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Attend our Pre-Conference Workshop orBunday, May 27th 2018 from 15:00-17:00

“Orion - CADD on the Cloud”

* Orion is OpenEye’s reimagining of all the elements of CADD conducted
entirely within a cloud service, in our case Amazon Web Services (AWS),
delivered as either a hosted system or an in-house VPC solution

*As a ‘cloud native’ platform Orion completely automates and manages access
to large scale AWS processing and storage

In-cloud facilities includ lecular design, 3D visualization, d lysi {W ol P51
+In-cloud facilities include molecular design, 3D visualization, data analysis, sior ~ ool &

results/method sharing and project organization

* All of OpenEye science is included, enabling users to construct innovative
work ows with Floe, our pipelining tool

* As an open platform Orion allows for straightforward integration of third-
party code (customer, academic, vendor)

Interact with Orion via web browser on any
internet-enabled device.

* Interaction with Orion is via a simple webpage, deliverable on any internet-
enabled device

OpenEye has built a solid reputation as a scienti ¢ leader in the possible with the speed, robustness and scalability of our tools
eld of molecular design based on two decades of delivering and have recently built these into a ground-up, cloud-native

useful applications and programming toolkits. Our scienti ¢ platform, Orion. Combining unlimited computation and storage
approach has focussed on the power of molecular 3D structure with powerful tools for data sharing, visualization and analysis
to inform and guide, in particular via the concept of shape in an open development platform, Orion o ers unprecedented
similarity. We have changed industry perception of what is capabilities for drug discovery and optimization.

- pSCIENTIFIC !:l

To learn more about OpenEye and Orion, please stop by our booth, or visit us at: www.eyesopen.com



Preface

Welcome to the 11th International Conference on Chemical Structures (ICCS). The organizers decided to deviate
from the triennial ICCS schedule by one year, the event, as a result, being organized in 2018. The conference builds
on a long and succsfll history, which started with a NATO Advanced Study Workshop in 1@r8 with the

previous edition being jointly organized with the German Conference on Cheminformatics. The ICCS meeting is
among the most important events in this area of science @ad gh accurate picture of the stafghe-art in the

computer handling and manilation of chemical structures.

We have received 145 abstract submissions from over 24 different countries from 4 continents. All submissions were
subject to a review procegarried out by a Scientific Advisory Board of 20 international reviewers from academia
and industry. This allowed us to compile an outstanding scientific program of 34 plenary and 78 poster
presentations. Additionally, the conference hosts an exhibitibith allows a sizable number of scientific
institutions and vendors to present their latest applications, content and software. And most importantly, sufficient
time is provided for scientific exchange and discussion among the attending scientist thettoaterence and also

during the sailing excursion across the IJsselmeer to visit the Bataviawerf with a reconstruction of the Batavia, a
17thcentury VOC ship, on Wednesday afternoon.

Once again, the conference was chosen as the venue to preseieintiial t€SA Trust Mike Lynch Award. This

year, it is granted to Dr. Rudy Potenzérie recognition of his outstanding accomplishments in the field of
cheminformatics. Rudy Potenzone will open the conference by receiving the award and delivering the keynote
address titled From Teletype Structure Input to Biology and Chemistry Intelligent Knowledge Graphs: My 45 Years
in Chaminformatics on Sunday evening.

On Thursday, furthermore, we dedicate the cheminformatics session to Prof. Dr. Peter Wéitlattse of his
important contribution to the ICCS and to the field of cheminformatics in general.

After the conference, you are encouraged to submit your presentation or poster for publication in a special ICCS
article collection ofthe Journal of Cheminformatics, guest edited by Gerard van Westen and Markus Wagener.
Papers can be submitted at any date up to the 1st of October 2018, and authors should mention in their cover letter
that the manuscript is intended to be included in@@S 2018 article collection. Of course, all manuscripts will be
subject to a peer reviewfdR ZLQJ WKH MRXUQDOYV JXLGHOLQHV

This book of abstracts is intended to inform you about the scientific program of the conference and to help you to
plan your attadance. Moreover, we also hope that the abstracts in this volume will serve you as a reminder of the
presentations and posters as well as provide a snapshot of the current research in the area of cheminformatics and
molecular modeling in 2018. Note that the online programORCID identifiers are provided where available,
allowing you to learn more about past research by presenters. The ORCID identifiers are also used to create an
online webappg.

At this point, we would also like to thank the many spongarsheir financial support, which helped us to provide
bursaries to a considerablemiper of PhDBstudent attendants.

We hope that you enjoy the conference!

Markus Wagener (ICCS Chair), Frank Oellien (ICCS@mair), Chris de Graaf, Lars Ridder, Egon Nghagen,
and Gerard van Westen

1. nhttps://tools.wmflabs.org/scholia/event-series/Q47501052 for an overview of all ICCS meetings.
2. https://tools.wmflabs.org/scholia/author/Q51614233
3. https://tools.wmflabs.org/scholia/event/Q47501229
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Schradinger
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The Conference

Silver Sponsors

NextMove Software

Conference Bag Sponsors

inte:ligand

Notepad Sponsors

Schrédinger KNIME

Poster Awards Spors

ChemMedChem
Other Sponsors

We would like to thank the Royal Netherlands Chemical Society (KNCV) for supporting the
conference at the front deskVe would like to thanikCCL.NEdnd Jan Labanowski for adding
the conference to the CCL Conferences webpage. We would also like to tha&riter of
Bioinformaticsof the Univergy of Hamburg for hosting the conference webpage.
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The Conference

Exhibition

Exhibition Layout

Exhibitor Booth Exhibitor Booth
Acellera Bl Cresset B10
Discngine B2 CCDC B11
SilcsBio B3 inte:ligand B12
Schrédinger B4 NextMove Software B13
Collaborative Drug Dam B5 Dotmatics B14
Chemical Abstract Service B6 Xemistry B15
Certara B7 Chemical Computing Group B16
Knime B8 OpenEye B17

Culgi B9

Exhibition Hours
x Monday, May 28th, 2018, 14:3019:30
x Tuesday, May 29th, 2018, 14:309:30
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NextMove Software
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Chemical Abstract Service
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The Conference

Workshops Sunday, May 27 ™

Chemical Computing Group Worksl#qplication of Matched Molecular Pairs to
Interactive SAR Exploration

Sunday May 27th 2018, 15:04.7:00, NH Conference Hotel Noordwijkerhout Room: Boston 13

Managing and analyzing structure activity/property relationship data in medicinal chemistry projects is becoming
ever more challenging, with larger data sets and parallel development of different structural series. Tools and
methods forhe efficient visualization, analysis and profiling of structures therefore remain of deep interest.

