotic effects in colorectal cancer cells. Medical Oncology, 32(5). doi:10.1007/s12032-

015-0607-x   

 

P-49: SILCS reproduces experimental binding trends for 31 TrmD ligands 

SK Lakkaraju 1, O Guvench 1, S Jo1, AD MacKerell, Jr. 1,2 
1 SilcsBio, LLC, Baltimore, MD, USA, 2 University of Maryland, School of Pharmacy, Baltimore, MD, 

USA 

Site-Identification by Ligand Competitive Saturation (SILCS)1-4 computational functional group mapping provides 

insights into the binding preferences of a target protein that can be used both qualitatively and quantitatively to drive 

ligand design. SILCS is a robust structure-based approach that gives information-rich Grid Free Energy (GFE) 

FragMaps that account for critical aspects such as protein flexibility, desolvation penalties, as well as protein-

functional group interactions. 

Here we describe the use of the SILCS approach on t-RNA methyltransferase (TrmD) and 31 ligands belonging to 

two series made publicly available through the Community Structure-Activity Resource (CSAR) and the D3R 

Database. SILCS-MC sampling of ligands in the field of the FragMaps yields Ligand Grid Free Energy (LGFE) 

scores. SILCS scoring correctly predicts favorable vs. unfavorable modifications relative to a reference ligand (27/30 

predictions correct). Additionally, SILCS FragMaps recapitulate functional group patterns of both series of ligands. 

This information can be used to drive design and optimization visually. 
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1. Guvench, O. and MacKerell, A.D. Jr. Computational Fragment-Based Binding Site Identification by Ligand 

Competitive Saturation. PLoS Comput. Biol. 2009, 5, e1000435.   

2. Raman, E.P., Yu, W., Guvench, O. and MacKerell, A.D., Jr., Reproducing Crystal Binding Modes of 

Ligand Functional Groups using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations. 

J. Chem. Inf. Model. 2011, 51, 877-890. 

3. Lakkaraju, S.K., Raman, E.P., Yu, W., and MacKerell, A.D., Jr. Sampling of Organic Solutes in Aqueous 

and Heterogeneous Environments using Oscillating μex Grand Canonical-like Monte Carlo-Molecular 

Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 2281-2290. 

4. Raman, E.P., Yu, W., Lakkaraju, S.K., and MacKerell, A.D., Jr. Inclusion of multiple fragment types in the 

Site Identification by Ligand Competitive Saturation (SILCS) approach. J. Chem. Inf. Model. 2013, 53, 

3384–3398. 

 

P-51: Fuzzy ligands for allosteric target detection and lead identification 

S. M. A. Hermans 1, C. Pfleger 1, D. Schmidt 1, M. Boehm 2, A. M. Mathiowetz 2, C. L. 

McClendon 2, K. Omoto 2, H. Gohlke 1* 
1 Department of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal 

Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, 2 Medicine Design, Pfizer Inc., 1 

Portland Street, Cambridge, Massachusetts 02139, United States, *Email: gohlke@uni-duesseldorf.de 

Targeting allosteric regulation in biomolecules is a promising strategy in drug discovery, due to advantages over 

conventional orthosteric ligands.1 However, the identification of novel allosteric pockets is complicated by the 

variety of allosteric mechanisms, differing by the extent of conformational change upon ligand binding. Particularly, 

dynamic allostery, which can occur in the absence of conformational change,2 is difficult to detect from static crystal 

structures alone. Here, we developed an approach for generating fuzzy ligands as surrogates for “true” ligands, with 

which allosteric responses can be calculated by rigidity analysis.3 

The performance of the fuzzy ligand approach was applied to 85 protein-ligand complexes.4 For the apo states, 

generated by removing the original ligand from the protein, pockets were identified using PocketAnalyzerPCA.5 

DrugScore pair-potentials6 were calculated for each of the binding pockets, and used as input to guide the design of 

fuzzy ligands. The allosteric transmission caused by (fuzzy) ligand binding was determined by an ensemble-based 

perturbation approach that analyses biomolecular rigidity.3 The fuzzy ligands were validated I) in terms of their 

influence on biomolecular rigidity compared to the “true” ligand and II) to what extent pharmacophore models based 

on fuzzy ligands allow for a successful identification of binders and non-binders in a retrospective virtual screening. 

Altered per-residue stability characteristics from rigidity analysis of our fuzzy ligands are in agreement with those 

from “true” ligands. The virtual screening results based on fuzzy ligands perform equally well or outperform the true 

ligands’ results.  

Analyzing unexplored pockets with our fuzzy ligand approach predicts whether binding a ligand to this pocket 

triggers an allosteric response to affect biomolecular function. If an allosteric response is present, the fuzzy ligand 

can be used for virtual screening to directly identify lead compounds for the identified target. The fuzzy ligand 

approach can thus be a promising step towards identifying novel allosteric drug targets and drugs. 
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1. Nussinov, R.; Tsai, C.J. Allostery in disease and in drug discovery. Cell, 2013, 153, 293-305 

2. Cooper, A.; Dryden, D.T., Allostery without conformational change. A plausible model. Eur. Biophys. J., 

1984, 11, 103-109 

3. Pfleger, C.; Minges, A.; Boehm, M.; McClendon, C. L.; Torella, R.; Gohlke, H. Ensemble- and Rigidity 

Theory-Based Perturbation Approach To Analyze Dynamic Allostery J. Chem. Theory. Comput., 2017, 13, 

6343-6357 

4. Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.M.; Mortenson, P.N.; Murray, 

C.W. Diverse, high-quality test set for the validation of protein-ligand docking performance. J. Med. Chem., 

2007, 50, 726-741 

5. Craig, I.R. ; Pfleger, C.; Gohlke, H.; Essex, J.W.; Spiegel, K. Pocket-space maps to identify novel binding-

site conformations in proteins. J. Chem. Inf. Model., 2011, 51, 2666-2679 

6. Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand 

interactions. J. Mol. Biol., 2000, 295, 337-356 

 

P-53: A fast and efficient rescoring method based on binding information of fragment 
and drug-like ligands  

Célien Jacquemard1, Malgorzata N. Drwal1, Carlos Perez3, Jérémy Desaphy2, Esther 

Kellenberger1 

1Laboratoire d’innovation thérapeutique, UMR7200 CNRS Université de Strasbourg, 67400 Illkirch, 

France, 2Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA, 3Lilly 

Research Laboratories, Eli Lilly and Company, 28108 Alcobendas, Madrid, Spain 

Protein structure-based computing approach to hit finding in Fragment-based drug design (FBDD) is not yet a 

reliable alternative to experiments, mostly because of our incomplete understanding of molecular interactions. 

Recently, we analyzed the binding modes of fragments and drug-like ligands bound to four diverse targets in the 

Protein Data Bank (PDB), and found that the two classes of compounds binding to the same cavity tend to have 

comparable interaction patterns.1 Here we ask whether the binding mode information of fragments can improve the 

performance of molecular docking of drug-like ligands and vice versa. Our study compares two rescoring methods: 

the max GRIM method, which encodes reference ligand-protein interactions in individual graphs3 and the new LID 

method based on a consensus 3D-density map built from the reference interactions. 

Material and methods. Docking was performed using PLANTS.2 Poses were scored using ChemPLP and rescored by 

similarity to interaction patterns found in the reference PDB complexes. The reference dataset includes 2702 

crystallographic structures and describes 66 proteins, 727 drug-like ligands and 964 fragments. Each protein is 

represented by at least three 3D-structures of complexes with at least one drug-like ligand and one fragment. 

Results (1) Pose selection. For all the compounds, we performed all possible cross-docking experiments and 

observed that drug-like ligand binding information always improved fragment docking, but the opposite was only 

true for difficult targets. Combining the binding information of drug-like ligands and fragments was the most robust 

rescoring option. (2) Virtual screening. We evaluated GRIM and LID performances in compound ranking using the 

DUD-e benchmark available for six of the 66 proteins in the reference set. The two rescoring methods better 

discriminates active compounds from decoys than the native scoring function. 

Conclusion. GRIM and LID methods equally well improved docking predictions. LID is 100 times faster than GRIM 

thereby allowing large-scale calculations, such as the rescoring of multiples poses obtained for a ligand docked into 

multiple structures of the protein. Building of LID consensus 3D-density map however implies that all 3D-structures 

of the reference complexes are well 3D-aligned. 

1. Drwal, M.; Jacquemard, C.; Perez, C.; Desaphy, J.; Kellenberger, E. Do Fragments And Crystallization 

Additives Bind Similarly To Drug-Like Ligands?. Journal of Chemical Information and Modeling 2017, 

57, 1197-1209. 

2. Korb, O.; Stützle, T.; Exner, T. Empirical Scoring Functions For Advanced Protein−Ligand Docking With 

PLANTS. Journal of Chemical Information and Modeling 2009, 49, 84-96. 

3. Desaphy, J.; Raimbaud, E.; Ducrot, P.; Rognan, D. Encoding Protein–Ligand Interaction Patterns In 

Fingerprints And Graphs. Journal of Chemical Information and Modeling 2013, 53, 623-637. 

4. Mysinger, M.; Carchia, M.; Irwin, J.; Shoichet, B. Directory Of Useful Decoys, Enhanced (DUD-E): Better 

Ligands And Decoys For Better Benchmarking. Journal of Medicinal Chemistry 2012, 55, 6582-6594. 
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P-55: Mapping Binding Site Thermodynamics by 3D RISM Theory for Drug Design 

Julia Jasper, Yannic Alber, Florian Mrugalla, Stefan Kast, Oliver Koch 

Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany 

The early stages of the drug discovery process require reasonably accurate and fast methods for optimising the 

binding affinity of protein-ligand complexes, taking into account direct and solvent-mediated interactions. Inspired 

by Goodford’s GRID method1 we here present a novel physics-based approach that incorporates (de-)solvation 

contributions to the binding thermodynamics of probe particles mimicking functional ligand groups in a protein 

binding site. To this end, we calculate the potential of mean force (PMF) and the distribution functions of different 

probes (uncharged C, charged N and O) inside the apo protein by 3D RISM (reference interaction site model) 

theory2,3. 

The method allows for an intuitive and easy visualization of probe density maps inside the binding site (Fig. 1) and 

can be exploited for various tasks in the drug development process. Applications range from pharmacophore and 

docking-based virtual screening up to defining design directions for medicinal chemists. In a first proof of concept 

study, the PMF results were embedded into the GOLD4 docking process on a subset of the PDBbind dataset5. An 

uncharged C probe is used to calculate hydrophobic fitting points that are used for ligand placement throughout the 

docking process. These 3D RISM based points display a more detailed representation of hydrophobicity yielding 

improved docking success (Fig. 2).  

 

Figure 3: a) Density maps for charged N (dark volumes) and O (light volumes) probes calculated for the apo protein 

structure of 1hnn@pdb; b) binding site of 1hnn@pdb with the co-crystallized ligand. 

 

Figure 4: Fitting points for 1nav@pdb as calculated by a) GOLD (based on the van der Waals interaction energy 

between a bare C atom and the protein) and by b) our RISM based approach (uncharged C probe with a PMF 

threshold of -7.5 kJ/mol). 

1. Goodford, P.  J. A Computational Procedure for Determining Energetically Favorable Binding Sites on 

Biologically Important Macromolecules. J. Med. Chem. 1985, 28, 849–857. 

2. Mrugalla, F.; Kast, S. M. Designing Molecular Complexes Using Free-Energy Derivatives from Liquid-

State Integral Equation Theory. J. Phys. Condens. Matter 2016, 28, 344004. 

3. Güssregen, S.; Matter, H.; Hessler, G.; Lionta, E.; Heil, J.; Kast, S. M. Thermodynamic Characterization of 

Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding 

Sites and Ligand Series. J. Chem. Inf. Model. 2017, 57, 1652-1666. 

4. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic 

Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. 
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5. Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R. Comparative Assessment of Scoring Functions on 

an Updated Benchmark: 1. Compilation of the Test Set. J. Chem. Inf. Model. 2014, 54, 1700–1716. 

 

P-57: Structure based design of potent and selective ligands for the adenosine 
receptor family  

W. Jespers 1, 2, G. van Westen 2, R. Cooke3, J. Mason3, A. IJzerman2, L. Heitman2, J. Azuaje4, J. 

Aqvist1, E. Sotelo4, H. Gutierrez-de-Teran1  
1 Uppsala University, Uppsala, Sweden, 2 Leiden University, Leiden, the Netherlands, 3 Heptares Ltd., 

Hertfordshire, UK, 4 Universidade de Santiago de Compostela, Santiago de Compostela, Spain  

The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors 

(GPCRs) with exceptional foundations for structure-based ligand design.1 Recent advances in membrane protein 

engineering and crystallography have sparked a surge of experimental GPCR structures. Among these structures, 

ARs have emerged as one of the most thoroughly characterized families with A1AR and A2AAR inactive structures, 

and active structures of the latter.2  

 

Figure 1: Thermodynamic cycle illustrating the calculation of the relative shift in binding free energy (vertical legs), 

which theoretically matches the data from experiments (horizontal legs) between two systems A and B. These can be 

two ligands binding to the same receptor or the affinity of one ligand for two constructs of the receptor (i.e. WT and 

single-point mutant), active and inactive receptor states or protein-protein interactions such as GPCR-G protein.  

I will present results of our AR ligand-design program, where we combine advanced structure-based computational 

methods with efficient synthetic approaches (see Figure 1).3 Particular emphasis is put on the development and 

application of free energy perturbation (FEP) protocols to modulate binding affinity, receptor selectivity and 

pharmacological profiles for our ligand series. With these protocols, we have recently provided a detailed 

understanding of the effects of point mutations on ligand binding on the A2AAR3 and A1AR4, the conformational 

preference of partial agonists of the A2AAR4, and assisted on the design of pyridines as a novel chemical structure for 

A3AR antagonists from our previous series of pyridines.5 Currently, we are investigating the role of mutations in the 

G protein binding site in receptor activation and their role in breast cancer. Additionally, we are designing the first 

non-ribose agonists for the A2B receptor. Finally, we apply our protocol to understand the binding mode of a series of 

chromones for the A2AAR, a method we recently applied to predict the binding mode of orphan GPCR GPR139 

agonists.6   

1. Gutiérrez-de-Terán, H. et al. Curr. Top. Med. Chem. 2017, 17 (1), 40–58.  

2. Jespers, W. et al. Trends in Pharmacological Sciences. Elsevier Ltd 2018, pp 75–89.  

3. Vasile, S. et al. Humana Press, New York, NY, 2018; pp 23–44.  

4. Jespers, W. et al. Molecules 2017, 22 (11).  

5. Azuaje, J.; Jespers, W.  et al. J. Med. Chem. 2017, 60 (17), 7502–7511.  

6. Nøhr, A. C.; Jespers, W.; Shehata, M. A. et al. Sci. Rep. 2017, 7 (1).  
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P-59: Transferable Neural Networks Architecture for Low Data Drug Discovery 

Mun-Hwan Lee 1, Eung-Hee Kim, Ph.D. 2, Yong-Ju Lee1, Hong-Gee Kim, Ph.D. 1 
1 Biomedical Knowledge Engineering Lab., Seoul National University, Seoul, Republic of Korea, 2Dept. of 

Global Software Engineering., Sunmoon University, Asan-si, Republic of Korea 

Introduction. Machine learning (ML)’s advances in virtual screening (VS) has made significant contributions to drug 

discovery accompanied by novel approaches based on deep neural networks (DNN). However, such techniques 

require a considerable volume of both training and test data, in order to achieve comparable results. While certain 

models have managed to learn from small datasets1, they optimize only within the defined range of data which is 

nontransferable. Thus, the current limitation in ML models necessitates the need of a universal architecture for 

generalization regardless of dataset size. In this study, we propose a transferable DNN to overcome such limitations 

in generalizing ability by incorporating binary response (positive or negative) rather than non-fixed output 

dimensions depending on a dataset. We demonstrate that the proposed architecture is capable to learn transferable 

information between varied datasets.  

Figure 1. Overview of transferable DNN 

Method. The proposed model consists of feature extraction and prediction model by implementing proteoche-

mometric (PCM) approaches, which utilize the additional use of protein information as shown in Figure 1. First, 

Extended-Connectivity Fingerprints (ECFP) and Mol2Vec were exploited for compound feature extraction and 

ProtVec for target protein. The dataset comprised both positive and negative examples for each feature pairs, which 

can be mathematically defined as  

 

Second, separated layers pass the paired data into concatenated layer for classification. By adjusting the dimensions 

of hidden nodes through separated layers, the model can prevent a disproportions between feature dimensions (e.g. 

between 2048-dimension for compounds and 256-dimesion for targets), and avoid bias.  

Experiment and Result. The proposed models were trained on PubChem BioAssay (PCBA), and evaluated on 

Maximum Unbiased Validation (MUV) and Tox21 as a query dataset. To justify the generalization ability of the 

model, we removed overlapping data from evaluation dataset. In order to avoid learning bias in skewed distribution, 

the same number of positive and negative pairs were extracted in each compound. This resulted in 361,632 positive 

examples and 361,632 negative examples. Our proposed networks consist of 5 separated layers and 1 concatenated 

layer. For training the networks we used stochastic gradient descent with Adaptive Moment Estimation (Adam). We 

used 50% of dropout on the hidden layers to prevent overfitting of the networks. The proposed model shows better 

performance over the random-forest baseline as shown in Table 1, Table 2, and Table 3.  
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Table 1. ROC-AUC Scores of Models on Median Held-out Task for Each Model on Datasets a 

Models MUV Tox21 

Proposed Model 0.730 ± 0.079 0.772 ± 0.067 

RF (100 trees) 0.661 ± 0.081 0.709 ± 0.100 
a Numbers reported are medians and standard deviations. 