The workshop will start with a presentation about the use of interactive MMP analysis-@odRprofiling to
enhance typical medicinal chemistry workflody interrogating the SAR data, thereby guiding a medicinal
chemistry campaign in its development.

The presentation will be followed by working through some real examples of the use of the new MOEsaic
application, and some complementary capabilities il (Molecular Operating Environment) software system;

R-Group Profiles and Analysis / MOEsaic / MMP Analysis / Template=orced Docking / Scaffold
Replacement / MedChem Transformations

Trial copies of MOE can be provided; segw.chemcomp.com/Produ€ree_Trial.htm

OpenEye WorkshoPrion- CADD on the Cloud

Sunday May 27th 2018, 15:04.7:00, NH Conference Hotel Noordwijkerhout, Room: Boston 15

The cloud will increasingly become the destinatior a wide variety of tasks, in computational chemistry and
HOVHZKHUH ,Q WKLV ZRUNVKRS ZH ZLOO ingiw CRODXRtbra By R@QmMIESH Q (\H TV
integrating almost limitless computing capacity with well validated workflows andegohanalysis tools Orion

substantially increases the scale of problems that can be addressed and makes finding solutions to those problems
easy for anyone.

In this workshop we will use Orion to address a frequent problem in medicinal chemigtityg potein structural

knowledge to find new lead compounds from a large number of molecules and understanding how these active
compounds interact with the protein binding site. To solve this problem effectively we will use a variety of
approaches; docking atnaus levels of accuracy, 4&oring and pose refinement using higher levels of theory. This
ZRUNIORZ ZLOO SURFHHG IURP D SRRO RI PLOOLRQV RI PROHFXOHV WR Sl
experimental validation.

The ability to set umnd monitor a largecale calculation on the cloud, analyse its results, share that analysis and
make decisions based on it, all through the same interface, a standard web browser, is extremely powerful. We will
illustrate all these capabilities in the cse@ of the workshop.

14
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The Conference

Workshops Thursday , May 31

Schrddinger Workshoptaximizing the impact of Computational Modelling on Drug
Design

Thursday May 31512018, 14:0016:00, NH Conference Hotel Noordwijkerhout, Room: Boston 13

LiveDesignis a novel pldbrm delivering cheminformatics and expert computational models side by side in a highly
collaborative and intuitive webased tool. By presenting experimental data alongside predictive data and models, a
broad range of scientists can drive new ideas kingshe key questions and easily exploring chemical space.

In this workshop we will introduce LiveDesign in the context of #gatld medicinal chemistry workflows. This

will range from rapid querying of the existing SAR, through to graphical explorefierperimental and predictive

data to aid profiling and prioritization of new ideas. Embedded 3D docking and pharmacophore model visualization
is a key component of the LiveDesign platform and we will show how to make the most of this information. We will
also show how the administration interface allows modelers to publish validated Glide1l docking models, for use in a
selectivity study of COX1 and COX22. Finally we will show how new ideas can easily be pushed and pulled into
Maestro for deeper analysistivimore complex computational methods, for a truly cyclic workflow.

1. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren,T. A.; Sanschagrin,
P. C.; Mainz, D. T., "Extra Precision Glide: Docking and Scoring Incorporativgael of Hydrophobic
Enclosure for Proteiiigand Complexes” J. Med. Chem., 2006, 49, 661B6

2. Plount3ULFH 0 / -RUJHQVHQ : / 3$QDO\VLV Rl %LQGLQJ $HLQLWLI
1 and COX2 from Combined Docking and Monte Carlo Simidas and Insight into the COX/COX-1
6HOHFWLYLW\" - $P &KHP 6RF95466 SS

Joint Xemistry & KNIME Workshopemistry Data Workflo®keveraging
Explorative Native KNIME Technology and Xemistry Custom Nodes

Thursday May 31%2018,14:00-16:00, NH Conference Hotel Noordwijkerhout, Room: Boston 15

The KNIME software has quickly become a prime player in the chemistry data processing arena. Additional
chemistry capabilities are continuously addeds builtin support features, packabestandard nodes, and third
party vendor offerings.

Xemistry and KNIME will present a joint workshop highlighting new chemisttated developments in and around
the KNIME software.

In the first part, Daria Goldmann of KNIME will explain and demonstragev rcore chemistry features and
interactive analysis and exploration capabilities which support the implementation of reproducible KNIME
workflows for chemistry data.

In the second part, Wolf Ihlenfeldt of Xemistry introduces the CACTVS KNIME node buildgroament +for
those occasions where you need a custom chemistry data processing node which is not available as a turnkey
solution, and you really do not want to dig into the intricacies of native KNIME Java development.