Table 2. ROC-AUC Scores of Models on Each Tasks on MUV 

Models 
MUV -
466 

MUV -
548 

MUV -
600 

MUV -
644 

MUV -
652 

MUV -
689 

MUV -
692 

MUV -
712 

MUV -
713 

MUV -
733 

MUV -
737 

MUV -
810 

MUV -
832 

MUV -
846 

MUV -
852 

MUV -
858 

MUV -
859 

Proposed Model 0.755 0.684 0.777 0.649 0.840 0.833 0.782 0.869 0.716 0.823 0.730 0.730 0.689 0.617 0.681 0.615 0.657 

RF (100 trees) 0.735 0.667 0.576 0.548 0.776 0.768 0.635 0.780 0.630 0.699 0.723 0.702 0.661 0.563 0.622 0.610 0.528 

 

Table 3. ROC-AUC Scores of Models on Each Tasks on Tox21 

Models 

NR- 

AR 

NR-AR-

LBD 

NR- 

AhR 

NR-

Aromatase 

NR- 

ER 

NR-ER-

LBD 

NR-PPAR-

gamma 

SR-

ARE 

SR-

ATAD5 

SR- 

HSE 

SR- 

MMP 

SR- 

p53 

Proposed Model 0.636 0.762 0.741 0.782 0.628 0.714 0.721 0.783 0.800 0.807 0.826 0.829 

RF (100 trees) 0.461 0.528 0.666 0.763 0.583 0.641 0.701 0.749 0.732 0.718 0.746 0.772 

 

Conclusion. We propose a transferable DNN to improve a learning model by transferring information from abundant 

datasets to small datasets. This allows generalization ability for ML models with various feature extraction methods 

in a scalable way. We also demonstrated that the model learns transferable ability for various size of datasets 

especially in small one. In the future work, we are planning to augment transferability to multitask deep learning for 

robust performance by adopting conventional transfer learning approaches. 

Acknowledgements: This work was partly supported by Institute for Information & communications Technology 
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P-61: Tetris of HDAC Inhibitor Design 

J. Melesina1, T. Heimburg1, T. Bayer1, E. Ghazy1, M. Marek 2, P. Zeyen1, K. Schmidtkunz3, D. 

Robaa1, R. Pierce4, C. Romier2, M. Jung3, W. Sippl 1  
1 Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany, 2 Département de 

Biologie Structurale Intégrative, IGBMC, Université de Strasbourg, CNRS, INSERM, Illkirch Cedex, 

France, 3Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany, 4University of 

Lille, CNRS, INSERM, Institute Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et 

d'Immunité de Lille, Lille, France 

What is common between the puzzle game Tetris and design of histone deacetylase (HDAC) inhibitors? After 

several years of research dedicated to anti-parasitic and anti-cancer drug development it became clear that in both 

cases it is all about the shape. Just like Tetris tiles, HDAC inhibitors have specific shapes, which determine their 

selectivity (Fig. 1). Just like Tetris tiles, HDAC inhibitors fit to the cavity if their shape is complementary to it. And 

if not, then the unoccupied cavities and unemployed opportunities for drug design are left. 

 

Figure 1. Shapes and binding modes of HDAC inhibitors: a) I-shaped inhibitor SAHA, PDB ID 4LXZ1; b) J-shaped 

inhibitor 20Y, PDB ID 4LY11; c) L-shaped inhibitor 9F4, PDB ID 4CBT2; d) Oshaped inhibitor NU7, PDB ID 

3ZNS3. 

Our quest for novel HDAC inhibitors started with virtual screening campaign on a newly validated anti-parasitic 

target Schistosoma mansoni HDAC8 (SmHDAC8). Around 15 million compounds have been screened in silico to 

find first SmHDAC8 inhibitors (Fig. 2a)4. One of the virtual screening hits - a fragment-sized molecule J1038 (Fig. 

2b) - has been chosen for further optimization. An open-ring Γ-shaped analog UV4 was designed (Fig. 2c), which 

targeted HDAC8specific side pocket and unique SmHDAC8 amino acid residue H292. Its crystal structure with the 

target protein confirmed the predicted binding mode (Fig. 2d)5. 

 

Figure 2. Design of novel Γ-shaped HDAC inhibitors: a) virtual screening workflow used to find first SmHDAC8 

inhibitors4 ; b) chemical structure of virtual screening hit J10384 ; c) chemical structure of optimized Γ-shaped 

inhibitor UV45; d) binding mode of Γ-shaped inhibitor UV4, PDB ID 5FUE5. 

A library of further Γ-shaped ligands has been designed and docked to different HDACs. The most promising 

candidates were synthesized and tested. Their potency and selectivity has been optimized5. 

Homology models of various parasitic HDACs have been prepared and analyzed to see if they could also accept Γ-

shaped inhibitors6. Furthermore, a series of Γ-shaped inhibitors were developed as antineuroblastoma agents7. All in 

all, our computer-aided molecular design approach yielded Γ-shaped HDAC inhibitors, which proved to be 

promising drug candidates. 
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P-63: Applications of Binding Free Energy Calculations and QSAR Modeling to 
Design Novel Inhibitors for Human Myt1 Kinase  

A. Najjar, C. Platzer, M. Schmidt, W. Sippl  

Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 

06120, Halle (Saale), Germany 

Membrane-associated inhibitory kinase Myt1 belongs to Wee1-kinase family and regulates the cell cycle at G2/M 

transition [1]. Myt1 is responsible for inhibitory Cdk1 phosphorylation [1]. As result, the cell cycle is restricted until 

DNA damage is repaired [2]. A new strategy for cancer treatment is to keep the cell going in the cell cycle with 

unrepaired DNA damage in premature mitosis. The abrogation of the G2 checkpoint results mitotic catastrophe and 

immediately causes apoptotic or non-apoptotic cell death [3].    

In the current project we used a combination of in silico and in vitro screening to identify novel Myt1 inhibitors. The 

in-silico screening was done using the available Myt1 crystal structure (PDB 3P1A) and several docking methods 

[4,5]. As databases for screening we used in-house libraries of already tested inhibitors as well as focused kinase 

inhibitor libraries (e.g. Selleckchem and GSK kinase inhibitor dataset I and II). The docking solutions were analyzed 

and re-scored using binding free energy calculations. The tested inhibitors were used to derive a quantitative 

structure-activity relationships (QSAR) including different descriptors and scoring methods. The QSAR models 

were validated using external test sets and showed good predictivity. Several scaffolds were identified as starting 

point for the development of novel Myt1 inhibitors. To optimize the identified hits, we used the fragment-based 

approach. The most promising docking solutions were used to identify putative binding groups for the individual 

binding pockets of Myt1. The first set of inhibitors was synthesized and submitted to the biological evaluation. 

Novel active Myt1 kinase inhibitors have been identified.        
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P-65: Estimation of solvation free energies by continuum methods: How to tackle 
halogenated species? 

R. Nunes 1,2,3, P. J. Costa 1,2 
1 Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 2 
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Lisboa, Portugal, 3 Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 
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The incorporation of halogens into drug candidates has occupied an important role in drug discovery and 

development processes. While traditionally this design strategy mainly aimed at improving drug-like properties (e.g. 

biomembrane permeability or pharmacokinetic stability), the pharmaceutical potential of halogenated compounds 

has been increasingly explored for their ability to modulate protein–ligand binding affinity by establishing halogen 

bonds (XB)1. These are highly directional non-covalent interactions explained by the existence of a positive region 

on the electrostatic potential (ESP) of heavier halogens (X), called σ–hole, which is available to interact with 

electron-rich species (i.e. Lewis bases). The development of computational methods that accurately model the charge 

anisotropy of halogenated compounds is therefore of great importance, in view of their use in computer-aided drug 

design and virtual screening routines. Particularly challenging is the case of molecular mechanics (MM)-based 

methods since these rely on point charges, therefore typically failing to represent XBs. The simplest approach to 

describe the ESP anisotropy in halogenated species involves the addition of an off-centre positive extra-point (EP) of 

charge mimicking the σ−hole.2 We have successfully applied this type of methodology to the study of protein–ligand 

complexes by means of molecular dynamics (MD) simulations.3 Regarding the prediction of absolute protein–ligand 

binding free energies, the use of molecular mechanics energies combined with Poisson-Boltzmann surface area 

(MM-PBSA) continuum solvation is a popular methodology. While EP addition has been shown to improve the 

molecular mechanical description of halogen-containing systems, its effect on the accuracy of binding free energy as 

estimated by MM-PBSA is yet to be assessed. This method relies on the estimation of the solvation free energy of 

the ligand, amongst other terms, for which an empirical assignment of halogen parameters, such as the PB radius, is 

required. Hence, we conducted a comprehensive study on the effect of varying the X···EP distance, together with the 

halogen PB radii, on the performance of MM-PBSA-based solvation free energy calculations for a library of 

halogenated ligands. The results, highlighting the dramatic impact of varying the two parameters on the computed 

error, when compared with experimental data, will be disclosed. Implications for computer-aided drug design will 

also be addressed. 
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P-67: A multi-target approach to neurodegenerative diseases 

Sebastian Oddsson1, Thomas Balle2,Elín Soffía Ólafsdóttir1 

1Faculty of Pharmaceutical Sciences, University of Iceland, Iceland, 2Faculty of Pharmacy, The 

University of Sydney 

In order to address the lack of new strategies for drugs that can potentially treat neurodegenerative diseases such as 

Alzheimer’s disease (AD), which affect the world’s population increasingly due to the demographic changes, we 

decided to target more than one molecular player at once. Inhibition of the enzyme Acetylcholinesterase (AChE) is 

currently the treatment of choice for most AD patients and its mode of action is commonly explained with the 

cholinergic hypothesis, whereby it is assumed that function of cholinergic synapses is impaired. Secondly, the drug 

memantine, which is the only other approved drug for AD acting by a different mechanism than the aforementioned, 

blocks N-methyl-D-aspartate (NMDA) receptor channels and was therefore also targeted. Thirdly, nicotinic 

acetylcholine receptors (nAChRs) are also implicated in the disease mechanism selected because of this. A Virtual 

Screening has been performed on a database of 5 million compounds against these three targets independently of one 

another. Based on constraints and a variety of properties potential hits have been selected and are currently 

undergoing in vitro testing. Preliminary results are presented. 

 

P-69: A Computational Platform For Fragment Evolution 

S. Piticchio,1 M. Martinez,1 S. Scaffidi,1  M. Rachman,1  X. Barril.1,2 
1 Physical Chemistry Department, Faculty of Pharmacy, Barcelona University, Av. De Joan XXIII, 27-31, 

08028 Barcelona, Spain, 2 Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís 

Companys 23, 08010 Barcelona, Spain 

Fragment-based drug design has gained ground as a hit identification strategy and is increasingly being used by 

researchers in industry and academia. With relatively small collections, fragment screening explores a large portion 

of chemical space and achieves higher hit rates than traditional drug-like collections. Fragments can form optimal 

interactions with particular subpockets and attain better ligand efficiencies than the bigger HTS hits1. 

However, due to their size, the binding potency is usually weak, leading to the challenge of evolving it to a more 

potent drug-like compound. The pool of synthetically accessible and drug-like compounds that the medicinal 

chemists have to explore is vast.  Here we present an automatic protocol to facilitate and direct this process. 

Given an initial fragment, which binding mode is known (e.g. by X-ray crystallography) the protocol searches in a 

database for molecules that are chemically related and slightly bigger in size. These are then tethered docked to the 

target protein to identify those that are complementary. Dynamic Undocking2 is then applied to filter out false 

positives and the top candidates are selected. The process is repeated until drug-sized molecules are attained. 

We applied the protocol prospectively to the bromodomain BRD4(1). Starting from a published fragment, we 

identify active molecules that are different from existing BRD4 inhibitors, even those that were evolved from the 

same fragment3. Active molecules are being tested with complementary biophysical methods and characterized by 

X-ray crystallography. 

1. Scott, D. E.; Coyne A. G.; Hudson S. A.; Abell C. “Fragment-Based Approaches in Drug Discovery and 

Chemical Biology” Biochemistry, 2012, 51 (25), 4990–5003 
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P-71: NAOMInext - Reaction-Driven Probing of Protein Binding Sites   

Kai Sommer1, Florian Flachsenberg1, Matthias Rarey1  
1 ZBH-Center for Bioinformatics University of Hamburg, Hamburg, Germany  

After identification of initial active compounds for a target of interest, medicinal chemists usually explore the 

surrounding chemical space for interesting lead compounds. To support this process in a structure-based design 

scenario, we developed NAOMInext a program combining organic synthesis rules, structural sampling (growing), 

and primary target- and user-constraints in an easy-to-use graphical user interface (GUI) to design the next 

generation of lead compounds.   

Our powerful and efficient SMARTS processing library allows the integration of user-defined reactions encoded in 

Daylight’s Reaction SMARTS format2,3 on demand, which enables individual reaction steps for a desired target. 

Even complex SMARTS expressions – using recursion to clearly define the surrounding or special properties of a 

reacting atom – are supported. As a beginning, we integrated 58 published robust organic synthesis reactions1 

encoded in the Daylight’s Reaction SMARTS notation3 into NAOMInext (see Figure 1 for an example).  

The success of performing synthetic reactions for the generation of de novo molecules has already been shown in 

several other studies.4,5 In our work we apprehend the process described in SCUBIDO6, which showed good results 

of synthetic tractability in de novo drug design studies. Herein, moving the described workflow into 3D space using 

a straightforward condensed algorithm for fragment growing, further increases the significance of the produced 

results and minimizes false positives. Based on our NAOMI framework7 we are able to generate structurally flawless 

synthesis results, considering both, stereo- and regioisomers, covering all relevant reaction results simultaneously. A 

structural sampling of the grown reaction product is performed under consideration of the primary target and anchor 

constraints (see Figure 1). Furthermore, user defined constraints – to guide the sampling procedure – can be defined. 

Generating synthetic feasible de novo molecules, starting with a single building block (anchor) at one of the key 

interaction sites of the target protein, enables medicinal chemists to explore the chemical space of a screened 

fragment.  

The combinatorial explosion of the structural sampling is solved using a heuristic and knowledgebased approach. To 

cope with large and highly flexible molecules we implemented a combination of a Breadth- and Depth-First-Search 

algorithm, which only proceeds with the best n partial solutions. We start with the statistically most relevant torsion 

angles and at each atom all possible solutions are examined. If no solution is possible, the algorithm dynamically 

extends the relevant torsion angles8 by using tolerance values. This reduces the search space significantly but ensures 

a good solution in an acceptable time frame. The evaluation of our sampling approach was performed on a dataset of 

297 co-crystallized ligands with their putative precursor.9 The results were then compared with docking results to 

demonstrate the benefit of the spatial information of the initial anchor fragment.  

Our approach provides the user with an easy and at the same time powerful instrument to rapidly generate new ideas 

in early stage fragment-based drug discovery projects. Our tool implicitly combines several constraints at a time 

without the need but the possibility for the user to take action. First, available synthetic reactions are filtered, 

retaining only those that match the anchor fragment. Second, only building blocks that are compatible with the 

anchor fragment in terms of further synthesis are used. And third, only results which fit the target binding site and 

perform favorable protein-ligand interactions are retained. Thus, fragment chemical space and structural space are 

pruned at an early stage, which tremendously reduces the number of false positives and speeds up further 

investigation of the results. 
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Figure 1: Exemplary Pictet-Spengler reaction within a schematically drawn binding site. The possible reaction center 

in the phenyl ring next to the methyl group is blocked due to spatial restrictions of the binding site. The reaction 

center next to the fluorine is not blocked. Only one possible stereoisomer of the product is shown here.  
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P-73: Effects of MD-MM/GBSA Parameters on the Rank-Ordering of Ligands in Drug 
Design 
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Switzerland, 2Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, 

Computational Chemistry, ETH Zurich, Switzerland  

In the course of early stage medicinal chemistry projects, often large collections of compounds need to be evaluated 

(e.g., in rescoring of virtual screening docking results). For medium sized result sets, MM/(GB)(PB)SA approaches 

are applicable due to their simplicity and computational speed.  

However, when working with large data sets, the choice of parameters like simulation protocols, force fields, 

protonation and tautomeric states, various implementations of Poisson-Boltzmann (PB) or Generalized-Born (GB) 

can be a major challenge. When ranking is more relevant than the closest fit to experimental free energies of binding, 

some of these choices become less important. Still, a systematic evaluation can be computationally very expensive 

especially when MM/(GB)(PB)SA is combined with molecular dynamics (MD) simulations. 
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In this work, we highlight the impact of specific parameters on the protocols to be followed to take into account the 

variability of MD-based results, also considering multiple short MD trajectories versus single longer ones. In 

addition, we check the possible influence of keeping a small number of selected water molecules as part of the 

MM/GBSA scheme. Comparisons to single-point, energy-refined starting structures also reveal that for "correct" 

initial poses as in most examples reported here, a simple minimization followed by an MM/GBSA evaluation can be 

sufficient (or even superior) to a lengthy MD treatment. 

 

P-75: Can I make this into a macrocycle? 
Effective methods for fragment growing, joining and cyclisation. 

P. Tosco1, M. Mackey1 
1 Cresset, Litlington, UK 

An increasingly common medicinal chemistry technique is conformational restriction through macrocyclization, in 

order to attain higher affinity and selectivity for the target coupled to improved oral bioavailability.1 Although the 

concept is simple, the execution is difficult: the proposed linker must have enough flexibility that it can join the 

proposed cyclisation sites without introducing too much steric strain, but not so much that the entropic benefits of 

cyclisation are lost. It must be synthetically feasible, must fit into the available space in the active site, and ideally 

should make favourable (or at least not unfavourable) interactions with the protein. 

Macrocyclisation can be seen as a special case of fragment linking, which in turn is a constrained form of fragment 

growing. Fragment linking strategies have been recently reported as a highly successful route to lead optimization.2,3 

In both linking and macrocyclisation the design problem is to find a moiety which enforces the required geometry 

between the two link sites. If available, a template ligand with known affinity can be used to help choosing the best 

linker and achieve the desired binding properties in the final product. 

We present the application of Cresset’s Spark bioisostere search methodology to this problem. Spark has the ability 

to search for bioisosteric replacements in a molecule while scoring the results against a separate reference molecule. 

In a fragment growth experiment, the goal is to decorate a starter fragment known to bind the target with functional 

groups that allow to further enhance its affinity. Very often, one or more drug-like molecules with good affinity for 

the target which may act as templates are already known in the literature, but they may have been already patented or 

have other drawbacks (e.g., unfavourable pharmacokinetic properties). The fragment growing workflow allows to 

grow the starter fragment in a user-defined direction with moieties that allows to retain as much as possible the 

interaction and shape properties of the template but using a different chemistry to escape IP and PK issues (Fig 1). 

 

Fig 1. Fragment growing, joining and macrocyclization experiments through the Spark wizards. 
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In the context of a fragment linking experiment, the Spark method can look for a “bioisosteric” replacement joining 

the gap between the two fragments, with the bioisosteric similarity computed against a reference molecule known to 

interact favourably with the protein in the region of the proposed linker. The results can be guided with additional 

constraints, such as the shape of the active site cavity, the known pharmacophores for activity, and regions of 

electrostatic potential that are known to be crucial for binding. 

In this talk we apply this technique to several data sets, including a set of recently-reported pyridine-based BRD4 

inhibitors4. Known highly-active macrocyclic inhibitors were reliably obtained, especially if template molecules 

binding in the cyclisation region could be used to guide the experiment. However, even without this the application 

of both excluded-volume and pharmacophoric constraints from the protein structure provided excellent results (Fig 

2). Results were obtained that matched known cyclisation strategies even when these involve a conformation change 

to the conserved part of the molecule. Analysis of the torsions of the newly-created bonds against torsional statistics 

from the CSD5 provided confirmation that the macrocycle linker sizes suggested by the algorithms minimised 

conformation strain. 

 

 
Fig 2. Spark macrocyclization results.  Among the top 10 results Spark designed compounds with linker sizes 

between 3 to 6 atoms. The top ranking result for each linker size is shown 

1. Marsault, E.; Peterson, M. L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges 

of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54, 1961-2004. 

2. Murray, C. W.; Rees, D. C. The rise of fragment-based drug discovery. Nature Chemistry 2009, 1, 187-192. 

3. Mondal, M.; Radeva, N.; Fanlo-Virgós, H.; Otto, S.; Klebe, G.; Hirsch, A. K. H. Fragment Linking and 

Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment-Based Drug Design 

Facilitated by Dynamic Combinatorial Chemistry. Angew. Chem. Int. Ed. 2016, 55, 9422-9426. 

4. Wang, L.; McDaniel, K. F.; Kati, W. M. Fragment-Based, Structure-Enabled Discovery of Novel Pyridones 

and Pyridone Macrocycles as Potent Bromodomain and Extra-Terminal Domain (BET) Family 

Bromodomain Inhibitors. J. Med. Chem. 2017, 60, 3828-3850. 

5. Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion Library Reloaded: A New Version of Expert-Derived 

SMARTS Rules for Assessing Conformations of Small Molecules. J. Chem. Inf. Model. 2016, 56, 1-5. 
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P-77: Truly Target-Focused Pharmacophore Modeling:  A Novel Tool for Mapping 
Intermolecular Surfaces  

Jérémie Mortier 1, Pratik Dhakal 1, Andrea Volkamer 1  
1 In silico Toxicology Group, Institute of Physiology, Charité Universitätsmedizin Berlin, Germany  

Various computational tools and molecular modeling platforms are known to support medicinal chemists in 

understanding bioactivities, predicting binding events and rationally designing drug molecules. Among them, the 

pharmacophore approach is an accurate and minimal tridimensional abstraction of chemical structures and 

intermolecular interactions.  

Pharmacophore models are usually derived from a group of molecules in absence of structural information on their 

biological targets (ligand-based approach) or from a ligand-target complex (structure-based approach). However, 

only a limited amount of solutions exists to model comprehensive pharmacophores using the information of a 

particular target structure without knowledge of any binding ligand.1 In the presented work, T2F-Pharm, a fully 

automated and customable tool for Truly Target-Focused Pharmacophore modeling will be introduced. Using a 

grid-based approach,2 this method samples the protein cavity, filters the grid points by energy level and clusters them 

into low energy hot spots. Subsequently, key features in the pocket required for optimal interaction in a 3D-

pharmacophore model are derived. Using a variety of protein classes, the ability of this method to identify essential 

features was compared to structure-based pharmacophores derived from ligand-target interactions. Currently, we are 

extending our method to generate merged pharmacophores from molecular dynamics snapshots to capture protein 

flexibility.   

The novel method represents a valuable instrument for drug discovery to investigate protein surfaces in absence of 

known binding partners, e.g. in cases of rather unexplored binding sites, protein allosteric pockets or protein-protein 

interactions.  

1. Sanders MPA, et al. From the protein's perspective: the benefits and challenges of protein structure-based 

pharmacophore modeling. Med.Chem.Comm., 2012, 3:28-38  

2. Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring 

function, efficient optimization, and multithreading. J.Comput.Chem, 2010, 31:455-61 
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P-02: Characterization of the Chemical Space of Known and of Readily Purchasable 
Natural Products  

Y. Chen 1, M. Garcia de Lomana 1, N.-O. Friedrich 1, J. Kirchmair 1  
1 Universität Hamburg, MIN Faculty, Department of Informatics, Center for Bioinformatics,  Hamburg, 

Germany  

Natural products are structurally diverse and exhibit a wide range of bioactivities, making them an important 

resource for drug discovery.1-3 We have recently reviewed 25 virtual and 31 physical natural product libraries that 

are useful for applications in cheminformatics.4 They cover a total of 250,000 natural products, at least 10% of 

which are readily purchasable.  

In this follow-up study, we present a detailed analysis of the physicochemical property space of natural products that 

clearly goes beyond the reach of earlier reports. We implemented a new algorithm called “SugarBuster” that 

identifies and removes generally undesirable sugars and sugarlike moieties from natural products. This gives a more 

realistic view of the physicochemical properties of aglycons that may serve as templates for drug design. We also 

compare, for the first time, the physicochemical properties and scaffold diversity of purchasable natural products to 

those of all known natural products. This analysis provides valuable insights into the relevance of purchasable 

natural products for drug discovery and points out areas in the chemical space that are only covered by natural 

products that require on-demand sourcing, extraction or synthesis. Furthermore, a rule-based approach for the 

automated recognition of the structural classes of natural products (e.g. alkaloids or flavonoids) was implemented, 

which allowed us to quantify their abundance among various data sources.  

1. Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 

2016, 79, 629–661.  

2. Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The Re-Emergence of Natural Products for Drug Discovery in 

the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129.   

3. Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on Natural Products for Drug Design. Nat. 

Chem. 2016, 8, 531–541.  

4. Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data Resources for the Computer-Guided Discovery of 

Bioactive Natural Products. J. Chem. Inf. Model. 2017, 57, 2099–2111.  

 

P-04: Effects of missing data on multitask prediction performance 

A de la Vega de León1, V J Gillet1 
I University of Sheffield, Regent Court, 211 Portobello, S1 4DP Sheffield, United Kingdom 

Deep learning has become increasingly popular in chemoinformatics. Deep neural networks have been successfully 

applied to predict activity in large chemical data sets1, as well as other chemical endpoints of interest2,3. One of the 

advantages of these techniques is their multitask nature; they are able to predict several outputs with a single model. 

This makes them interesting to support drug discovery projects, where molecules need to be optimized against a 

battery of different properties and activities. They can also be used to model multitarget data sets, such as those from 

kinase profiling exercises. 

These types of data sets can be assembled using publicly available data sources. However, this leads to data sets that 

are sparse; where not all compounds have been tested against all targets. It is expected that when these data sets are 

used to train predictive models, their performance would be worse than if the data sets were complete. However, 

there has been little research into how much performance is lost when training data is removed. The aim of this work 

is to gain an understanding of how complete a data matrix should be in order to obtain models with acceptable levels 

of performance. 

We have used two complete data sets to measure the effect of missing data in the performance of multitask methods. 

One data set is PKIS4, a kinase profiling data set donated by GSK to ChEMBL, and the other is a PubChem based 

data set using a subset of assays from a previous publication5. Two different multitask methods were compared: deep 

neural networks and Macau6, a technique based on probabilistic matrix factorization. A large set of models was 

trained for each data set and technique, where increasing amounts of training data were removed. Macau and deep 

neural networks showed very similar performance progression as increasing amounts of training data were removed. 
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In both cases, the decrease in performance was at first slow and it did not increase until almost three quarters of the 

training data were removed. Our results suggest the multitask nature of these techniques is the origin of their 

beneficial performance progression. 

The research leading to these results has received funding from the European Union's Seventh Framework 

Programme (FP7/2007-2013) under grant agreement n°612347. 

1. Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V., Deep Neural Nets as a Method for Quantitative 

Structure–Activity Relationships. J. Chem. Inf. Model. 2015, 55, 263-274. 

2. Lusci, A.; Pollastri,G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The 

Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 2013, 53, 1563-1575. 

3. Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pai, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury. J. Chem. 

Inf. Model. 2015, 55, 2085-2093 

4. https://www.ebi.ac.uk/chembldb/extra/PKIS/ (accessed 18th January 2018) 

5. Helal, K. Y.; Maciejewski, M.; Gregori-Puigjané, E.; Glick, M.; Wassermann, A. M. Public Domain HTS 

Fingerprints: Design and Evaluation of Compound Bioactivity Profiles from PubChem’s Bioassay 

Repository. J. Chem. Inf. Model. 2016, 56, 390-398. 

6. Simm, J.; Arany, A.; Zakeri, P.; Haber, T.; Wegner, J. K.; Chupakhin, V.; Ceulemans, H.; Moreau, Y. 

Macau: Scalable Bayesian Multi-Relational Factorization with Side Information Using MCMC. arXiv 2015, 

1509.04610. 

 

P-06: Compound enumeration using Reaction Workflows 

J Hussain, G Bravi & M Hartshorn  
 Dotmatics, Bishop’s Stortford, UK  

The ability to enumerate virtual chemical structures is vital in the design and synthesis of chemical arrays. It is now 

straight-forward to enumerate many compounds for a given chemical reaction. However, the synthesis of 

compounds typically involves several steps. In addition, the drive to improve the efficiency of multistep synthesis, 

convergent synthesis is increasingly common. These more complex workflows can present a challenge for 

compound enumeration systems. 

In this poster, a new chemical enumeration application called Reaction Workflows (RW) will be presented. The 

application uses a graph to represent a reaction workflow with nodes to represent the reagents and reactions. The 

products of a reaction can also be passed to another reaction. These reaction workflows are akin to the reaction 

schemes we are familiar with in compound synthesis. This means it is straight-forward and intuitive for a chemist to 

drag and drop reagents and reactions nodes to represent a complex convergent multi-step synthesis within RW. The 

application also contains nodes to perform other functions such chemical property calculation, structure 

normalization and substructure filtering. The graphical nature of the application and the functionality available 

means it becomes possible for chemists to build complex workflows needed for their compound filtering and 

enumeration needs. 

 

P-08: chem2vec : vector embedding of atoms and molecules 

N. Jeliazkova 1, V. Chupakhin 2, Hugo Ceulemans2, Jose-Felipe Golib-Dzib 3, V. Jeliazkov 1 
1 Ideaconsult Ltd., 4 Angel Kanchev Str. Sofia, Bulgaria, 2 Computational Biology, Discovery Sciences, 

Janssen Pharmaceutica NV, Beerse, Belgium, 3 Computational Biology, Discovery Sciences, Janssen 

Cilag SA, Toledo, Spain 

We present chem2vec, a method to generate a novel type of real-valued chemical structure descriptors with user 

specified dimension, based on the word2vec algorithm. The word2vec method, a neural network with one hidden 

layer1, takes on input sequences of words (sentences) and uses the information of the environment a given word is 

found in to derive a vector representation of the word in a user specified dimension D. Similarly, chem2vec takes on 
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input linear sequences of objects, which represent parts of  the molecule, namely paths of atoms, or more precisely, 

paths of atom types (as implemented in The CDK library2). 

Chem2vec consists of two steps 1) generating a dictionary of vectorized atom types, preferably from a large dataset 

of chemical structures 2) generating molecular descriptors using the dictionary. The dictionary is transferable, i.e. it 

could be generated once from a large set of chemical structures and reused subsequently for generating descriptors of 

arbitrary sets of chemical structures, not necessary the same as the ones used for generating the dictionary. 

Dictionaries of vectorized atom types have been generated using several datasets (e.g. ChEMBL, ExCAPEDB and 

industry data) and approaches for comparison are presented. The molecular descriptors are compositional, built by 

combining the atom type vectors. The result is a vector representation of the molecule, encompassing low 

dimensional space. We show that while associating a single vector dimension to a molecular moiety is not possible, 

the vectors can be decoded into the familiar count of atom types and tuples of atom types.  

The new chem2vec descriptors can be used for similarity assessment, and as input for unsupervised (clustering) and 

supervised (regression, classification) machine learning methods. Experiments with several datasets are performed 

on large scale public datasets (e.g. chemogenomics dataset ExCAPEDB3) and industry data. The predictive 

performance of supervised models using the low dimensional real valued chem2vec descriptor space is comparable 

or exceeds the performance of models using traditional high dimensional sparse fingerprint-based descriptors.  

Acknowledgment: This project has received funding from the European Union’s Horizon 2020 Research and 

Innovation programme under Grant Agreement No. 671555. 

1. Mikolov, T.; Corrado, G.; Chen, K.; Dean, J. In Proceedings of the International Conference on Learning 

Representations (ICLR 2013); 2013; pp 1–12. 

2. Willighagen, E. L.; Mayfield, J. W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal, 

T.; Rojas-Chert?, M.; Spjuth, O.; Torrance, G.; Evelo, C. T.; Guha, R.; Steinbeck, C. J. Cheminform. 2017, 

9 (1), 33. 

3. Sun, J.; Jeliazkova, N.; Chupakin, V.; Golib-Dzib, J.-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, 

H.; Georgiev, I.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Cheminform. 2017, 9 (1), 17. 

 

 

P-10: Building and searching large chemistry spaces 

U. Lessel 1, C. Lemmen 2 
1 Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany,  2 BiosolveIT, St. 

Augustin, Germany  

Virtual screening in large chemistry spaces was first popular with the rise of High Throughput Screening and 

Combinatorial Chemistry. It then lost its attraction for various reasons and gains now another wave of interest 

through technologies like DNA encoded libraries as well as the recognition that traditional compound libraries are a 

quite limited resource, while the know how is there to break current size limits. 

Feature Trees Fragment Spaces came up about 10 years ago1, 2, 3, 4 as a software to search chemistry spaces. While 

the searching with this technology is quite simple and effective, building a Fragment Space used to be a significant 

effort. Last year a new version of the software tool CoLibri5 came out, which turned building Fragment Spaces into a 

reasonably straight forward process.  

With the new CoLibri as a tool to easily build chemistry spaces the question arises, how to compare different spaces. 

To the best of our knowledge so far no technique fulfilling this task has been published. Here we compare two 

different chemistry spaces, namely the Knowledge Space6, a literature-based resource, and the BICLAIM space from 

Boehringer Ingelheim, by means of different application scenarios. Additionally we look at the ZINC-database7 as a 

traditional compound resource. 

We assessed similarity and diversity within hit sets, number of Murcko cores, as well as chemical feasibility. This 

way we detected interesting differences, partially caused by the diverging design principles behind these resources.  

In this presentation we present the study and its results. We discuss the value of the different parameters analysed for 

characterizing chemistry spaces and for their comparison. 

1. Rarey, M.; Dixon, J.S. Feature trees: a new molecular similarity measure based on tree matching. J. 

Comput.-Aided Mol. Des. 1998, 12, 471-90. 

2. FTrees Version 3.3, BioSolveIT. BioSolveIT GmbH, http://www.biosolveit.de/. 

http://www.biosolveit.de/
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3. Boehm, M.; Wu, T.-Y.; Claussen, H.; Lemmen, C. Similarity Searching and Scaffold Hopping in 

Synthetically Accessible Combinatorial Chemistry Spaces  J. Med. Chem., 2008, 51, 2468–2480. 

4. Lessel U.; Wellenzohn, B.; Lilienthal, M.; Claussen, H. Searching Fragment Spaces with Feature Trees J. 

Chem. Inf. Model., 2009, 50, 1-21. 