15



The Conference

Excursion: Sailing Cruise on the  IJsselmeer (Lake IJsel) and visit to
Batavia Yard

Schedule

13:00 | Busses dpart from the conference centeNoordwijkerhout

14:00 | Arrive at the harbor of Volendam, board the sailing bdAtifem Barentsand
Abel Tasman

16:30 | Arrive at Batavia Yard (lystad) and join the guided tour

18:00 | Return to the ships, dinner will be served on board

22:00 | Disembark at Volendam, return to Noordwijkerhout by bus

23:00 | Arrive at the conference center

Batavia Yard

The destination of the sailing cruise ig tBatavia Yard. As described at their website:

3% DWDYLD <DUG LV D VKLS\DUG ZLWK H[WUDRUGLQDU\ DPELWLRQV
were important to the Netherlands' maritime history. This heritage was demolished at the time because of

its limited lifespan, or has sunk to the bottom of the sea. In April 1995, the Batavia, which is the most
authentic reconstruction of a 17¢kntury VOC ship ever made, was launched after ten years in the
making. The initiator was master shipbuilder Will&tos. After this reconstruction was complete, a
VHFRQG SURMHFW ZDV VWDUWHG LQ WKH \Dte@urwhttlesHip RiQ VW U X F W
ZKLFK OLFKLHO GH 5X\WHU IRXJKW PDQ\ VHD EDWWOHYV ~

http://www.bataviawerf.nl/wharewe.html

16
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Plenary Session
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Scientific Program

Sunday, May 27

12:00-18:00

Registration
Atrium Lounge

15:00-17:00

Pre-conference workshops

Application of Matched Molecular Pairs to InteractiveAR Exploration
WorkshopChemical Computing Group
Boston 13

Orion- CADD on the Cloud
WorkshopOpenEye
Boston 15

17:00-18:00

Free Time

18:00-18:15

Welcome
Rotonde

18:15-19:00

Keynote Address CSA Trust Mike Lynch Award

From Teletye Structure Iiput to Biology and Chemistry Intelligent Knowledge
Graphs: My 45 Years in Cheminformatics

Awardee Dr. Rudy Potenzone

19:00-20:00

Welcome Reception
Atrium

20:00-22:00

Reception Dinner
Atrium

20




Scientific Program

Monday, May 28

8:30-10:00

Session A Integration of Giemical Information
Herman van Vlijmen, Presiding
Rotonde

8:30-9:00

A-1: Synthetically Accessible Virtual Inventory (SA¥YReaction Generation and
Handling at the OneBillion Compounds Scale
Hitesh Jayantilal Patel, National Cancer Institute, UnitateS

9:00-9:30

A-2: Fast Molecular Searching Tools and Their Extension at GSK
Peter Pogany, Glaxo Smith Kline, United Kingdom

9:30-10:00

A-3: Analysis of the ToxCast & Tox21 Compound Set Using Regulatoved GHS
Toxicity Annotations and in silicoerived Proteintarget Descriptors
Chad Henry George Allen, University of Cambridge, United Kingdom

10:00-10:30

Coffee Break
Atrium

10:30-14:30

Session B Structure-Activity and StructureProperty Prediction
Andreas Bender, Presiding
Rotonde

10:30-11:00

B-1: How Do You Build and Validate 1500 Models and What Can You Learn from
Them? An Automated and Reproducible System for Building Predictive Models fqg
Bioassay Data

Greg Landrum, KNIME AG, Switzerland

11:00-11:30

B-2: Machine Learning of Pal Charges From QM Calculations and the Applicatio
in FixedCharge Force Fields and Cheminformatics
Sereina Riniker, ETH Zurich, Switzerland

11:30-12:00

B-3: Artificial Intelligence for Predicting Molecular Electrostatic Potentials (ESPs):
Step Taovards Developing ES§uided Knowledgebased Scoring Functions
Prakash Chandra Rathi, Astex Pharmaceuticals, United Kingdom

12:00-13:00

Lunch
Atrium

13:00-13:30

B-4: NextGeneration MDQSAR Models of Dynamic Kinab#ibitor Interactions
Based on Makine Learning and Molecular Dynamics
Denis Fourches\orth Carolina State University, United States

13:30-14:00

B-5: Automated Selectivity Inversion of Kinase Inhibitors
Simone FulleNovo Nordisk, Denmark

14:00- 14:30

B-6: Multivariate Regression with Leftensored Datat Efficient Use of Incompletely
Measued Bioactivity Data for Predictive Modelling
Knut BaumannTU Braunschweig, Germany

14:30- 15:00

Coffee Break
Atrium

15:00-19:30

PosterSession & Exhibition
Atrium

15:00-17:00

Poger Presentations Red
Egon WillighagerPresiding
Atrium

18:30-19:30

Reception
Atrium

19:30-21:30

Dinner
Atrium

21



Scientific Program

Tuesday, May 29

Session CStructure-Based Drug Design and Virtual Screening

08:30-14:30 | Esther Kellenberger and Matthias RarByesiding
Rotonde
G1: In The Need of Bias Control: Evaluation of Chemical Data for Machine Learni
08:30-09:00 | Methods in StructureBased Virtual Screening
Jochen Sieg, University Hamburg, Germany
G2: An Exhaustive Assessment of Camgr-Based Drug Discovery Methods by Higl
09:00-09:30 | Throughput Screening Data
Oliver Koch, TU Dortmund, Germany
09:30-10:00 G3: Lessons Learned in Benchmarking Virtual Screening for Polypharmacology
' ' E.B. Lenselink ACDR/Leidddniversity, Netherlands
10:00- 10:30 | SOffee Break
Atrium
_ _ G4: Assisting Sitelirected Mutagenesis in silico to Optimize Ligainding
10:30-11:00 . : .
Hugo Gutierrez de Teran, Uppsala University, Sweden
G5: Structural Analysis of Chemokine Receptioigand Interactions for
11:00-11:30 | Computational Modelling Integration in Drug Design
Marta Arimont Vrije Universiteit Amsterdam, Netherlands
G6: Generation of Structurdased Pharmacophore Models in Protein Binding Siteg
, , Obtained from Molecular Dynamics Simulations: Application to Understanding Kd
11:30-12:00 :
Hsp90 Ligands
Thierry LangerUniversity of Vienna, Austria
12:00 GROUP PHOTO
12:00-13:00 | Sunch
Atrium
13:00- 13:30 G-7: How Significant are Unusual Intermolecular Interactions?
' ' Bernd Kuhn, F. Hoffmarm Roche, Switzerland
, , G8: Interaction Pattern Analysid What are we Missing?
13:30-14:00 Alexandra Nass, FU Berlin, Germany
14:00- 14:30 G9: Hydrogen Bonds as Determinants of Structural Stability
' ' Maciej Majewski, University of Barcelona, Poland
14:30- 15:00 | SOffee Break
Atrium
15:00- 19:30 Po_ster Session & Exhibition
Atrium
Poster Presentations Blue
15:00-17:00 | Lars Ridder, Presiding
Atrium
18:30-19:30 | Keception
Atrium
19:30- 2130 anference Dinner
Atrium