5. CoLibri Version 3.1, BioSolveIT. BioSolveIT GmbH, http://www.biosolveit.de/. 

6. Knowledge Space Version 2.4, BioSolveIT. BioSolveIT GmbH, http://www.biosolveit.de/. 

7. Sterling, T.; Irwin, J.J. ZINC 15 – Ligand Discovery for Everyone J. Chem. Inf. Model., 2015, 55, 2324-

2337. 

 

P-12: Learning from Extant Medicinal Chemistry to Accelerate Hit Identification and 
Optimisation in Drug Discovery 

N Y Mok 1, J Meyers 2, M Carter 1, T Kaserer 1, N Brown 2 
1 Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of 

Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom. 2 BenevolentAI, 40 

Churchway, London NW1 1LW, United Kingdom. 

Data mining of publicly available chemical structure databases can enable us to understand the historic exploration 

for medicinal chemistry relevant structures. This presentation will discuss recent analyses of extant medicinal 

chemistry and learning from these studies that can be applied to inform and accelerate hit identification and 

optimisation in drug discovery. 

Hit identification strategies in drug discovery often rely on the screening of small-molecule compound libraries to 

discover hit matter as starting points for development into lead molecular series. A major source of compounds 

constituting such screening libraries originates from commercial compound vendor collections of small molecules 

and target-focussed screening sets. Using ChEMBL1 and eMolecules as exemplar repositories of extant medicinal 

chemistry and commercially available compounds respectively, over 9 million medicinal chemistry compounds were 

analysed to understand the coverage of biologically relevant medicinal chemistry space using commercial compound 

screening libraries. Applying various complementary molecular comparison methods, extant medicinal chemistry 

space with enrichment in bioactive molecules is identified, and the corresponding molecular and physicochemical 

properties are characterised. Results from this analysis can inform on the design of effective screening collections 

that would provide us with greater confidence in identifying high-quality medicinal chemistry starting points in drug 

discovery projects. 

In addition, mining of the ChEMBL database can also provide valuable insights in the exploration and exploitation 

of chemical space during compound optimisation, as highlighted in recent publications analysing the molecular 

shape diversity and molecular scaffolds of medicinal chemistry relevant space.2,3 The appropriate stage at which 

molecular shape diversity should be introduced in molecular design and the systematic exploration of molecular 

scaffolds during medicinal chemistry optimisation will be presented. Based upon these results, emerging strategies 

that can modulate relevant drug-like properties of molecular scaffolds and substituent spaces to accelerate hit 

optimisation will be discussed. 

1. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; 

Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: A large-scale bioactivity database for drug 

discovery. Nucleic Acids Res. 2012, 40, D1100−D1107. 

2. Meyers, J.; Carter, M.; Mok, N. Y.; Brown, N. On the origins of three dimensionality in drug-like 

molecules. Future Med. Chem. 2016, 8, 1753-1767. 

3. Mok, N. Y.; Brown, N. Applications of systematic molecular scaffold enumeration to enrich structure-

activity relationship information. J. Chem. Inf. Model. 2017, 57, 27-35. 
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P-14: HTS workup at AZ – state of the art 

J.W.M. Nissink1 
1 Oncology, IMED Biotech Unit, Astrazeneca, Cambridge, United Kingdom 

Large scale high-throughput screening (HTS) is a key lead-finding approach that underpins project starts both in 

industry and academia. HTS, alongside alternative lead-finding techniques like fragment screening, subset screening, 

and virtual screening can provide projects with a set of target binders, but it is by no means a trivial exercise.  

Here we will discuss the state-of-the-art of HTS at AstraZeneca, with both successful examples and examples of 

problems that have been encountered. We will touch on design of the screening collection; development of and 

stress-testing hit-finding cascades with validation sets; analysis of emerging actives, and identification of false hits.  

 

P-16: A Comprehensive Evaluation of ACD/LogD on a Pharmaceutical Compound Set 

A. Sazonovas 1,2, K. Lanevskij 1,2, R. Didziapetris 1,2 
1 VšĮ „Aukštieji algoritmai“, A.Mickevičiaus 29, LT-08117 Vilnius, Lithuania, 2 ACD/Labs, Inc., 8 King 

Street East, Toronto, Ontario, M5C 1B5, Canada  

Lipophilicity, which is often expressed in terms of 1-octanol/water partitioning coefficient logP, or the 

corresponding pH-dependent distribution coefficient logD, is one of the key physicochemical characteristics of any 

new drug candidates, as it has a major influence on a variety of the compounds’ properties constituting their ADME, 

pharmacokinetic, and drug safety profiles. Widely available in silico tools for predicting these properties are mostly 

based on experimental data for simple organic chemicals and marketed drugs. Consequently, as drug discovery 

projects are moving to increasingly novel regions of chemical space, utility of existing methods becomes more and 

more questionable. In several previously published evaluation studies1,2, the mean logP prediction error for in house 

compound libraries of pharmaceutical companies was shown to exceed 1 log unit by almost all methods. Prediction 

of logD is even more challenging, as it requires accurate knowledge of both logP of neutral form and distribution of 

ionic forms of the compound in the relevant pH range. With these considerations in mind, the following objectives 

were set for the current study: 

(1) Collecting a data set of experimental logD values from recent publications dealing with novel congeneric 

compound series from drug discovery projects; 

(2) Evaluating the performance of ACD/LogD predictor3 for the newly collected molecules using different 

combinations of available logP and pKa calculation algorithms; 

(3) Investigating the potential for improving prediction accuracy for unknown compound classes by application 

of automated model training. 

The compiled data set consisted of ~1200 logD values measured at physiological pH conditions. According to the 

initial validation results, the highest accuracy of predictions based on the models employing only built-in compound 

libraries can be achieved using a combination of ACD/LogP Consensus and ACD/pKa Classic algorithms, yelding 

RMSE slightly under 1 log unit. However, utilizing the automatic training feature of ACD/LogP GALAS algorithm 

by the means of stepwise addition of collected data to the model self-training library allowed decreasing the RMSE 

of predictions for the reserved validation set to as low as 0.6 log units. Moreover, a significant improvement (RMSE 

≈ 0.8) was already evident after adding the first portion of training data constituting less than 20% of the entire data 

set. These results demonstrate that performing experimental measurements for a relatively small number of 

molecules belonging to a novel chemical series is often sufficient to adapt ACD/LogP and ACD/LogD predictors to 

provide reliable property estimates for the entire class of compounds. 

1. Mannhold R., Poda G. I., Ostermann C., Tetko I. V. Calculation of molecular lipophilicity: State-of-the-art 

and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 2009, 98, 861-893. 

2. Tetko I. V., Poda G. I., Ostermann C., Mannhold R. Large-scale evaluation of log P predictors: local 

corrections may compensate insufficient accuracy and need of experimentally testing every other 

compound. B. Chem. Biodivers. 2009, 6, 1837-1844. 

3. ACD/LogD (part of Percepta® platform), v. 2017, ACD/Labs, Inc.  

(http://www.acdlabs.com/products/percepta/)  

http://www.acdlabs.com/products/percepta/
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P-18: Halogens in protein-ligand binding mechanism: a structural perspective  

N.K. Shinada, A.G. de Brevern, M. Oberlin, D. Alvarez Garcia, P. Schmidtke  

Discngine S.A.S, 79 Avenue Ledru-Rollin, 75012 Paris, France  

During the last decade, halogen atoms have become increasingly important in rational drug design. Fluorine is often 

used to enhance physico-chemical properties. Chlorine, bromine and iodine can influence interaction strength via 

directed halogen bonds1. Quantum mechanics studies and small molecule X ray data shed light onto the precise 

geometry necessary to favorable halogen interactions2. Several computational tools and models start to integrate data 

from such calculations and studies3.   

However, adding halogen to a ligand can have often overlooked effects. For example an aromatic quadrupole 

moment can shift from negative to positive, referred to as a πhole4. Although most of studies focus on halogen 

bonding through the σ-hole5, recent studies suggest hydrogen bonding involving halogens may also have a 

significant impact with on intermolecular interactions6.    

Using the Discngine’s 3decision® structural knowledge base derived from the RCSB PDB, a refined analysis of 

halogen interactions reassesses the occurrence of multiple types of interactions made by halogen atoms. We 

furthermore underline various biases observed in previously used datasets to analyze halogen bonding. We further 

exemplify preferential interactions of halogenated fragments in small molecules and their implications for rational 

drug design.  

Results shown here aim to complete the current understanding of halogen to biomolecule interaction preferences and 

can be used by medicinal chemists and molecular modelers to rationally place halogens on small molecules.  

1. Hernandes, Marcelo Z., et al. "Halogen atoms in the modern medicinal chemistry: hints for the drug 

design." Current drug targets 11.3 (2010): 303-314.  

2. Wilcken, Rainer, et al. "Addressing methionine in molecular design through directed sulfur–halogen 

bonds." Journal of chemical theory and computation 7.7 (2011): 23072315.  

3. Ford, Melissa Coates, and P. Shing Ho. "Computational tools to model halogen bonds in medicinal 

chemistry." Journal of medicinal chemistry 59.5 (2015): 1655-1670.  

4. Wang, Hui, Weizhou Wang, and Wei Jun Jin. "σ-hole bond vs π-hole bond: a comparison based on halogen 

bond." Chemical reviews 116.9 (2016): 5072-5104.  

5. Wilcken, Rainer, et al. "Principles and applications of halogen bonding in medicinal chemistry and 

chemical biology." Journal of medicinal chemistry 56.4 (2013): 13631388.  

6. Lin, Fang-Yu, and Alexander D. MacKerell Jr. "Do Halogen–Hydrogen Bond Donor Interactions Dominate 

the Favorable Contribution of Halogens to Ligand–Protein Binding?." The Journal of Physical Chemistry B 

121.28 (2017): 6813-6821.  

 

P-20: Interoperable and scalable data analysis in metabolomics  

C Steinbeck1, P Emami Khoonsari2, K Kultima2, O Spjuth2 on behalf of the PhenoMeNal 

consortium  
1Friedrich-Schiller-University, Jena, Germany, 2University of Uppsala, Uppsala, Sweden  

Metabolomics aims to characterise the biochemical stage of an organism or biological sample though simultaneous, 

(semi-) quantitative measurement of as many metabolites as possible. To this end, it uniquely employs 

cheminformatics and analytical chemistry methods to address questions in biology. Depending on the analytical 

methods and sample sizes used, metabolomics generates “big data”, which can be time consuming to analyse and 

often exceeds the data processing capabilities of an individual laboratory.   

As part of PhenoMeNal project (http://phenomenal-h2020.eu), funded by the European Commission, we have 

addressed this problem by developing a robust and performant data analysis workflow that integrates all necessary 

components whilst still being able to scale over multiple compute nodes.  

The aim was to support flexible metabolomics data analysis. The system is designed as a virtual research 

environment which can be launched on-demand on cloud resources and desktop computers.  
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PhenoMenal is based on a microservice architecture, where software tools are encapsulated as Docker containers 

that can be connected into scientific workflows and executed in parallel using the Kubernetes container orchestrator. 

IT-expertise requirements on the user side are kept to a minimum, and established workflows can be re-used 

effortlessly by any novice user. We validated our method on two mass spectrometry studies, one nuclear magnetic 

resonance spectroscopy study and one fluxomics study, showing that the method scales dynamically with increasing 

availability of computational resources.   

It is also noteworthy, that microservices are a generic methodology that can serve any scientific discipline and opens 

up for new types of large-scale integrative data analysis. Apart from offering a turnkey solution for metabolomics, 

PhenoMeNal therefore also presents an architecture to integrate individual tools into scalable workflows in public 

and private clouds.   

1. Khoonsari, P. E., Moreno, P., Bergmann, S., Burman, J., Capuccini, M., Carone, M., Cascante, M., de 

Atauri, P., Foguet, C., González-Beltrán, A., Hankemeier, T., Haug, K., He, S., Herman, S., Johnson, D., 

Kale, N., Larsson, A., Neumann, S., Peters, K., Pireddu, L., Rocca-Serra, P., Roger, P., Rueedi, R., 

Ruttkies, C., Sadawi, N., Salek, R. M., Sansone, S.-A., Schober, D., Selivanov, V., Thévenot, E. A., van 

Vliet, M., Zanetti, G., Steinbeck, C., Kultima, K., and Spjuth, O. (2017) Interoperable and scalable 

metabolomics data analysis with microservices. bioRxiv 213603.  

 

P-22: Supporting the assessment of the purging potential mutagenic impurities via 
analysis of patent literature 

S Webb 1, M Burns 1, E Rosser 1 
1 Lhasa Limited, Leeds, United Kingdom 

Compounds introduced during synthesis including starting materials, intermediates and by-products may be carried 

through the synthesis to become impurities in the final product. If these are predicted or known to be mutagenic then 

they are subject to regulation under the ICH M7 guidelines[1]. These guidelines allow for a chemistry-based 

argument that the impurity will not survive the synthetic route and evidence of its absence may then not be 

necessary. 

Text-mined reactions from the United States Patent Office patent applications and grants provided by NextMove 

software[2] have been used to support the development of a prototype tool which provides suggestions for potential 

reactivity-based purging of these impurities. 

Reactions are automatically categorised via mapping and generation of a reaction core representing the atom and 

bond changes occurring within a single-step reaction. These reaction cores can be used generate clusters of reactions 

sharing common mechanisms without the need for a named reaction.  

Reaction networks can be generated as tree structures, organising reaction cores into greater specification. The 

networks then provide an easy mechanism for identifying feasible reaction mechanisms and identifying the most 

relevant examples for a given set of reactants. Visualisation of reaction conditions such as yield, solvent, 

temperature, time, presence of acid/base etc. allow for the assessment of the suitability of a suggested purging 

mechanism. 

1. Guideline, ICH Harmonised Tripartite. "Assessment and Control of DNA Reactive (Mutagenic) Impurities 

in Pharmaceuticals to Limit Potential Carcinogenic Risk, M7; 2017." (2017). 

2. NextMove Software. https://www.nextmovesoftware.com/ (08/02/2017) 

 

https://www.nextmovesoftware.com/
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P-24: Metabolite Structure Prediction Benefits from Cytochrome P450 
Regioselectivity Prediction 

C. de Bruyn Kops 1, C. Stork 1, N. Jeliazkova 2, N. Kochev 2,3, J. Kirchmair1 
1 Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Department of 

Computer Science, Center for Bioinformatics, Hamburg, Germany, 2 Ideaconsult Ltd, Sofia, Bulgaria, 3 

University of Plovdiv, Department of Analytical Chemistry and Computer Chemistry, Plovdiv, Bulgaria 

Knowledge of the metabolic fate of xenobiotics in humans is invaluable for the development of safe and effective 

drugs and other chemical substances, because biotransformation of small organic molecules can produce metabolites 

with biological and physicochemical properties that differ substantially from those of the parent compound.1 

Prediction of the atom positions in a molecule where metabolic reactions are initiated (i.e. sites of metabolism) is a 

popular aspect of metabolism prediction and can be used as a stepping stone for the prediction of the chemical 

structures of metabolites.  

We have developed a strategy for metabolite structure prediction that is based on FAME 2,2 our recently developed 

and highly effective machine learning method for human cytochrome P450 (CYP) regioselectivity prediction. 

Through the application of known CYP-mediated reactions to the sites of metabolism predicted by FAME 2, we are 

able to correctly predict the vast majority of known metabolites while keeping false-positive prediction rates low. 

Compared to CYP-mediated reactions applied to all atom positions in parent compounds, applying the site of 

metabolism predictions as a preceding filter results in an approximately ten-fold reduction in the number of false 

positive metabolite predictions on average.  

1. Kirchmair J.; Göller A. H.; Lang D.; Kunze J.; Testa B.; Wilson I. D.; Glen R. C.; Schneider G. Predicting 

drug metabolism: Experiment and/or computation? Nature Rev. Drug Discov. 2015, 14, 387-404. 

2. Šícho, M.; de Bruyn Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J. FAME 2: Simple and Effective Machine 

Learning Model of Cytochrome P450 Regioselectivity. J. Chem. Inf. Model. 2017, 57, 1832-1846. 

 

P-26: Small Molecule Binding Site Prediction – Know Your Needs 

C. Ehrt1,2, T. Brinkjost1,2, O. Koch1 
1 Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany, 

2 Department of Computer Science, TU Dortmund University, Dortmund, Germany 

The automated prediction and visualization of potential protein binding sites is of interest for function annotation, 

the elucidation of “druggable” binding sites, and target identification.1 During the past decades, a plethora of tools 

have been developed to cope with various challenges of binding site identification and to consider the binding site’s 

nature (protein-protein, protein-DNA, etc.).2 

Together with those tools, a high and still increasing number of small molecule cavity detection methods is 

nowadays available. Therefore, the question arises whether this can be attributed to major limitations of published 

methods or whether they evolve due to user-specific requisites. Although various methods were evaluated for 

publication purposes and were also quite recently reviewed3, the choice for the most convenient methods is still a 

challenging task. A correlation of the results with various pocket properties seems indispensable to choose a suitable 

tool. Various comparisons of subsets of tools show contradictory results which can be attributed to the varying types 

of datasets and quality criteria which often highly depend on the output of the methods under investigation.  

We applied two representative datasets of high-quality structures to gain a better understanding of the current 

limitations of binding site prediction. They cover a large spectrum of proteins and include binding sites, which are 

prone to conformational changes upon ligand binding, as well as comparative protein models. Subsequently, we 

investigated almost fifty available standalone tools with respect to run time and particularly performance by means 

of different quality criteria. 