22



Scientific Program

Wednesday, May 30

08:30-10:30

Structure-Based Drug Design and Virtual Screening Il
Matthias Raey, Presiding
Rotonde

08:30-09:00

G10: Selectivity Determining Features in Proteins with Conserved Binding Shes
Case Study Using-Myristoyltransferase as Model System
Ruth BrenkUniversity of Bergen, Norway

09:00-09:30

G11: Active Search for Computekided Drug Design
Steven Andrew Oatley, University of Nottingham, United Kingdom

09:30-10:00

G12: Conformational sampling of macrocycles in both the selad solutionstates
Paul HawkinsOpenEye Scientific, United States

10:00-10:30

G13: Automated Fragment Evolution (FrEvolAted) Applied to Fragments Bound {
NUDT21
Moira Michelle Rachman, University of Balona, Spain

10:30-11:00

Coffee Break
Atrium Lounge

11:00-13:00

Session D Analysis of Large Chemical Datasets
Peter Ertl, Presiding
Rotonde

11:00-11:30

D-1: Hit Dexter 2.0: Machine Learning for Triaging Hits from Biochemical Assays
Johannes Kthmair, University of Hamburg, Germany

11:30-12:00

D-2: Recent Advances in Chemical and Biological Search Systems: Evolution vs
Revolution
Roger SayldNextMove Software, United Kingdom

12:00-12:30

D-3: Advancing Automated Synthesis Via Reaction Data Mining and Reuse
Christos Nicolaou, Eli Lilly and Company, United States

12:30-13:00

D-4: Revealing Important MolecutaFragments in Drug Discovery Using Time Trer|
Analyses
Barbara ZdrazilUniversity of Vienna, Austria

13:00

Box Lunch

13:00-23:00

Excursion
Cruise the IJsselmeer on two traditional isgjlboats and visit the Batavia Yard. A
banquet dinner will be served on the boats on the way back.
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Scientific Program

Thursday, May 31

07:30-08:30

Hotel CheckOut

08:30-10:30

Session EDealing with Biological Complexity
Andrea Volkamer, Presiding
Rotonde

08:30-09:00

E-1: Strategies for Assembling an Annotated Library for Phenotypic Screening
Henriette Willems University of Cambridge, United Kingdom

09:00-09:30

E2: Targeting of the Diseasedfated Proteome by Small Molecules
Modest von Korff, Idorsia Pharmaceuticals Ltd., Switzerland

09:30-10:00

E-3: Gearing Transcriptomics Towards Hidhroughput Screening: Compound
Shortlisting from Gene Expression Using in silico Information
Natalia Anteto, University of Cambridge, United Kingdom

10:00-10:30

E-4: Discrimination of Gtprotein Coupled Receptors and their Conformational Stat
Using Intramolecular Interaction
Florian Koensgen, University of Strasbourg, France

10:30-11:00

Coffee Breal& Hotel CheclOut
Atrium Lounge

Cheminformatics
Dedicated to Peter Willett

11:00-13:10 1\ Gillet, Presiding
Rotonde
) ) Some remarks
11:00-11:10 val Gillet

11:10-11:40

F-1: Comparison and Analysis of Molecular Patterns on the Example of SMARTS
Robet Schmidt, Universitat Hamburg, Germany

11:40-12:10

F2: Anisotropic Atom Reactivity Descriptors for the Prediction of Liver Metabolis,
Ames Toxicity and Hydrogen Bonding
Andreas Hans GolleBayer AG, Germany

12:10-12:40

F3: Exploring 3D Molecular Shape Using Spectral Geometry
Matthew Seddon, University of Sheffield, United Kingdom

12:40-13:10

F4: Creating Atomto-Atom Mapping in Chemical Reaction Using Machine Learni
Methods
Timur Madzhidov, Kazan Federal University, Russia

13:10- 13:15 | Closing Remarks
13:15-14:00 | Lunch or Box Lunch
13:30 Shuttle Busses leave for Shiphol Airport
14:30 Shuttle Busses leave for Shiphol Airport
14:00- 16:00 | POSTCONFERENCE WORKSHOPS
Maximizing the Impact of Computational Modelling on Drug Design
Workshop bySchrédinger
Boston 13
Chemistry Data Workflows Leveraging Explorative Native KNIME Technology ar
Xemistry Custom Nodes
Joint Workshop by Xemistry & KNIME
Boston b
16:30 Shuttle Busses leave for Shiphol Airport
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Poster Session RED
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Scientific Program

Integration of Chemical Information

Accelerating problem solving and decision making in medicinal chemistry through visualisat

Paul HawkinsOpenEye Scientific P01
Nanomaterial safety data integration with substance data model and federated search

. ) P-03
Nina Jeliazkoyddeaconsult Ltd.
Can we agree othe structure represented by a SMILES string? A benchmark dataset P05
Noel M O'BoyleNextMove Software
Structure-Activity and StructureProperty Prediction
Computational Studies oftkygrin Inhibitors P07

Saleh Saeed Alarfaji, The University of Nottingham

Fast prediction of the specific conductivity of electrolytes from the molecular structure of the
solvent P-09
Rémi BouteloupCEA

Identification of novel sodiurdependent glucose aoansporter 1 inhibitors using
proteochemometrics P-11
Lindsey Burggraaff.eiden University

Application of 3BQSAR Methas in Drug Design & Discovery: Two Case Studies

Giulia ChemiUniversity of Siena P13

Applications of in silico approaches to decipher the structure and functions of ADAMTS13: |
to novel therapeutics of TTP P-15
Bogac Ercig, Maastricht University

Confidence estimation of ADME properties using conformal prediction

Christina Maria Founti, The University of Sheffield P17
Selectivity profiles in Activity Atlas P19
Mark Mackey, Cresset

KnowTox: Risk Assessment by Automated RReaolss and Machine Learning P21

Andrea Morger, Charite Berlin

Machine learning to predict the recruitment profile of intracellular binding partners of G prote
coupled receptors P-23
Trung Ngoc Nguyen, Freie Usrisitat Berlin

Estimation of electrophilicity for warheads of covalent protease inhibitors

Szymon Pach, Freie Universitat Berlin P25
A webbased informatics platform for PhysChem/ADME/Tox property predictions P07
Andrius Sazonovas, ACD/Labs, Inc.