For the prediction of ligand binding sites of one single protein structure, the automated prediction should be 

supplemented by further analyses to obtain reliable results.4 Nevertheless, one need which cannot be fulfilled by an 

elaborate pocket characterization workflow is the automated detection of cavities for huge databases of experimental 
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or theoretical protein structures. To this aim, we strived to identify the most flexible methods whose results do not 

highly depend on geometric or physicochemical pocket characteristics, or the applied parameter set. 

Ultimately, we tested and evaluated various standalone small molecule binding site prediction methods to find 

answers to the aforementioned questions. This will be outlined by an exhaustive analysis and discussion of our final 

outcomes which will also include the analysis of ranking methodologies. The obtained results point towards a quite 

obvious trend which is crucial for all further developments of novel methodologies. 

1. Nisius, B.; Sha, F.; Gohlke, H. Structure-based computational analysis of protein binding sites for function 

and druggability prediction. J. Biotechnol. 2012, 159 (3), 123–134. 

2. Watson, J. D.; Laskowski, R. A.; Thornton, J. M. Predicting protein function from sequence and structural 

data. Curr. Opin. Struct. Biol. 2005, 15 (3), 275–284. 

3. Krone, M.; Kozlíková, B.; Lindow, N.; Baaden, M.; Baum, D.; Parulek, J.; Hege, H.-C.; Viola, I. Visual 

Analysis of Biomolecular Cavities: State of the Art. Comput. Graph. Forum 2016, 35 (3), 527–551. 

4. Broomhead, N. K.; Soliman, M. E. Can We Rely on Computational Predictions To Correctly Identify 

Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and 

a Protocol for Validation of Predicted Binding Sites. Cell Biochem. Biophys. 2017, 75 (1), 15–23. 

 

P-28: Molecular nature of the increased activity of the Uridine 5’-diphospho-
glucuronosyltransferase nine-fold mutant 1A5*8 (UGT1A5*8) 

D. Machalz1, F. Yang2, M. Bureik2, G. Wolber1 
1 Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-

Luise-Str. 2+4, 14195 Berlin, Germany, 2 School of Pharmaceutical Science and Technology, Health 

Sciences Platform, Tianjin University, Tianjin 30072, China 

 
Uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A5 is a member of the UGT family catalyzing 

glucoronidation, a crucial mechanism of phase II metabolism, at low activity levels in different hepatic and 

gastrointestinal tissues1. Drug-induced increase and high intervariability of UGT1A5 expression1 make it a phase II 

metabolism enzyme of interest. Besides the wildtype UGT1A5*1, which occurs with a frequency of > 80 % in the 

human population, a recent study2 reports a nine-fold mutant UGT1A5*8 (frequency 11.5 %) and a six-fold mutant 

UGT1A5*9 (frequency 5 %). UGT1A5*9 contains six out of the nine variations present in UGT1A5*8. We 

expressed the wildtype UGT1A5*1 and the two mutants and incubated them with two Proluciferin UGT-substrates 

due to the scarcity of reported substrates. 

While the six-fold mutant shows wildtype activity levels, we found that the nine-fold mutant of UGT1A5*8 exhibits 

significantly increased biotransformation activity. In order to investigate the molecular nature of the increased 

catalytic activity in UGT1A5*8 we conducted structural homology modeling for wildtype and nine-fold mutant. We 

identified the Gly259Arg mutation, only present in UGT1A5*8, as the likely cause for increased activity, since it 

introduces additional hydrogen bonding to Asp400 and Asn401 in the helix Q of the structural model of UGT1A5*8. 

We carried out molecular dynamics (MD) simulations of UGT1A5*1 and UGT1A5*8 in three replicas using 

Desmond3 and two homology models served as input structures. We payed close attention to the hydrogen bond 

network proximal to the cofactor Uridine 5’-diphosphoglucuronic acid (UDPGA) and the Gly259Arg mutation. 

Simulation analysis showed that the postulated Arg259 hydrogen bonding is stable and thus rigidizes the helix Q 

observable in reduced root mean square fluctuation (RMSF) values. As a consequence, Asp397 and Gln398, situated 

in the helix Q, show hydrogen bonding to the cofactor UDPGA with higher occupancy in UGT1A5*8 than in the 

wildtype. In this study, we identify Arg259 mutation as the indirect cause for tighter UDPGA cofactor binding. This 

cofactor stabilization explains the increased the activity of UGT1A5*8 compared to the wildtype UGT1A5*1. These 

results provide new insights into the structure-function relationship of UGT1A5 and lead to the identification of two 

new substrates of this new potential target for xenobiotic metabolism. 

1. Finel, M.; Li, X.; Gardner-Stephen, D.; Bratton, S.; Mackenzie, P. I.; Radominska-Pandya, A., Human 

UDP-glucuronosyltransferase 1A5: identification, expression, and activity. J Pharmacol Exp Ther 2005, 

315 (3), 1143-9. 

2. Lek, M.; Karczewski, K. J.; Minikel, E. V.; Samocha, K. E.; Banks, E.; Fennell, T.; O'Donnell-Luria, A. H.; 

Ware, J. S.; Hill, A. J.; Cummings, B. B.; et al., Analysis of protein-coding genetic variation in 60,706 

humans. Nature 2016, 536 (7616), 285-91. 
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3. Bowers, K.; Chow, E.; Xu, H.; Dror, R.; Eastwood, M.; Gregersen, B.; Klepeis, J.; Kolossvary, I.; Moraes, 

M.; Sacerdoti, F.; Salmon, J.; Shan, Y.; Shaw, D. In ACM/IEEE SC 2006 Conference (SC’06); 2006; pp 

43–43. 

 

P-30: Searching within HELM 

Eva Bültel 1,2, Anne Mund 1, Markus Weisser 1 
1 quattro research GmbH, Planegg, Germany  2 University of Hamburg. Hamburg, Germany 

The Hierarchical Editing Language for Macromolecules (HELM) is an open biomolecular representation standard 

created by Pfizer1 and further developed by the Pistoia Alliance2. It provides a means to represent multiple types of 

complex macromolecules (e.g. nucleotides, proteins, antibodies and antibody-drug conjugates) including those that 

contain non-natural elements such as chemically modified amino acids or even abiotic components such as gold 

particles. 

 With many current biological entities being significantly more complex than those found in nature, HELM has 

proven its worth in handling the arising challenges. There are now toolkits for the easy depiction, conversion and 

storage of biomolecules using the HELM notation. Yet, we still lack the ability to search within HELM strings, 

which becomes increasingly important as databases grow in size. This searching capability has also been outlined as 

important by the Pistoia Alliance itself, with a proof of concept done by a student from Cambridge University. 

quattro research has developed a new algorithm that allows users to not only query databases for exact matches or 

substructures, but also establishes a similarity measure between arbitrarily complex biomolecules. Using this 

similarity measure, biologists can infer behaviour of new substances based on the behaviour of known structures. 

The algorithm is also capable of taking natural analogues into account when comparing HELM notations. Our work 

closes an important gap researchers working with HELM have been facing. The extensive search and comparison 

capabilities demonstrated here will have a significant impact on the acceptance of HELM in the pharmaceutical 

community. 

1. Zhang, T.; Li, H.; Xi, H.; Stanton, R. V.; Rotstein, S. H. HELM: a hierarchical notation language for 

complex biomolecule structure representation. Journal of Chemical Information and Modeling 2012 52 

(10), 2796-2806. 

2. Milton, J.; Zhang, T.; Bellamy, C.; Swayze, E. E.; Hart, C. E.; Weisser, M.; Hecht, S.; Rotstein, S. HELM 

Software for Biopolymers. Journal of Chemical Information and Modeling 2017 57 (6), 1233-1239. 

 

P-32: HELM-driven Integration of Peptides into Structure-Based Drug Design and 
Cheminformatics 

Conor C. G. Scully, Robert T. Smith, Benjamin G. Tehan 
1 Heptares Therapeutics, Welwyn Garden City, United Kingdom 

Peptide-based therapeutics are undergoing a resurgence in popularity, currently making up more than 10% of 

marketed drugs and numbering over 140 in clinical trials. Research teams are incorporating peptides into ever 

increasing numbers of discovery programs. This boom in biologics has given us the impetus to develop tools aiding 

the inclusion of peptides into the operational environment of traditional small molecule drug discovery paradigms. 

The HELM (Hierarchical Editing Language for Macromolecules) standard is rapidly gaining wide acceptance in 

industry and academia as an enabling tool for the sequence-based description of complex biological molecules, 

including peptides. 

The implementation of HELM-based tools will be described for a variety of computational tasks including: 

• alignment of peptide sequences containing complex networks of unnatural residues and chemical 

modifications; 

• automated generation of templated 3D coordinates for complex peptides from HELM strings;  
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• generation of normalized 2D representations of complex peptide structures such as branched and cyclic 

peptides. 

Finally, it will be shown how these tools can aid in extracting and parsing information for biologics from databases, 

in addition to facilitating the organization of this data in a manner that enables the application of differing learning 

techniques, in this way ensuring that we continue to extract knowledge from the ever-increasing amounts of data 

now available to everyday researchers. 

 

P-34: Machine Learning Models of Hydrogen Bond Basicity Based on Anisotropy 
Atomic Reactivity Descriptors  

Christoph Bauer 1, Andreas H. Göller 2, Gisbert Schneider 1 
1 ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; 2Bayer AG, 

Computational Chemistry, Wuppertal, Germany 

The quantification of the hydrogen bond strength to a target relative to solvent facilitates the determination of 

substituent effect and hetero-atom replacement in a compound. The pKBHX database1 provides experimental values 

for approximately 1200 compounds, including polyfunctional molecules, i.e. molecules with at least two different H-

bond acceptors (HBA). The pKBHX data is of atomic resolution for the HBA atoms.  

We report on the establishment of general, i.e. atom-type independent, machine learning models for the pKBHX data. 

Our recently developed sets of atomic descriptors that encode the anisotropic electron density distribution using 

conformation-independent quantum-mechanical atomic charge schemes (Figure 1)2 served as the feature space for 

machine learning.  

 

                    
Figure 5: Anisotropic circular descriptors are created be either topological or 3D real-space binning of atomic 

properties like e.g. atomic charges (left) and mapping to a linear vector (right).   

We present the model performances for several types of atomic descriptor vectors3 computed for the HBA atoms 

using internal cross-validation. As the first result, we report a Gaussian Process Regression model performance on 

the pKBHX monofunctional molecules subset, using a charge radial distribution function descriptor vector. The 

RMSE score for this preliminary test, obtained by 10-fold internal cross-validation, is equivalent to 0.60  0.27 kcal 

mol-1.  

We further report on the quantum-mechanical calculation of donor-acceptor interaction energies with the aim to 

extend the dataset to larger, more complex and functionalized molecules. 

1. Laurence, C.; Brameld, K. A.; Graton, J.; Le Questel, J.-Y.; Renault, E. The pKBHX database: Toward a 

better understanding of hydrogen-bond basicity for medicinal chemists, J. Med. Chem. 2009, 52, 4073-

4086.  

2. Finkelmann, A. R.; Göller, A. H.; Schneider, G. Robust molecular representations for modelling and design 

derived from atomic partial charges. Chem. Commun. 2016, 52, 681-684. 

3. Finkelmann, A.R.; Göller, A.H.; Schneider, G. Site of metabolism prediction based on ab initio derived 

atom representations. ChemMedChem, 2017, 12, 606-612. 
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P-36: International Chemical Identifier for Reactions (RInChI) 
The key to effectively managing reaction databases 

Gerd Blanke1, Jonathan Goodman2, Günter Grethe3, Hans Kraut4 

1 StructurePendium Technologies GmbH, Essen, Germany, 2 University of Cambridge, Department of 

Chemistry, Cambridge, UK, 3 Dr. Guenter Grethe, Poway, CA 92064, US, 4 InfoChem Gesellschaft für 

chemische Information mbH, Munich, Germany 

The Reaction-InChI (RInChI) extends the idea of the InChI, which provides a unique descriptor of molecular 

structures, towards reactions. Prototype versions of the RInChI supported by the IUPAC and the University of 

Cambridge have been available since 2011. The first official release (RInChI-V1.00), funded by the InChI Trust îs 

now available for download (http://www.inchi-trust.org/downloads/). This release defines the format and generates 

hashed representations (RInChIKeys) suitable for database and web operations. This talk will introduce the various 

RInChI representations and reports results of our work with reaction databases indexed by RInChI to demonstrate 

how RInChI may facilitate the manipulation and analysis of reaction data and will provide information how the 

RInChI will be further developed. 

 

P-38: Characterizing Somatic Cancer Mutations in GPCRs 

B.J. Bongers1, X. Wang1, X. Liu1, H.W.T van Vlijmen1,2, K. Ye3, L.H. Heitman1, A.P. IJzerman1, 

G.J.P van Westen1.   
1 Division of Drug Discovery and Safety, Leiden, The Netherlands,2 Janssen Pharmaceutica NV, Beerse, 

Belgium, 3 Xi'an Jiaotong University, Xi'an, China 

G Protein-Coupled Receptors (GPCRs) have recently gained interest as the second most mutated class of proteins in 

the context of cancer1. One of the key problems in cancer research remains the distinction between passenger and 

efficacious driver mutations. In the case of GPCRs, two decades of extensive research and the availability of crystal 

structures have led to insights into protein function and protein-ligand recognition which we aim to exploit.  

Combining data from ChEMBL2 and the BROAD institute3 we constructed a dataset containing 9,144 patient 

samples data of 38 different cancer types. Subsequently, entropy analysis was performed to observe mutation 

prevalence in GPCRs, specifically missense mutations, and compare these to a control set based on the 1000 

genomes dataset, which contained 2,504 samples 4,5.  

First and foremost our analysis was able to retrieve and prioritize previously identified relevant GPCRs in a cancer 

context such as the Frizzled receptors and metabotropic glutamate receptors6. However, we were also able to gain 

new insights. More functional mutations were found in the TCGA data: Intracellular loops and transmembrane 

domains 3 and 6 (TMs) are most intensively mutated across GPCRs. Conserved residues in well-known motifs (such 

as the 'DRY' motif) are enriched for mutations. More specifically, residues flanking the highly-conserved and 

essential residues have a higher chance of mutation. 

Secondly, we observe mutations to have a relatively low prevalence in the Class A GPCR ligand recognition site, 

opening the door for target modulation with small molecules. Small peptide receptors from both Class A and B 

GPCRs, such as neuropeptide receptors and angiotensin receptors show a large mutation rate compared to receptors 

recognizing small(er) molecules.  

Thirdly, physicochemical changes resulting from these somatic mutations are on average neutral in the 1000 

genomes set, whereas a difference is observed in the BROAD set.  

Finally, several GPCRs are selected for follow-up experimental research to determine both the effect of mutations on 

GPCR function and the effect of different function on cell growth.  

1. O’Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in 

cancer. Nat. Rev. Cancer 13, 412–424 (2013). 

2. Bento,  a. P. et al. The ChEMBL bioactivity database: An update. Nucleic Acids Res. 42, D1083-90 (2014). 

3. Broad Institute of MIT and Harvard. Firehose 2015_11_01 run. (2015). doi:10.7908/C1571BB1 

4. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). 

http://www.inchi-trust.org/downloads/
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5. Ye, K., Lameijer, E.-W. M., Beukers, M. W. & Ijzerman, A. P. A Two-Entropies Analysis to Identify 

Functional Positions in the Transmembrane Region of Class A G Protein-Coupled Receptors. 

doi:10.1002/prot.20899 

6. Bar-Shavit, R. et al. G Protein-Coupled Receptors in Cancer. Int. J. Mol. Sci. 17, 1320 (2016). 

 

 

P-40: A Novel Approach to Assign Absolute Configuration Using Vibrational Circular 
Dichroism 

Lennard Böselt 1, Dominik Sidler1, Tobias Kittelmann 2, Jürgen Stohner 2, Sereina Riniker 1 

1 Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland, 
2 Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 

8820 Wädenswil, Switzerland 

Vibrational circular dichroism (VCD) spectroscopy is a technique sensitive to the chirality of a molecule.1 As VCD 

requires only a solution of the compound in question for measurement, it is an attractive alternative to single crystal 

X-ray diffraction. The interpretation of measured VCD spectra and thus the assignment of the absolute configuration 

rely on ab initio quantum-mechanical (QM) calculations.1,2 For conformationally rigid molecules, the gas-phase QM 

calculations are straightforward and the calculated spectra agree well with the measured ones. However, for flexible 

molecules it becomes challenging to estimate the correct conformational ensemble. In addition, the large number of 

conformers, which may need to be considered, increases the computational cost. 

In this work, we developed and evaluated a VCD sequence alignment (VSA) algorithm to match calculated and 

measured VCD spectra and assign the absolute configuration. The VSA algorithm has been parametrized on a set of 

rigid molecules, and tested on a set of flexible drug molecules taken from Ref. [3]. Using the VSA algorithm we 

obtained a success rate of 100% for predicting the correct absolute configuration. Furthermore, the number of 

relevant conformers for which a VCD spectrum has to be calculated can be reduced, lowering the computational cost 

of the approach substantially. A simple conformational search was found sufficient to obtain the relevant 

conformers. We anticipate that our approach will help research groups to determine the absolute configuration of 

chiral molecules in a robust and efficient manner. 