Development of a novel structure descriptor combining molecular shape and surface propel P.2g

Anke Schultz, Technische Universitat Braunschweig
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Classification of corneal permeability of ddilge compounds using data mining and machine
learning P-31
Calos J. V. SimdeBSIM Therapeutics

Coarsegrained approaches for prediction of solubility and membrane permeability of large d
The Why and the How P-33
Teun Sweere, Culgi BV and Leidiversity

Molecular Dynamics Fingerprints (MDFP): Combining MD and Machine Learning to Predict
Physicochemical Properties P-35
Shuzhe WangeTHZ

StructureBased Drug Design and Wial Screening

Towards Small Molecule Inhibition of HSP90 Dimerization

David Bickel, Heinrich Heine University Duesseldorf P37
Reverse Virtual Screening Procedure for Identifying the Target of an Antiplasmodial Hit Cor P39
Simone BrogiUniversity of Siena

Conformational Sampling and Binding Affinity Prediction of Macrocycles P41

Daniel CappelSchrédinger GmbH

Usng FEP (Free Energy Perturbation) Calculations to estimate relative binding affinities anc
selectivity for GPCR targets P-43
Francesca Deflorian, Heptares Therapeutics Ltd

Can | Have Seconds?

Christiane Ehrt, TU Dortmund University P-45
Virtual Screenig of CCR5 Inhibitors as Potential AGlorectal Cancer Agents P47
Mariam EiZohairy, Faculty of Pharmacy and Biotechnology at the German University in Cail
SILCS reproduces experimental binding trends for 31 TrmD ligands

R P-49
Olgun Guvench, SilcsBio
Fuzzy ligands for allosteric target detection and lead identification P51

Susanne Hermans, Heinrieteine University, Dusseldorf

A fast and efficient rescoring method based on binding information of fragment andikieug
ligands P-53
Célien Jacquemard, Uensité de Strasbourg

Mapping Binding Site Thermodynamics by 3D RISM Theory for Drug Design

Julia Beatrice Jasper, TU Dortmund P55
Structure based design of potent and selective ligands for the adenosine receptor family P57
Willem JesperdUppsala University/Leiden University
Transferable Neural Networks Architecture for Low Data Drug Discovery

. : P-59
Mun-Hwan Lee, Seoul University
Tetris of HDAC Inhibitor Design P61

Jelena Melesina, Mart Luther University HalgVittenberg
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Applications of Binding Free Energy Calculations and QSAR Modeling to Design Novel Inhi
Human Mytl Kinase P-63
Abdulkarim NajjarMartin Luther University of HallgVittenberg

Estimation of solvation free energies by continuum methods: How to tackle halogenated spi

Rafael NunesCentro de Quimica e Bioquimica, Hdade de Ciéncias, Universidade de Lisboa P65
A multitarget approach to neurodegenerative diseases P67
Sebastian Oddsson, University of Iceland
A Computational Platform For Fragment Evolution P69
Serena Gaetana Piticchio, University of Barcelona
NAOMInext- ReactiorDriven Probing of Protein Binding Sites

. . : P-71
Kai SommerUniversity of Hamburg
Effects of MEMM/GBSA Parameters on the Rabkdering of Ligands in Drug Design P73

Nikolaus Sefl, Novartis Institute of Biomedical Research

Can | make this into a macrocycle? Effective methods for fragment growing, joining and
cyclisation. P-75
Paolo Tosco, Cresset

Truly Target~ocused Pharmacophore Modeling: A Novel Tool for Mappingriakecular Surface

Andrea Volkamer, CharitéUniversitatsmedizin Berlin 77
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Analysis of Large Chemical Data Sets

Characterization of the Chemical Space of Known and of Readily Purchasable Natural Proc

Ya Chen, Uneérsity of Hamburg P02
Effects of missing data on multitask prediction performance P04
Antonio de la Vega de Leodniversity of Sheffield
Compound enumeration using Reaction Workflows

: : P-06
Jameed Hussain, Dotmatics
chem?2vec : vector embedding of atoms and molecules P03
Nina Jeliazkoyddeaconsult Ltd.
Building and searching large chemistry spaces P10

Uta Lessel, Boehringérgelheim Pharma GmbH & Co. KG

Learning from Extant Medicinal Chemistry to Accelerate Hit Identification and Optimisation i
Drug Discovery p-12
Yi Mok, The Institute of Cancer Research

HTS workup at AZstate of the art

Willem NissinkAstraZeneca P14
A Comprehensive Evaluation of ACD/LogD on a Pharmaceutical Compound Set P16
Andrius Sazonovas, ACD/Labs, Inc.
Halogens in proteitigand binding mechanism: a structural perspective

. : . . P-18
Nicolas Ken Shinada, Discngine
Interoperable and scalable data analysis in metabolomics P20

Christoph Steinbeck, Friedri&chillerUniversity

Supporting the assessment of the purging potential mutagenic impurities via analysis of pat
literature p-22
Samuel Webb, Lhasa Limited

Dealing with Biological Complexity

Metabolite Structure Prediction Benefits from Cytochrome P450 Regioselectivity Prediction

Christina de Bruyn KopBniversitat Hamburg P-24

Small Molecule Binding Site Predictidfnow Your Needs

Christiane Ehrt, TU Dortmund University P26

D}o po & v SuE }( 8Z2 v & - -dipAdspBeg)cur @hogdylEahsfarasa [
nine-fold mutant 1A5*8 P-28
David Machk, Freie Universitat Berlin

Searching within HELM

Eva Bliltelquattro research GmbH P-30

HELMdriven Integration of Peptides into StructeBased Drug Design and Cheminformatics

Cona Scully, Heptares Therapeutics P32
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Cheminformatics