1. Stephens, P. J.; Lowe, M. A. Vibrational Circular Dichroism. Ann. Rev. Phys. Chem. 1985, 36, 213-241. 

2. Magyarfalvi, G.; Tarczay, G.; Vass, E. Vibrational Circular Dichroism. WILEY Comp. Mol. Sci. 2011, 1, 

403-425. 

3. Sherer, E. C.; Lee, C. H.; Shpungin, J.; Cuff, J. F.; Da, C.; Ball, R.; Bach, R.; Crespo, A.; Gong, X.; Welch, 

C. J. Systematic Approach to Conformational Sampling for Assigning Absolute Configuration Using 

Vibrational Circular Dichroism. J. Med. Chem. 2014, 57, 477494. 

 

P-42: A Novel Search Engine and Application for Very Large Chemistry Database 
Mining 

R Brown, J Hussain, G Bravi & M Hartshorn   
 Dotmatics, Bishop’s Stortford, UK   

Chemical structure searching is an important technique within small molecule drug discovery. It is used to find 

available analogues to expand the SAR around a biological active as well as to identify appropriate reagents for 

compound synthesis. Modern search systems typically provide a few search types including exact structure, 

substructure and similarity searching and almost all provide these search services through an Oracle cartridge.  

There are two challenges inherent in providing these types of workflows to chemistry teams  

1. Building, maintaining and distributing very large (10M+) databases of compounds such as screening 

collections (e.g eMolecules) or public data (e.g. SureChEMBL), with up to date data. 

2. Providing a range of search types to allow important tasks such as lead hopping or SAR expansion in a user 

interface appropriate for end user chemists rather than power users such as cheminformaticians and 

modellers.  
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In this talk we will show how we have addressed both problems: the first with a novel search engine (Minpoint) and 

the second with an application (Chemselector) that exploits that technology  

Following early innovation in cheminformatics research, cartridges became the norm for database searching in the 

1990s and since then the pace of innovation in this field has slowed dramatically. However, cartridges have definite 

limitations especially when needing to build and distribute very large databases on a regular basis  

Minpoint is a novel search technology designed for very fast search performance – a substructure search again 10+ 

million structures can be run on a standard laptop. The search performance means almost all searches can be 

performed interactively as a structure is being drawn. The high performance can be utilized to help deal with 

tautomers when searching. Additionally, searching for matched molecular pairs of a query molecule in a large 

database becomes possible. The talk will also show different search modes that make it easier for chemists to 

formulate complex substructure queries and to select appropriate search techniques for a range of tasks including 

SAR expansion or lead hopping.  

Minpoint does not rely on an Oracle cartridge for searching, instead holding structures and indexes as files on an 

application server. The scalability of this approach to very large databases is important since many tasks such as 

compound or reagent searching, or searching public datasets of patents, require the datasets that would be 

prohibitively expensive to build, maintain and distribute as Oracle databases. In the talk we will discuss the 

implementation of the Minpoint technology and its advantages for these type of applications  

The powerful and often complex techniques employed when performing a chemical structure search mean designing 

an appropriate interface is paramount if the system is to be used by non-computational experts such as bench 

chemists. ChemSelector pulls together several powerful search methods in an interface appropriate for most bench 

chemists to use and the talk will discuss aspects of interface design and user experience that make it appropriate for 

that user community. 

 

P-44: Designing of a "drug-like" natural compound library for secondary metabolites 
collected from the African flora. 

Conrad V. Simoben1, Fidele Ntie-Kang1,2, Wolfgang Sippl1  
1Institut für Pharmazie, Martin-Luther University of Halle-Wittenberg, Halle, Germany,2Department of 

Chemistry, University of Buea, Buea, Cameroon.  

With the continuous search for new drugs to combat diseases, a topic of interest to medicinal chemist researchers is 

the search for new active compounds containing different core structures. Medicinal plants represent a potential 

source for the search of these new scaffolds. The criteria for choosing a particular natural product for studies were 

either based on the pre-existing traditional use of the plant in therapy (ethnobotanical knowledge) or the search for 

structurally related molecules using known pharmacologically active agents.1 The African continent is very rich in 

biodiversity and some of the medicinal plants growing on the continent have been used by its local populations in 

traditional preparations for the treatment of several ailments. One of our research aims is to make available (freely 

online) the current knowledge on ethnobotanical uses of the medicinal plants as well as the three dimensional (3D) 

structures, physico-chemical properties and measured activities of the compounds isolated from medicinal plants 

collected from the African continent, with the view of assisting in the drug discovery process (http://african-

compounds.org/). Previous surveys of the African flora, show that this part of the world could be a huge repository 

of bioactive natural products with diverse scaffolds and activities.2-4As a continuation of our ongoing database 

projects, we herein present a collection of ~2000 compounds isolated from East Africa (EA). Information about the 

said compounds was assembled from natural product journals and local African journals, as well as from M.Sc. and 

Ph.D. theses in African university libraries. These compounds were isolated mainly from about 300 medicinal plant 

species belonging to 60 families, harvested from EA and commonly used in the treatment of a variety of ailments. A 

majority of compounds reported were alkaloids, flavonoids, quinones, steroids and terpenoids. Computed 

physicochemical properties which are often relevant to predict pharmacokinetic and pharmacodynamic activities for 

compounds in this collection have been included.   

1. Harvey, A. L.;Edrada-Ebel. R.; Quinn, R. J. The re-emergence of natural products for drug discovery in the 

genomics era. Nat. Rev. Drug Dis.2015, 14(2), 111–129.  

http://african-compounds.org/
http://african-compounds.org/
http://african-compounds.org/
http://african-compounds.org/
http://african-compounds.org/
http://african-compounds.org/
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2. Ntie-Kang,F.;Telukunta, K. K.;Döring, K.;Simoben,C. V.;Moumbock,A. F. A.;Malange,Y. I.;Njume, L. 

E.;Yong,J. N.;Sippl,W.;Günther,S.; NANPDB: A Resource for Natural Products from Northern African 

Sources. J. Nat. Prod. 2017, 80(7). 2067-2076.  

3. Onguéné, P. A.;Simoben,C. V.;Fotso,G. W.; Andrae-Marobela, K.;Khalid, S. A.;Ngadgui, B. T.;Mbaze, L. 

M.;Ntie-Kang,F.In silico toxicity profiling of natural product compound libraries from African flora with 

anti-malarial and anti-HIV properties. Comput. Biol. Chem. 2017, 

https://doi.org/10.1016/j.compbiolchem.2017.12.002  

4. Ntie-Kang,F.;Nwodo, J. N.; Ibezim, A.; Simoben,C. V.;Karaman, B.; Ngwa, V. N.; Sippl, W.; Adikwu, M. 

U.; Mbaze, L. M. Molecular Modeling of Potential Anticancer Agents from African Medicinal Plants. J. 

Chem. Inf. Model. 2014, 54(9), 2433-2450.  

 

P-46: mmpdb: A Matched Molecular Pair Platform for Large Multi-Property Datasets 

A. Dalke 1, C. Kramer 2, J. Hert2  
1 Dalke Scientific, Trollhättan, Sweden, 2 Roche Innovation Center, Basel, Switzerland 

Matched Molecular Pair (MMP) analysis enables the automated and systematic compilation of medicinal chemistry 

rules from compound/property datasets. MMPDB is a new MMP platform to create, compile, store, retrieve and use 

MMP rules. MMPDB is suitable for the large datasets typically found in pharmaceutical and agrochemical 

companies, and provides new algorithms for fragment canonicalization and stereochemistry handling. The platform 

is implemented in Python using the RDKit toolkit1 and is available as open source from 

https://github.com/rdkit/mmpdb. 

The core molecular match algorithm is derived from the fragment-and-index approach of Hussain and Rea.2 

Structures are fragmented into a constant part and a variable part. The canonicalized constant is used as an index to 

find matching pairs of variable parts. Our new algorithm generates canonical SMILES for both the constant and 

variable parts, resulting in a canonical transformation description and improved analysis performance. It also handles 

stereochemistry through a process called up-enumeration to identify pairs between structures with partially specified 

stereochemistry.  

MMP rules are highly dependent on the local environment around transformations.3 A transformation which 

substitutes a hydrogen atom in a carboxylic acid with a methyl group, for example, results in different molecular 

property changes than the same substitution in an aliphatic chain. For each fragmentation record we include 

information about the circular environment around the attachment points, for each radius up to 5 bonds away, stored 

as a SHA256 hash. This provides an easy and effective means to stratify the transformation data without directly 

revealing its chemical structure, which may make it easier for organizations to share MMP data with others. 

MMPDB is a command-line tool which can fragment and index a set of compounds to identify matched molecular 

pairs and store them, along with physical property or activity data, in a SQLite relational database. It implements two 

analysis features for ADMET and physico-chemical MMPA. The “transform” analysis helps identify the MMP 

transformations which may result in a structure with improved properties. The "predict" analysis estimates the 

property change between two molecules, typically an existing compound and a virtual one. 

MMPDB is built with large corporate datasets in mind. The fragmentation step can reuse information from a 

previous run, if the structures haven't changed, and the fragmentation and parts of the analysis methods are 

parallelized. Using a benchmark dataset with the 20,267 compounds from ChEMBL with CYP3A4 or hERG data, a 

transform analysis of sofosbuvir takes 51 seconds to generate 1620 novel compounds. Most of that time is spent in 

startup overhead and random-access database  seeks on a rotating drive; a web-service version backed by a RAM 

drive takes only 1.7 seconds. A predict analysis between sofosbuvir and p-Fluoro-phenyl-sofosbuvir with hERG as 

the query target property completes in 17 seconds, or 1.4 seconds through a web service. 

1. Landrum, G. RDKit: Open-source cheminformatics 2006 http://rdkit.org/ 

2. Hussain, J.; Rea, C. Computationally Efficient Algorithm to Identify Matched Molecular Pairs (MMPs) in 

Large Data Sets. J. Chem. Inf. Model. 2010, 50 (3), 339–348. 

3. Papadatos, G.; Alkarouri, M.; Gillet, V. J.; Willett, P.; Kadirkamanathan, V.; Luscombe, C. N.; Bravi, G.; 

Richmond, N. J.; Pickett, S. D.; Hussain, J.; Pritchard, J. M.; Cooper, A. W. J.; Macdonald, S. J. F. Lead 

Optimization Using Matched Molecular Pairs: Inclusion of Contextual Information for Enhanced Prediction 

of HERG Inhibition, Solubility, and Lipophilicity. J. Chem. Inf. Model. 2010, 50 (10), 1872–1886 

https://github.com/rdkit/mmpdb
http://rdkit.org/
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P-48: 3D-e-Chem: Structural Cheminformatics Workflows for Computer-Aided Drug 
Discovery 

AJ Kooistra1,2, M Vass1, R McGuire2,3, I de Esch1, G Vriend3, L Ridder4, S Verhoeven4, C de 

Graaf1 

1Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, The Netherlands; 2Centre for Molecular 

and Biomolecular Informatics (CMBI) Radboudumc, Nijmegen, The Netherlands; 3BioAxis Research, Oss, 

The Netherlands; 4 Netherlands eScience Center, Amsterdam, The Netherlands 

eScience technologies are needed to process the information available in many heterogeneous types of protein-ligand 

interaction data and to capture these data into models that enable the design of efficacious and safe medicines. The 

3D-e-Chem consortium has developed scientific KNIME tools and workflows1-4 that enable the integration of 

chemical, pharmacological, and structural information, including: i) structure-based bioactivity data mapping, ii) 

structure-based identification of scaffold replacement strategies for ligand design, iii) ligand-based target prediction, 

iv) protein sequence-based binding site identification and ligand repurposing, v) structure-based pharmacophore 

comparison for ligand repurposing across protein families, and vi) in silico metabolic profiling. The modular setup 

of the workflows and the use of well-established standards allows the re-use of these protocols and facilitates the 

design of customized computer-aided drug discovery workflows. 

1. McGuire R, Verhoeven S, Vass M, Vriend G, de Esch IJ, Lusher SJ, Leurs R, Ridder L, Kooistra AJ, 

Ritschel T, de Graaf C. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely 

Available Virtual Machine. J Chem Inf Model 2017, 57, 115-121. 

2. Kooistra AJ, Vass M, McGuire R, Leurs R, de Esch IJ, Vriend G, Verhoeven S, de Graaf C. 3D-e-Chem: 

Structural Cheminformatics Workflows for Computer-Aided Drug Discovery. ChemMedChem 2018. doi: 

10.1002/cmdc.201700754 

3. https://3d-e-chem.github.io 

4. https://www.knime.com/3d-e-chem-nodes-for-knime 

 

P-50: Analysis and inference within the molecular space: A visual approach using 
NAMS and multidimensional scaling 

Samina Kausar1,2, Andre O. Falcao1,2* 
1 LASIGE, Department of Informatics, Faculty of Sciences, University of Lisboa, Lisboa, Portugal, 

 2 BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, 

Portugal 

Molecular similarity quantification is a central task in cheminformatics and has numerous applications in drug 

discovery methods. The core concept of molecular similarity is based on Similar Property Principle, which states 

that similar compounds should have similar properties[1]. Irrespective of the specific analysis, molecular similarity 

values largely depend upon molecular structural representation and similarity coefficient. However, similarity 

quantification must be consistent for reliable application of molecular similarity in all situations.   

Representing molecular similarity into a new reference system has been used previously[2, 3]. The basic idea is to 

capture the measured molecular distances according to any method and try to represent molecules in a reduced 

reference space for analysis and visualization. Many dimensionality reduction methods are extant, and some of the 

more popular are Principal Coordinates Analysis (PCooA), Kruskal Multidimensional Scaling (MDS) or Sammon 

mapping[4]. These constructs can be used to build a classification model for QSAR problems where molecules can be 

separated in two or more classes. The procedure to create such a model then can be described in the following steps. 

First, a full similarity matrix of a molecular dataset is computed. Secondly, similarities are transformed into 

distances and projected into a 2-Dimensional (2D) space using one of the above mapping functions. Finally, the 

probabilities of this reduced space are computed using a 2D kernel density estimation function to produce a 

probability map of a projected molecule for all classes. This 2D map can visually produce information as to where 

the more promising regions of the molecular space are located and can as well serve as a classification model. By 

projecting new molecules using the same transformation constructed, it is possible to attribute to any molecule the 

probability of it belonging to either class.  
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The designed methodology was validated using four human proteins (Table 1), retrieved from ChEMBL. To 

compute similarities, the Non-Contiguous Atom Molecular Similarity (NAMS)[5] was used as it has shown to be 

more precise than fingerprints-based approaches. The selected datasets were curated and divided into two classes 

using a cut-off of activity value (Ki) to separate highly active molecules (Ki<=10.0) as positives and less active and 

non-active molecules (Ki>10.0) as negatives. All datasets were randomly split into training and test sets. The 2D 

maps were generated only with the training sets and the class probability maps calculated for the 3 mapping 

functions (PCooA, Kruskal and Sammon). The 2D coordinates of the test molecules were computed into the new 

reference space using a data transformation matrix and the class probabilities were calculated. Each model's 

performance was assessed using Area Under Curve (AUC) and the Matthews Coefficient Correlation (MCC). AUC 

testing results range from 0.78 to 0.98 (Table 2), suggesting this methodology can validly capture the complexities 

of the molecular activity space. All three mapping functions provided generally good results with a slight more 

positive outcome for PCooA. Charts were produced for all four problems to make evident the visual nature of these 

models, aiding in the identification of the most promising molecular active regions (Figure 1). 

Table 1: Dataset description 

TARGET PROTEIN UNIPROT 

ID. 

TRAINING SET TEST SET 

Positives Negatives Positives Negatives 

Sigma non-opioid intracellular receptor 1 (Sigma1R) Q99720 46 135 10 35 

Histamine H1 receptor (HRH1) P35367 184 783 46 195 

Potassium voltage-gated channel subfamily H 

member 2 (HERG) 

Q12809 39 1142 12 283 

D(1B) dopamine receptor (DRD5) P21918 41 231 5 62 

 

Table 2: Results on validation set ((*) – best model) 

TARGET PROTEIN PCOOA MDS SAMMON 

AUC MCC AUC MCC AUC MCC 

Sigma non-opioid intracellular receptor 1 (Sigma1R) 0.86(*) 0.63 0.80 0.60 0.79 0.55 

Histamine H1 receptor (HRH1) 0.80 0.43 0.83(*) 0.42 0.80 0.35 

Potassium voltage-gated channel subfamily H member 2 (HERG) 0.80 0.18 0.78 0.23 0.81(*) 0.29 

D(1B) dopamine receptor (DRD5) 0.98(*) 0.72 0.85 0.33 0.81 0.42 

 

1. Johnson, M.A.; Maggiora, G.M. Concepts and Applications of Molecular Similarity. Wiley, New York, 

1990 

2. Teixeira, A.L.; Falcao, A.O. Structural similarity based kriging for quantitative structure activity and 

property relationship modeling. J. Chem Inf Mod, 2014, 54, 1833–1849 

3. Mahendra, A. Ricardo, V.; Daniel, P.; Josep, A.; Jean-Louis, R. Chemical Space: Big Data Challenge for 

Molecular Diversity. Chimia, 2017, 71, 661-666 

4. Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S. Fourth Edition. Springer, New York, 

2002 

5. Teixeira, A.L.; Falcao, A.O. Noncontiguous atom matching structural similarity function. J. Chem Inf Mod, 

2013, 53, 2511–2524. 
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Figure 1: Test set projection over MAP surface of selected models with highest performance (red – circles are 

positives, white are negatives). 