Machine Learning Models of Hydrogen Bond Basicity Based on Anisotropy Atomic Reactivi
Descriptors pP-34
Christoph Bauer, ETH Zirich

International Chemical Identifier for Reactions (RINChl)

Gerd Banke, StructurePendium Technologies GmbH P36
Characterizing Somatic Cancer Mutations in GPCRs P38
Brandon Jeremy Bongeriseiden University
A Novel Approach to Assign Absolute ConfigomaJsing Vibrational Circular Dichroism

. P-40
Lennard Boéselt, ETHZ
A Novel Search Engine and Application for Very Large Chemistry Database Mining P42

Robert D Brown, Dotmatics

Designing of a drugike natural compound library for secondary metaboliteBected from the
African flora. P-44
Veranso Conrad SimobgeMartin-LutherUniversity, HalleNittenberg

mmpdb: A Matched Molecular Pair Platform for Large MRitbperty Datasets

Andrew Dalke, Dalke Scientific Software P-46

3D-e-Chem: Structural Cheminformatics Workflows for Compéiged Drug Discovery

Chris de GraaHeptares Therapeutics P48

Analysis and inference Winh the molecular space: A visual approach using NAMS and
multidimensional scaling P-50
Andre O. FalcadJniversity of Lisboa

Reaction Classification by Reaction Vectors

Gian Marco GhiandonUniversity of Sheffield P52
Tautomeric Equilibria: Modeling and Visualization. P54
Marta Glavatskikh, University of Strasbourg

Artificial Intelligence in Medicinal ChemistrZurrent Status at AstraZeneca P56

Thierry Kogej, AstraZeneca

Compact dscriptor sets for automatic annotation of natural products in large databases by
pairwise variable screening P-58
Max Kretzschmar, Technische Universitat Braunschweig

De novo drugcandidate molecule generation with generative adversarial networks

Xuhan Li, Leiden University P60
The need for comprehensive reaction handling in SAVI and beyond P62
Marc C. NicklaysNational Cancdnstitute, NIH

Flavours in Aromaticity P64
Martin Ott, Lhasa Limited

Smooth Molecular Surfaces with Joined Marching Cubes P66

Thomas L. Sander, Idorsia Pharmaceutical Ltd.
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Chemistry Identifier Mapping to Pathway Databases using Ontologies: dinganetabolomics
analysis in WikiPathways with ChEBI
Denise Nicole Smaragda Michelle Slenk¢aastricht University

Finding answers from chemical space extremely fast
Akos Tarcsay, @mAxon

Structural Analysis of Protein Homomaeithe Quest for Perfect Symmetry
Inbal TuwArad, The Open University of Israel

Wikidata and Scholia as a hub linking chemical knowledge
Egon WillighagerMaastricht University

PSMILESA particlebased Molecular Structure Representation for Mesoscopic Simulation
Achim Zielesny, Westphalian University of Applied Sciences

A new, improved model to predict kinase inhibition
Pieter FW Stouten, Galapagos NV

P-68

P-70

P72

P-74

P-76

P78

32



Plenary Session Abstracts

Plenary Session Abstract s

33



Plenary Session Abstracts

34



Plenary Session Abstracts

Keynote Address CSA Trust Mike Lynch Award

From Teletype Structure InpuBiology and Chemistry Intelligent Knowledge
Graphs: My 45 Years in Cheminformatics

Rudy Potenzone, PB.
Ingentium Inc.

A short review will be presented of the changes and incredible advances that have occurred over the past 45 years in
cheminformatics, and related scientific informatié®hile our scientific knowledge has developed at an incredible

pace it has come alongside of the advances in computer hardware and software. Advances in the capabilities and
accessibility of chemical and biological information has been amazing but dwarfed by the increasing ¥alwmee.

enter the Fourth Paradigm of gaiiéic research and discovery, the availability of machine learning and cybernetics
offers an opportunity to leverage the vast amounts of information. Finding relevant sources is challenging as they are
spread across normal scientific channels as welagitess, social media, and in various forms including audio and
video. $W ,QJHQWLXP ZH KDYH EHHQ VWXG\LQJ KRZ WR RUJDQL]H DQG P
scientists want to consume it. We have creating disease focused knowledge bagd3RJIID | LQHVY IRU EURZ
portal for searching and extended tools for reviewing our collections. In focusing on specific topics, a richer, more
focused context can be mapped and made available to research scientists in the various forms includimgmew co
alerts, readable content summaries, related itemskaowledge graphs. Examples of our magazines and knowledge
graphs will demonstrate the value of our approach.
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A-1: Synthetically Acasible Virtual Inventory (SAYReaction Generation and
Handling at the O#llion CompourglScak

H. Patel, W. D. Ihlenfeldt?, M. C. Nicklaust

! ComputerAided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research,
National Carmer Institute, National Institutes of Health, NEtederick Frederick MD 21702 ,United
States® Xemistry GmbH, 861462 Konigstein, Germany

The Synthetically Accessible Virtuaiventory (SAVI) project is an international collaboration between partners
government laboratories, small companies-fooprofits, and large corporations, to computationally geneaate
very large numhbreof reliably and inexpensivelgynthesizablenovel screening sample structureSAVI handles
reactions not by virtue of apyng simple SMIRKS to a set of building blocks of unknown availability. It instead
combines a set of transformishly annotated with chemical context, coming from, or being newly developed in the
mold of, the original LHASA project knowledgebase, witket of highly annotatedeliably available, purchasable
starting materials. These components tied togetherfor SAVI product generatiomith the chemoinformatics
toolkit CACTVS with custom developments fthis project. Each product is annotated vathumber of computed
properties seen as important in current drug desigouding rules for identifying potentially reactive or
promiscuous compoundafter having produced and made publicly available the first (beta) set of 283 million SAVI
products anniated with proposed orsiep syntheses, we will be reporting on the second full production run aimed
at creating a databaseaie billion highquality, easily synthesizabkcreening sample$Ve will present the current
status ongoing developmentas wdl as scientific anddchnical challenges of the project

A-2:Fast molecular searching tools and their extension at GSK

P Pogany, T Kostrzewskt, S Senget, S Pickett
! GlaxoSmithKline, Stenage, Hertfordshire SG1 2NY UK

Searching pharmaceuticaltlglevant chemical datasets is an integral part of the lead discovery workflow and an
important source of ideas for lead optimization. It is important that such tools are readily available at the desktop and
that results can be obtained in an interactaghfon. Some of these datasets can contain hundreds of millions of
druglike molecules and pose a challenge to traditional database systems for similarity searching and other
cheminformatics tasks

We have implemented the ChemAxon tool MadFafir this purpose at GSK. We have used MadFast with large
datasets (ca. 180 million) vendor compound collections and connected tehansin adapted SureChEMBL

database containing patent compounds and their mapping to the patent information. Reduced grpghtéinger

have been added to the existing datasets as an alternative to the regular chemical hashed fingerprints and extendec
connectivity fingerprints. MadFast search has been made available through the LivEplesignrm and a separate
implementation usk for patent compound lookup in the SureChEMBL database. From both implementations it is
possible to link out to the original datasources to provide additional information and context for any hit compounds.

In thiswork we present our implementation andiahustrate the use in lead discovery and lead optimization stages

of drug discovery programs.

1. https://chemaxon.com/products/madfast

2. Pickett S., ChemAxon UGM, Budapest 2016.
https://chemaxon.com/presentation/fashilarity-searchingmakingthe-virtual-real

3. PapadatgsG.; Davies M.; Dedman N.; Chambers J.; Gaulton A.; Siddle J.; Koks, R.; Irvine, S. A;;
Pettersson J.; Goncharoff N.; Hersey A.; Overington J. P. SureChEMBL: a lareggeale, chemically
annotated patent document databakeleic acids res2015 44.D1, D1226D1228.

4. Senger,S.; Bartek L.; PapadatgsG.; Gaulton A. Managing expectatits: assessment of chemistry
databases generated by automated extraction of chemical structures from gat€hesminform2015 7,
49.

5. Harper, G.Bravi, G. S; Pickett S. D; Hussain J.;Green D. V. S.The reduced graph descriptor in virtual
screenng and datalriven clustering of higlthroughput screening datd. Chem Inf. Comput Sci 2004
44, 21452156.

6. https://www.schrodinger.com/livedesign
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A-3: Analysis of the ToxCast & Tox21 compounhdsseg regulatederived GHS
toxicity annotations and silicoderived protentarget descriptors

C. H. G. Allert, L. H. Mervint, A. Bendet
! Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, U K.

Accuratein silico prediction of compound toxicity is of value to the chemical industry because traditional toxicity

testing is slow and expensive, and there are societal and legal incentives to minimize experimentation.

Meanwhile, the regulatory demand for toxicity dnfnation is higher than ever. Conventioiralsilico approaches

seek relationships between chemical structure and adverse outcomes, and the integratiethroiulgigbutin vitro

screening data and protein target annotations has been shown to incréaBd.téok\ FODVVLILFDWLRQ PRGHO\
and interpretability. However, a challenge in developing such heterogeneous models is the collation of suitable
datasets, which require the presence of a toxicological endpoint, chemical structure, protein aadjetvitro

readouts for each compound. Finding a suitably large number of compounds with such an overlap of data on which

to train predictive models is not trivial.

The Globally Harmonized System of Classification and Labelling (GHS) is an interalatimmework for

standardising chemical hazard informatidnter alia, the GHS facilitates the collation of the outcomes of
independent acute oral toxicity studies into internatiorabognised categories, for the purposes of producing
globally-recognzed hazard labels. Five acute oral toxicity categories are defined, each corresponding to a
guantitative L@p LQWHUYDO VSHFLILHG LQ PJ NJ ZLWK WKUHH FDWHJRULHV O]
requiring no label. The European Chemicals Agency tEC -DSDQYV 1DWLRQDO ,QVWLWXWH F
(YDOXDWLRQ DQG 1HZ =HDODQGYTV (QYLURQPHQWDO 3URWHFWLRQ $XWK
mandated/recommended acute oral toxicity classifications under the GHS. Further, ECHA publishegsthialin
VXEPLVVLRQV LW UHFHLYHV XQGHU WKH UHTXLUHPHQWYVY RI WKH (87V 5({
classifications. The common classification standards provided by the GHS system enable the collation of acute oral
toxicity data from all ofthese resources with confidence that they are mutually commensurate. This represents a
valuable means of annotating arbitrary compound sets with toxicity labels.

In our study, we annotated 8,003 unique standardized chemical structures from the ToxUast2dndatasets

with toxicity classifications derived from regulatory GHS information; toxicity classifications could be found for

2736 (34%) of the structures, illustrating the coverage of this technique. For these compounds, a set of 206
physiochemicahnd structural descriptors were calculated using MOEe dataset was further annotated with 1,651

in silico-derived proteirtarget descriptors using antimuse random forest (RF) protdigand prediction algorithm

trained on over 13 million bioactiyitdatapoint$.We next analysed the predictability of regulad@rived toxicity

annotations using clustering and linear discrimination analysis on the chemical and-fargetirdescriptors, the
ToxCast/Tox21 qHTS assay data, and combinations of themespWe show the performance of RF classifiers

(evaluated by the ROC and precisi@tall curves) and the effect of the inclusion of the different combinations of
KHWHURJHQHRXVY GHVFULSWRUV RQ WKHVH PRGHOVY LQWHUSUHWDELOLW!'

1. Allen, C. H. G.; Koutsoukas, A.; Cort&ariano, I.; Murrell, D. S.; Malliavin, T. E.; Glen, R. C.; Bender, A.
Improving the prediction of organistavel toxicity through integration of chemical, protein target and
cytotoxicity gHTS dataToxicol. Res2016 5, 883894.

2. United NationsGlobally Harmonized System of Classification and Labelling of Chemicals (Git8),
revised ed,; New York and Geneva, 2017; Chapter 3.1, pp 11825,
http://www.unece.org/trans/danger/publi/ghs/ghs_rev07/07files_eOateessed #a20, 2018).