 

P-52: Reaction Classification by Reaction Vectors 

G. Ghiandoni 1, B. Chen 2, M. J. Bodkin 3, V. J. Gillet. 1  
1 Information School, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP,  

United Kingdom, 2 Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, 

Sheffield, S3 7HF, United Kingdom, 3 Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon, 

OX14 4RZ, United Kingdom   

De novo molecular design is the branch of chemoinformatics concerned with the rational design of tailored 

structures from scratch, combining desired pharmacodynamic and pharmacokinetic properties, in order to boost the 

identification of new chemical entities (NCEs).1  

The size of potential drug-like chemical space has been estimated at 1060 molecules, according to Lipinski’s Rule-of-

Five (RO5), which determines roughly if a certain molecule may possess suitable characteristics to be an orally 

active drug.2 However, the recent introduction of de novo design tools for the design of synthetically accessible 

compounds has resulted in a significant reduction of this number, earning its way among the fragment-based design 

methods.3 In particular, reaction vectors, which are descriptors that incorporate the changes that occur in chemical 

reactions, have been implemented in a structure generation tool to produce new molecules by transforming a set of 

selected reactants with the use of a database of reaction examples.4,5 Here, we propose a machine learning model for 

reaction classification, entirely based on the concept of reaction vector and specifically trained towards the 
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prediction of 336 medicinal chemistry reaction classes, that would offer fine-grained selection of products from sets 

of specific reaction classes. We then investigate how the reaction classification tool can be used to enhance de novo 

design through a more effective and direct exploitation of specific classes of reactions. For instance, reaction 

classification could be applied in order to group reactions into categories, such as bond formations or functional 

group conversions, thus enabling the use of specific reaction classes; or facilitating medicinal chemists in the direct 

selection of their favourite reactions from ELNs (electronic laboratory notebooks).   

1. Hartenfeller, M. & Schneider, G., Enabling future drug discovery by de novo design. Wiley 

Interdisciplinary Reviews: Computational Molecular Science. 2011, 1, 742-759.  

2. Bohacek, R.S., McMartin, C. & Guida, W.C., The art and practice of structure-based drug design: A 

molecular modeling perspective. Medicinal Research Reviews. 1996, 16, 3-50.  

3. Hartenfeller, M., Reaction-Driven De Novo Design: a Keystone for Automated Design of Target Family-

Oriented Libraries. In De novo Molecular Design; Schneider, G., Ed.; WileyVCH Verlag GmbH & Co. 

KGaA, Weinheim, Germany, 2013; 245-266.  

4. Patel, H., Bodkin, M. J., Chen, B. & Gillet, V. J., Knowledge-Based Approach to De Novo Design Using 

Reaction Vectors. Journal of Chemical Information and Modeling. 2009, 49, 1163-1184.  

5. Hristozov, D., Bodkin, M., Chen, B., Patel, H., & Gillet, V. J., Validation of Reaction Vectors for de Novo 

Design. Library Design, Search Methods, and Applications of Fragment-Based Drug Design, 2011, 29-43.  

 

P-54: Tautomeric Equilibria: Modeling and Visualization. 

Marta Glavatskikh 1,2, Timur Madzhidov 2, Igor Baskin 3, Dragos Horvath 1, Ramil Nugmanov 2, 

Timur Gimadiev 2, Gilles Marcou 1 Alexandre Varnek 1* 
1 University of Strasbourg, France, 2 Federal University of Kazan, Russia, 3 Lomonosov Moscow State 

University, Moscow, Russia 

The existing tools for the prediction of ratio of tautomers are predominantly based on the calculation of pKa values 

of related tautomer. This may significantly affect the accuracy, especially, if the errors of the pKa predictions are 

comparable with the difference of tautomers’ pKa values. Moreover, this calculation is usually restricted by aqueous 

solution and hence not applicable for other media. Here the prediction of tautomeric equilibria is performed directly 

for the equilibrium constant (logK) for the reactions proceeding in aqueous and organic solutions or their mixtures.  

The models were built on a data set of 697 reactions of 10 tautomeric classes, for which logK values were measured 

in different solvents and at different temperatures1.  Support Vector Machine2 (SVM) and Generative Topographic 

Mapping3 (GTM) were used as machine-learning methods. The structure of tautomers has been encoded by ISIDA 

fragments4 whereas conditions were accounted for physico-chemical parameters of solvent and inverse temperature. 

Both SVM and GTM models perform well in cross-validation (RMSE (5CV)=0.63-0.67, R2 (5CV)=0.82-0.84). 

Validation of these models on two external test sets, either included the transformations under new reaction 

conditions (test 1) or new structures (test 2), lead to reasonable statistical parameters (RMSE=0.59 and 1.96, 

R2=0.62 and 0.65). Large RMSE value for test 2 is explained by the fact that more than half of the compounds were 

out of the model’s applicability domain. The consensus SVM model is publicly available on our web-server: 

https://cimm.kpfu.ru/development/predictor. 

As it is illustrated on Figure 1, a GTM map well separates both different tautomeric classes and the same equilibria 

proceeding in different solvents.  

https://cimm.kpfu.ru/development/predictor


Poster Session Abstracts BLUE 

 

 
140 

 

Figure 1. GTM map built for 697 tautomeric 
equilibria. The color code corresponds to 10 
tautomeric classes. Selected data points correspond 
to the same equilibrium studied in CHCl3 (logK= -
0.49) and DMSO (logK= 0.62). 

 

1. Palm, V. A., Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions. VINITI: Moscow, 

1978. 

2. Chang, C.-C.; Lin, C.-J., LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. 

Technol. 2011, 2 (3), 1-27. 

3. Gaspar, H. A.; Marcou, G.; Horvath, D.; Arault, A.; Lozano, S.; Vayer, P.; Varnek, A., Generative 

Topographic Mapping-Based Classification Models and Their Applicability Domain: Application to the 

Biopharmaceutics Drug Disposition Classification System (BDDCS). J. Chem Inf. Model. 2013, 53 (12), 

3318-3325. 

4. Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; Vayer, P.; Solov'ev, V.; Hoonakker, F.; 

Tetko, I. V.; Marcou, G., ISIDA - Platform for virtual screening based on fragment and pharmacophoric 

descriptors. Curr. Comput.-Aided Drug Des. 2008, 4 (3), 191-198. 

 

 

P-56: Artificial Intelligence in Medicinal Chemistry – Current Status at AstraZeneca 

T. Kogej1, H. Chen1, C. Tyrchan2, O. Engkvist1, C. Green3  
1Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, 

AstraZeneca R&D Gothenburg, Sweden; 2Respiratory, Inflammation and Autoimmunity, Innovative 

Medicines and Early Development Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden; 3Compound 

Management, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, 

AstraZeneca R&D, Cambridge, UK  

Artificial intelligence (AI) is gaining importance in our modern society. Among AI algorithms, recurrent neural 

networks (RNNs) have emerged as powerful generative models for various applications such as natural language 

processing, images, video, music and speech recognition. Inspired by this development we started to use RNN 

recently for molecular de novo design[1,2]. Our current AI platform consists of not only the molecular de novo design 

component but also a set of novel machine learning models to score the de novo generated molecules according to 

potency, selectivity and ADME properties.   

1. M. H. S. Segler, T. Kogej, C. Tyrchan, M. P. Waller, ACS Cent. Sci., 2018, 4, 120–131. 

2. M. Olivecrona, T. Blaschke, O. Engkvist, H. Chen, J. Cheminf. 2017, 9, 48-62.  
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P-58: Compact descriptor sets for automatic annotation of natural products in large 
databases by pairwise variable screening 

M. Kretzschmar 1, K. Baumann 1 
1 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 

Beethovenstraße 55, 38106 Braunschweig, Germany 

Natural products (NP), especially the subgroup of secondary metabolites, are of much interest in pharmaceutical 

research due to their highly optimized binding mechanisms with their macromolecular targets. 

As NPs and NP-like molecules are much more diverse and cover a different chemical space than pure synthetics, 

different approaches for these molecular classes are needed for applications like target prediction. Unfortunately, 

large compound collections like ChEMBL lack an NP-annotation. Previous work1,2 addressed this issue with a 

Naïve-Bayesian model based on a molecular fingerprint generating an (exhaustive) set of substructures. This study 

aims to identify NPs using a small set of easy-to-interpret chemical descriptors via machine-learning techniques. 

NPs (approx. 220k) and synthetics (approx. 320k) were collected from several databases, carefully curated and split 

into training and test sets for validation. Employed descriptor sets to encode the compounds include manually 

selected features tailored towards NPs, molecular shape descriptors (WHIM), molecular fragments and other well-

established descriptor sets like Dragon descriptors and MACCS keys. A pairwise variable screening was performed 

to identify those descriptors which show the largest differences in class means. Model performance was evaluated 

for each single descriptor set with varying variable numbers as well as for interesting combinations thereof. Finally, 

selected models were used to provide a predicted NP-annotation for the whole ChEMBL database. 

It can be shown that even a very small set of descriptors in combination with a Random Forest Classifier is well 

capable of distinguishing between NPs and synthetics. The easy-to-interpret approach may help to explore the 

chemical space covered by NPs so that more specific cheminformatic applications could be developed for them. 

1. Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural Product-likeness score and Its Application for Prioritization 

of Compound Libraries. J. Chem. Inf. Model. 2008, 48 (1), 68-74. 

2. Jayaseelan, K. V.; Moreno, P.; Truszkowski, A.; Ertl, P.; Steinbeck, C. Natural product-likeness score 

revisited: an open-source, open-data implementation. BMC Bioinf. 2012, 13, 106. 

 

P-60: De novo drug-candidate molecule generation with generative adversarial 
networks 

X. Liu1, K. Ye2, H. W. T. van Vlijmen1, 3, A. P. IJzerman1, G. J. P. van Westen1. 
1 Drug Discovery and Safety, Leiden Academic Center for Drug Research, Einsteinweg 55, Leiden, The 

Netherlands, 2 Omics and Omics informatics, Xi’an Jiaotong University, 28 Xianning W Rd, Xi’an, China, 
3 Janssen Pharmaceutica NV, Beerse, Belgium. 

Over the last five years deep learning (DL) has progressed tremendously in both image recognition and natural 

language processing[1]. Based on these results DL has also been applied in cheminformatics to predict bioactivity[2]. 

A specific type of deep neural nets are generative adversarial networks (GANs)[3]. GANs were previously used for 

image generation and based on this SeqGAN[4] was constructed for sequence generation. 

Here, we use SeqGAN to generate novel small molecules based on the SMILES format. This model contains two 

separate networks: a discriminator and a generator. Both were implemented with LSTM recurrent neural networks 

and trained simultaneously. In the reinforcement learning framework, the discriminator function is the reward 

function to measure whether the generated molecule has desired properties. The generator on the other hand is the 

policy function to determine which character to choose to stepwise construct a SMILES format string.  

The dataset we used here contains two parts, the first one was the whole refined ChEMBL set as we used 

previously[2,5] to train the generator to learn the grammar of the SMILES format. The second one contained ligands 

that can bind the adenosine A2A receptor. This data was used as the training set to train the discriminator.  
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Our proof of concept generated compounds that not only have a valid sequence following the SMILES format, but 

also possess predicted binding affinity for the A2A receptor. Hence, we can enlarge chemical space for candidate 

drugs to search for the optimal molecular structure for further study. Follow up work includes selectivity 

optimization towards a single or multiple targets. 

1. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-44. 

2. Lenselink, E.B., et al., Beyond the hype: deep neural networks outperform established methods using a 

ChEMBL bioactivity benchmark set. J Cheminform, 2017. 9(1): p. 45. 

3. Goodfellow, I.J., et al. Generative Adversarial Networks. ArXiv e-prints, 2014. 1406. 

4. Yu, L., et al. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. ArXiv e-prints, 2016. 

1609. 

5. Gaulton, A., et al., The ChEMBL database in 2017. Nucleic Acids Res, 2017. 45(D1): p. D945-D954. 

 

P-62: The Need for Comprehensive Reaction Handling in SAVI and Beyond  

M. Nicklaus 1, W. Ihlenfeldt 2, G. Blanke 3, P. Judson 4, V. Delannée 1 

1 NCI, NIH, Frederick, USA, 2 Xemistry GmbH, Königstein, Germany, 3 StructurePendium Technologies 

GmbH, Essen, Germany, 4 Consultant, Harrogate, UK 

With ever-increasing amounts of chemical data, fast and lossless chemical information processing is more important 

than ever. While small molecule representations have been an area of active research and significant advances – both 

public/open-source and commercial – during the past two decades, chemical reaction data have not received the 

same degree of attention. Reactions, while encompassing all the complexities of the chemical structures of the 

starting materials and products (plus possibly catalysts, solvents etc.), are yet more-complicated data structures. 

Laboratory records registered in ELNs, reactions collected in large databases such as Reaxys and CASREACT, 

synthesis data submitted to FDA for drug ingredients etc. typically handle this wealth of information in a way that is 

targeted at the local needs of the software or organization, thus are neither comprehensive for all possible needs nor 

designed for data exchange. 

We discuss the shortcomings of current reaction representations in the context of our Synthetically Accessible 

Virtual Inventory (SAVI) project (aimed at the creation in silico of 1 billion easily synthesizable molecules) as well 

as for general needs. The widely used RXN and RD file formats are not truly suited for comprehensive and semantic 

exchange of reaction data and cannot be used for searches and reaction comparison out of the box. The format of an 

RD file depends on the database it is exported from and varies accordingly. We briefly discuss inline formats such as 

RInChI and reaction SMILES in this context. To push for the development of a standardized, comprehensive, 

semantic reaction handling/representing format, we suggest criteria to be considered such as inclusion of reaction 

conditions and metadata, participating atoms/bonds information, representation of failed reactions, comprehensive 

and fine-grained handling of tautomerism. We discuss possible avenues to address these challenges. 

 

P-64: Flavours in Aromaticity 

M. Ott 1, D. Ponting 1, R. van Deursen 1 
1 Lhasa Limited, Leeds, UK 

In organic chemistry, the term aromaticity is used to describe a cyclic unsaturated structure that exhibits more 

stability and a different reactivity profile than a similar non-aromatic one. For the ring to be aromatic, its atoms must 

all be sp2-hybridised to allow full delocalisation and the system should contain 4n + 2 π-electrons (n = 0, 1, 2, 3; 

Hückel’s rule). However, counting these electrons is less straightforward than it might seem when you start looking 

beyond the familiar group of benzene, pyrimidine, thiazole etc. For example, is 2-pyridinone aromatic, counting the 

carbonyl group for 0 electrons? While many compounds exhibit aromatic character to some extent, not all are as 

perfectly aromatic as benzene. 
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In order to adopt a flexible and useable approach to aromaticity, we chose to introduce the concept of a “degree of 

aromaticity”, based on the HOMED approach.1 The basic idea is that delocalisation causes double bonds to be 

“smeared” out, leading to shorter single bonds and longer double bonds, and this effect can be measured or 

calculated. Briefly, the calculations were performed as follows. A set of reference compounds for single, double and 

aromatic bond lengths for each of 29 potential pairs of atom types (e.g. for C-C the references were ethane, ethene 

and benzene respectively) were generated and optimised using DFT at the B3LYP/6-311G** level 2-6 of theory in 

NWChem,7 and the bond lengths extracted. The structures from the PubChemQC project 8 (pubchemqc.riken.jp) 

were then downloaded, initially as a diverse test set of 36,000 and subsequently the entire database of around 4 

million structures, and HOMED indices calculated by comparing the bond lengths in every ring system (using the 

Smallest Set of Smallest Rings, SSSR) with the reference compounds, then applying a filter based on Hückel’s rule. 

The results indicated good performance in separating the “strongly” and “weakly” aromatic compounds. The method 

is both rapid and scaleable, however it does require either QM-optimised or crystal structures, since it is dependent 

on measuring the actual bond lengths in the ring. 

Our ultimate aim is to be able to distinguish between “strongly” aromatic (e.g. pyridine), “weakly” aromatic (e.g. 

uracil), and non-aromatic (e.g. isocyanuric acid) structures. This categorisation allows us to describe chemical 

knowledge more accurately whilst not overstating the extent to which we can assess a degree of aromaticity. 

1. Raczynska, E. D.; Hallman, M.; Kolczynska, K.; Stepniewski, T. M. On the harmonic oscillator model of 

electron delocalization (HOMED) index and its application to heteroatomic π-electron systems. Symmetry 

2010, 2, 1485-1509. 

2. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 

648-5652. 

3. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a 

functional of the electron density. Phys. Rev. B 1988, 37, 785-789. 

4. Vosko, S. H.; Wilk, L; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local 

spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200-1211. 

5. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational 

absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 

11623-11627. 

6. Krishan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis 

set for correlated wave functions. J. Chem. Phys. 1980, 72, 650-654. 

7. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van Dam, H .J. J.; Wang, D.; 

Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. NWChem: A comprehensive and scalable open-

source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477-1489. 

8. Nakata, M.; Shimazaki, T. PubChemQC Project: A large-scale first-principles electronic structure database 

for data-driven chemistry. J. Chem. Inf. Model. 2017, 57, 1300-1308. 

 

P-66: Smooth Molecular Surfaces with Joined Marching Cubes 

Thomas L. Sander 

Idorsia Pharmaceutical Ltd. 

The swift generation and visualisation of molecular surfaces is a crucial element of many cheminformatics and 

modelling applications.  

One of the fastest algorithms to triangulate surface meshes from voxel data is the 'Marching Cubes' algorithm. In its 

original version some of the generated triangles are very tiny or skinny. Since these lead to rendering artefacts, there 

were some attempts to modify this algorithm such to avoid tiny and skinny triangles. These, however, increased 

complexity and caused significant performance losses. 

We present a simple modification of the original algorithm that results in smoother surfaces without small and 

skinny triangles. This is achieved by buffering and merging triangle nodes of any previously processed voxel layer. 

This modification has little overhead, reduces the number of triangles by about 20 percent and results in much 

smoother surface renderings. To prove that the algorithm is robust and generalisable it was not only applied to 

molecules, but also to noisy MRI data. The source code is available as part of the DataWarrior open-source project. 

It contains classes to create a voxel density grid from 3-dimensional atom coordinates and classes to triangulate iso-

value layers from voxel intensity data of any source. 



Poster Session Abstracts BLUE 

 

 
144 

P-68: Chemistry Identifier Mapping to Pathway Databases using Ontologies: 
Expanding metabolomics analysis in WikiPathways with ChEBI 

D. Slenter1, C. Evelo1,2, E. Willighagen1 

1 Department if Bioinformatics - BiGCaT, Maastricht, Netherlands, 2 Maastricht Centre for Systems 

Biology - MaCSBio, Maastricht, Netherlands 

Health research uses large scale (omics) methods to study the state of an individual, organs, and increasingly tissues 

and single cells. These methods can measure gene expression, epigenetic modification, and protein abundances. 

Metabolomics complement the aforementioned methods by studying the abundances of small molecular compounds 

in e.g. bodily fluids, tissue samples and breath.  

Changes in metabolism are relevant for many diseases, such as metabolic diseases, hereditary diseases, various 

forms of cancers, and the symbiotic interaction of the gut microbiome and the (human) body. Pathway and network 

approaches are extensively used to integrate various data types and other information sources, in order to understand 

measurements and results in their biological context. Unfortunately, not all measured metabolites can be linked to 

metabolite identities present in biological pathway models, which make it more complicated to use metabolomics 

data in pathway and network analysis. 

In order to overcome this intrinsic mismatch between metabolomics experiments and knowledge bases, we use the 

ontological information from ChEBI1. With this, we create additional mappings to metabolites in the pathway 

database WikiPathways2. With this approach, we can connect compounds classes (e.g. fatty acid, lipids), tautomers 

and/or charge states (e.g. ionisation into acid or base) to individual molecules in a data set.  By applying this method 

on various publicly available datasets in the MetaboLights3 repository, we want to estimate the increased mapping 

that chemical ontologies can provide. 

1. Hastings J.; Owen G.; Dekker A.; Ennis M.; Kale N.; Muthukrishnan V.; Turner S.; Swainston N.; Mendes 

P.; Steinbeck C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucl. 

Acids Res.  2016; 44: D1214–D1219. 

2. Slenter D.; Kutmon M.; Hanspers K.; Riutta A.; Windsor J.; Nunes N.; Mélius J.; Cirillo E.; Coort S.; 

Digles D.; Ehrhart F.; Giesbertz P.; Kalafati M.; Martens M.; Miller R.; Nishida K.; Rieswijk L.; 

Waagmeester A.; Eijssen L.; Evelo C.; Pico A.; Willighagen E. WikiPathways: a multifaceted pathway 

database bridging metabolomics to other omics research, Nucl. Acids Res. 2018; 46, D661–D667. 

3. Haug K.; Salek R.; Conesa P.; Hastings J.; Matos P.; Rijnbeek M.; Mahendrakar T.; Williams M.; 

Neumann S.; Rocca-Serra P.; Maguire E.; González-Beltrán A.; Sansone S.; Griffin J.; Steinbeck C. 

MetaboLights-- an open-access general-purpose repository for metabolomics studies and associated meta-

data. Nucl. Acids Res. 2013 41, D781–D786. 

 

P-70: Finding answers from chemical space extremely fast 

A. Tarcsay1, G. Imre 1, A. Volford 1 
1 ChemAxon, Budapest, Hungary 

The complex nature of chemical graphs offers an immense source of variability for drug designers to tackle 

optimization challenges along the project pathway towards candidates. The difficulty lies within the exploration of 

the chemical space either by chemical intuition of medicinal chemists or by using enabling technologies, like 

cheminformatics tools.  

Real and virtual chemical spaces encompass broad scale of compound numbers and a vast potential to be exploited. 

An especially valuable sub-group is where measured data exists and stored, most commonly in relational databases. 

In our study both types, a very large compound collection and a medium size with extensive assay data were 

evaluated. As a read-out we used the cost associated with finding an answer for chemical questions, the search time. 

In the first use-case, the aim was to suggest novel analogues of known drugs using the largest publicly available 

enumerated compound collection, the GDB-13 counting 977M unique entries. This collection was screened with 

ultra-fast similarity search technique, using a subset of marketed drugs, where ~4 sec elapsed search time was 

measured constantly on a commercially available server (EC2, r3.8xlarge) using standard 1k fingerprint. Top 100 
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most similar compounds were cross filtered with the database of exemplified structures from patents (SureChEMBL 

DB) to fetch novel moieties with higher tendency to be in freedom to operate space (Fig. 1.).  

In the second part search performance on the entire data from ChEMBL DB was measured with three search types 

(duplicate, similarity and substructure) and joined queries. These joined queries represent complex questions asked 

from data warehouses in pharmaceutical industry, where performance is a key indicator due to massive load. The 

aim is to provide realistic speed statistics measured with chemical cartridge extending Oracle and the new generation 

engine running on PostgreSQL. Significant speed up was measured using the new search engine, especially on 

combined queries, where 100x speed up was achieved and median search time was in a range on ~100 milliseconds 

falling below the recognition time limit. 

 

Figure 1.Example drug and its novel 
analogues identified from GDB-13. Tversky 
dissimilarity >0 rules out substructure match 
in SureChEMBL. 

 

P-72: Structural Analysis of Protein Homomers – the Quest for Perfect Symmetry 

Inbal Tuvi-Arad 

Department of Natural Sciences, The Open University of Israel, Raanana, Israel 

Symmetry has several advantages in the synthesis and function of protein homomers. It reduces synthetic errors, 

gives rise to faster oligomerization processes, increases the effectiveness of allosteric regulation, maximizes 

interaction between subunits and thus decreases the total energy, and in general contributes to the protein's stability. 

Yet, thermodynamic considerations and experimental conditions prevent proteins from achieving perfectly 

symmetric geometry. Here we present improved algorithms for estimating the level of symmetry of proteins by 

means of continuous symmetry measures. These are based on the Hungarian algorithm that solves the assignment 

problem in polynomial time. The amino acids sequence and the division into peptides is used to significantly reduce 

the size of the equivalent atoms groups and thus increase the speed and accuracy of the code. Analysis of the 

distortion levels of several sets of protein homomers extracted from the Research Collaboratory for Structural 

Bioinformatics Protein Data Bank (RCSB PDB), with various degrees of rotational symmetry will be presented. The 

new methodology launches the foundations for accurate, efficient and reliable large scale symmetry analysis of 

protein structure and oligomerization mechanisms. 
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P-74: Wikidata and Scholia as a hub linking chemical knowledge 

E. Willighagen 1, D. Slenter 1, D. Mietchen 2, C. Evelo 1,3, F.Å. Nielsen 4  
1 Department if Bioinformatics - BiGCaT, Maastricht University, Netherlands, 2 Data Science   Institute, 

University of Virginia, Charlottesville, Virginia, USA, 3 Maastricht Centre for Systems Biology - 

MaCSBio, Maastricht University, Netherlands, 4 Cognitive Systems, DTU Compute, Technical University 

of Denmark, Denmark  

Making chemical databases more FAIR (findable, accessible, interoperable, and reusable) benefits computational 

chemistry and cheminformatics. We here discuss Wikidata, a young sister project of Wikipedia but with one big 

difference: it is a machine readable database, making it far more useful for interoperability of molecular databases in 

systems biology[1]. Thanks to the Wikidata:WikiProject Chemistry community, there is a growing amount of 

information about chemical compounds: Wikidata currently has over 150 thousand chemical compounds, of which 

more than 95% is associated with InChIKeys and has more than 70 thousand CAS registry numbers. Ongoing work 

by this WikiProject includes capturing chemical classes and chemical compounds in the various Wikipedia’s as 

machine readable data. Other projects include covering human drugs[2], MeSH Chemicals and Drugs, and volatile 

organic compounds. This work is supported the many tools around Wikidata, such as Mix’n’Match which is used to 

include ChEBI.  

We here introduce our contributions to the WikiProject Chemistry to support FAIR-ification of open chemical 

knowledge. For example, we proposed new Wikidata properties to annotate compounds with external database 

identifiers for the EPA CompTox Dashboard[3], the SPLASH[4], and MetaboLights. Furthermore, we used a 

combination of Bioclipse and QuickStatements to add missing chemical compounds for biological pathways from 

WikiPathways[5]. Finally, we introduce an extension of Scholia [6], visualizing data about compounds and 

compound classes, including external identifiers, physicochemical properties, and an overview of the literature from 

which the knowledge is derived. 

1. Mietchen D, et al. Enabling Open Science: Wikidata for Research (Wiki4R). Research Ideas and Outcomes. 

2015 Dec 22;1:e7573.  

2. Putman TE, et al. WikiGenomes: an open web application for community consumption and curation of 

gene annotation data in Wikidata. Database. 2017 Jan;2017(1). 

3. Williams, AJ, et al. The CompTox Chemistry Dashboard: a community data resource for  

environmental chemistry. J. Cheminform. 2017 Nov 18;9:61.  

4. Wohlgemuth G, et al. SPLASH, a hashed identifier for mass spectra. Nature Biotechnology. 2016 Nov 

8;34(11):1099–101.  

5. Slenter DN, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics 

research. Nucleic Acids Research. 2018 Jan 4;46(D1):D661–D667.   

6. Nielsen, FÅ, et al. Scholia, Scientometrics and Wikidata. The Semantic Web: ESWC 2017 Satellite Events, 

2017.  

 

P-76: PSMILES – A particle-based Molecular Structure Representation for Mesoscopic 
Simulation 

Karina van den Broek 1,2, Mirco Daniel 2, Matthias Epple 1, Jonas Schaub 2, Hubert Kuhn 3, 

Achim Zielesny 2 
1 Inorganic Chemistry and Center for Nanointegration, University of Duisburg-Essen, Essen, Germany, 2 

Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 

Recklinghausen, Germany, 3 CAM-D Technologies, Essen, Germany 

Adequate molecular structure representations are at heart of cheminformatics developments: The various approaches 

like line notations, connection tables, XYZ tables or Z-matrices, fragment codes or fingerprints address the broad 

spectrum of different use cases which characterize current research efforts. The majority of existing structure 

representations are atom-based descriptions that comprise characteristic properties and topological or spatial aspects 

concerning a molecule’s atomic composition[1]. 

https://tools.wmflabs.org/mix-n-match/#/catalog/519
https://tools.wmflabs.org/mix-n-match/#/catalog/162
http://bioclipse.net/
https://tools.wmflabs.org/wikidata-todo/quick_statements.php
https://tools.wmflabs.org/scholia/
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In contrast, this contribution focusses on a particle-based molecular structure representation where a single particle 

may comprise several atoms, i.e. may represent a “molecular fragment”: This kind of representation is an essential 

part of a molecular fragment cheminformatics roadmap[2] for particle-based mesoscopic simulation techniques like 

Dissipative Particle Dynamics (DPD) which aims at describing supramolecular phenomena at the nanometer (length) 

and microsecond (time) scale for large interacting physical ensembles (representing millions of atoms). DPD 

particles in particular may be identified with distinct small molecules of molar mass in the order of 100 Da where 

larger molecules are composed of multiple adequate “molecular fragment” particles that are bonded by harmonic 

springs to mimic covalent connectivities and spatial 3D conformations. 

The proposed particle-based molecular structure representation is chosen to be an intuitive line notation which is 

similar to the well-established SMILES representation for atom-based molecular connectivity[3-5] and denoted 

Particle SMILES or PSMILES. An open Java library for PSMILES structure handling and mesoscopic simulation 

support in combination with an open Java Graphical User Interface viewer application for visual topological 

inspection of PSMILES molecule definitions are outlined. 

1. Gasteiger J, Engel T. Chemoinformatics: A Textbook. Weinheim: WILEY-VCH; 2003. 

2. Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A, Epple M. J Cheminf. 2014;6:45. 

3. Weininger D. J Chem Inf Comput Sci. 1988;28:31−36. 

4. Weininger D, Weininger A, Weininger JL. J Chem Inf Comput Sci. 1989;29(2):97−101. 

5. Weininger D. J Chem Inf Comput Sci. 1990;30(3):237−243. 

 

P-78: A new, improved model to predict kinase inhibition 

Cornel Catana, Pieter Stouten 

Galapagos NV, Mechelen, Belgium 

Kinases constitute an important family of targets for Galapagos, as exemplified by filgotinib, which is currently in 

phase III clinical trials for RA and IBD. As part of its kinase HTS campaigns, Galapagos routinely and successfully 

screens a set of around 80,000 kinase-focused compounds, belonging to the categories shown in Fig. 1. 

 

Fig. 1: Sources of hits (PIN > 50%) for a representative kinase HTS 

As Fig. 1 shows, the set of compounds selected based on our home-grown kinase inhibition propensity (“kinase 

likeness”) models, exhibits a high hit rate. In order to further enhance these models (dating back to 2008 and 2011), 

we have recently developed new models since:  

larger and new data sets, new descriptors, and improved statistical techniques have become available; and 

while we previously exclusively selected models on the basis of their performance on IC50 data, our current goal is to 

develop a model that performs well both on HTS PIN (%inhibition) and IC50 data. 

The training set contained ~88 k kinase-active compounds taken from ref 1 and the Galapagos collection, and ~84 k 

kinase-inactive compounds taken from refs 1, 2 and 3. A random forest (RF 2018 all) classification model was 

developed using Pipeline Pilot4. The statistics on the training set are very good (kappa = 0.94; accuracy = 97%). In 

order to have an unbiased assessment of model performance against in-house data, a model was also developed 

without the ~22 k Galapagos compounds (RF 20018 NoG). 

The models were tested on in-house HTS (PIN) data against 20 kinases. A compound was considered kinase-active 

if it was at least 2x a hit (PIN>75%) irrespective of the number of assays. It was considered kinase-inactive if it was 
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assayed at least 5x and never was a hit. Other compounds were ignored. This stringency was used to account for the 

variability in single dose experiments. This test set comprised a total of 45,569 unique compounds, of which 3,339 

were active. Using the newly developed models, the following statistical results were obtained for the PIN test set 

(Table 1) and for two recently published IC50 data sets (Table 2). 

 

Table 1: Model statistics for in-house test set (HTS PIN values) 

Model 
BEDROC 

α = 5 

Number of hits retrieved and enrichment factor 

Top 1% (450) Top 2% (900) Top 5% (2,250) 

Bayes 2008 0.265 184 / 6 259 / 4 444 / 3 

RF 2011 0.310 216 / 7 324 / 5 562 / 3 

RF 2018 NoG 0.354 162 / 5 297 / 5 612 / 4 

RF 2018 all 0.358 191 / 6 428 / 6 920 / 6 

Table 2: Model statistics for two literature test sets (IC50 values) 

Model 
Christmann (2,101 compounds) 5 Martin (3,814 compounds) 6 

kappa ROC score kappa ROC score 

RF 2011 0.230 0.687 0.187 0.570 

RF 2018 NoG 0.475 0.707 0.434 0.739 

RF 2018 all 0.450 0.694 0.413 0.723 

 

In conclusion, while our previous models (2008 and 2011) have been very useful in identifying kinase inhibitors (see 

Fig. 1), we have now developed two new and improved models. The ”RF 2018 all” model is already being used in 

the process of selecting and acquiring kinase-focused compounds to expand our kinase-focused collection. 

1. Bento, A. P.; Gaulton, A.; Hersey, A.; Bellis, L. J.; Chambers, J.; Davies, M.; Krüger, F. A.; Light, Y.; 

Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos R.; Overington, J. P. The ChEMBL 

bioactivity database: an update. Nucleic Acids Res. 2014, 42, 1083-1090.  

2. Bora, A.; Avram, S.; Ciucanu, I.; Raica, M.; Avram, S. Predictive Models for Fast and Effective Profiling 

of Kinase Inhibitors. J. Chem. Inf. Model. 2016, 56, 895-905.  

3. Rohner, S. G.; Baumann, K. Maximum unbiased validation (MUV) Data Sets for Virtual Screening Based 

on PubChem Bioactivity Data. J. Chem. Inf. Model. 2009, 49, 169-184.  

4. Biovia Pipeline Pilot, 17.2.0, San Diego: Dassault Systèmes, 2017.  

5. Christmann-Franck, S.; Van Westen, G. J. P.; Papadatos, G.; Beltran Escudie, F.; Roberts, A.; Overington, 

J. P.; Domine, D. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of 

Compound-Kinase Activities: A Way toward Selective Promiscuity by Design? J. Chem. Inf. Model. 2016, 

56, 1654-1675.  

6. Martin, E. J.; Polyakov, V. R.; Tian, L.; Perez, R. C. Profile-QSAR 2.0: Kinase Virtual Screening Accuracy 

Comparable to Four-Concentration IC50 for Realistically Novel Compounds. J. Chem. Inf. Model. 2017, 

57, 2077−2088.  
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