3. Kavlock, R. J.; Austin, C. P.; Tice, R. R. Toxicity testing in the 21st century: Implications for human health
risk assessmeriRisk Anal2009 29, 485487.

4. Dix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, R. W.; Kavlock, R.The ToxCast
program for prioritizing toxicity testing of environmental chemic@isxicol. Sci2007, 95,5 2.

5. Molecular Operating Environment (MOE2013.08; Chemical Computing Group ULC, 1010 Sherbooke St.
West, Suite #910, Montreal, QC, Canada, H327,2018

6. Mervin, L. H.; Bulusu, K. C.; Kalash, L.; Afzal, A. M.; Svensson, F.; Firth, M. A.; Barret, |.; Engkvist, O.;
Bender, A. Orthologue chemical space and its influence on target prediitamformatics 2018 34, 72+
79.
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B-1: How do you build and validate 1500 models and what can you learn from them?,
An automated and reproducible system for building predictive models for bioassay
data

G.A. Landrun}, D. GoldmanA A. Martin®

LKNIME AG, Zurich, Switzerland KNIME GmbH, Berlin, Germany KNIME GmbH Konstanz,
Germany

Here we describe an automated workflow for building and training predictive models for bioassay data and the
application of that workflow to train and validateore than 1500 predictive models for the assay data present in
ChEMBL 23. The workflow is implemented with the KNIME Model Factory [1] in the epaumrce KNIME

Analytics Platform. Since we know that there is no single best matdaneing algorithm/chemat fingerprint
combination for all datasets [2], our workflow tries a variety of different fingerprints and algorithms for each assay
and selects the one that performs best. The breadth of methods we use, and the automation of the process sets thi
effort apart from other largscale modeling exercises with ChEMBL [3].

We begin with an overview of the KNIME Model Factory itself, and then describe the individual steps used to build
and validate the predictive models:

1) Selection and extraction of the datasets

2) Feature generation

3) Model building: parameter optimization, model building, model selection
4) Model validation

5) Model deployment

:HYYH DOVR VWDUWHG DQDO\[LQJ WKH PRGHOV WKHPVHOYHYV DQG ZLOC
about combinatins of fingerprints/algorithms/parameters which seem to work well across this very large collection
of different datasets.

The KNIME Model Factory is open source and can be freely downloaded from our website (URL provided during
the presentation). The fildsr the final models and datasets are large, but we will also make those available upon
request. Although we have worked with public data (ChEMBL), applying the workflow described here to other data
sources (for example an internal data warehouse) wauidrequire modification of the section that selects and
extracts the data from the database.

1. Ada, l.; Winters, P.; Berthold, M.R. The KNIME Model Factory: Scaling Modeling Processes for the
Enterprise. [Online] 2017 https://files.knime.com/sites/default/files/inline
images/Model_Process_Management 20170404 _(acdéssed 14 Feb 2018).

2. Riniker, S.; Fechner, N.; Landrum, G. A. Heterogeneoussiflar fusion for liganebased virtual screening:
or, how decision making by committee can be a good tdinghem. Inf. ModeR013 53 28292836.

3. http://chembl.bbgspot.com/2014/04/ligaAdasedtargetpredictionsin.html,
http://chembl.blogspot.ch/2016/03/targeedictionmodelsupdate.html

B-2: Machine Learning of Partiala@jes From QM Calculations and the Application
in Fixed Charge Force Fields and Cheminformatics

Sereina Riniket
! Laboratory of Physical Chemistry, ETH Zurich, VladifRirelogWeg 2, 8093 Zurich, Switzerland

Partial charges are a highly important comgrarof fixedcharge force fields, which are used in classical molecular
dynamics (MD) simulations. Partial charges are also widely used as descriptors in quantitative -stctiviyre
relationship (QSAR) or quantitative structypeoperty relationship (§PR) models. To obtain partial charges one

has typically to choose between speed and accuracy. The vastness of the chemical space makes fast approache
using building blocks or connectivity information challenging. Therefore, a common approach usedefdiefds

43


https://files.knime.com/sites/default/files/inline-images/Model_Process_Management_20170404_1.pdf
https://files.knime.com/sites/default/files/inline-images/Model_Process_Management_20170404_1.pdf
http://chembl.blogspot.com/2014/04/ligand-based-target-predictions-in.html
http://chembl.blogspot.ch/2016/03/target-prediction-models-update.html

Plenary Session Abstracts

is to extract partial charges from seempirical orab initio calculations. However, the high computational cost of

QM methods limits the use of this approach to low throughput applications. In order to obtaiguatity partial

charges in dast manner, we have developed a macheaening (ML) based approach for predicting partial charges
extracted from density functional theory (DFT) electron densitiElse training set was chosen with the goal to
provide a broad coverage of the known cleinspace of drugjke molecules. In addition to the speed of the
approach, the partial charges predicted by ML are not dependent on thditheasional conformation in contrast

to the ones obtained by fitting to the electrostatic potential (ESP). T&léygand the compatibility of the ML
predicted partial charges with standard force fields is assessed by calculating thermodynamic properties of organic
liquids. In addition, the chemically meaningful partial charges obtained by the presentbdskt. aproach are

tested in higkthroughput liganebased virtuascreening.

1. Bleiziffer, P.; Schaller, K.; Riniker, S. Machine Learning of Partial Charges Derived FromQiglity
QuantumMechanical Calculations. Chem. Inf. ModeR018 submitted.

B-3: Artifcial Intelligence for Predicting Molecular Electrostatic Potentials (ESPs): A
Step Towards Developing Egitded Knowledgeased Scoring Functions

P. C. Ratht, R. Lewis?, A. Bender, and M. L. Verdonk

! Astex Pharmaceuticals, 436 Cambridge Scienag,Rdilton Road, Cambridge CB4 0QA, United
Kingdom,? Department of Chemistry, Centre for Molecular Informatics, University of Cambridge,
Lensfield Road, Cambridge CB2 1EW, United Kingdom

Molecular electrostatic potential (ESP) surfaces are a usefuldoaolptimizing proteidigand interactions in drug
design! It has been shown that binding efficiency of a ligand can be greatly improved by careful modifications that
lead to a better complementarity between protein and ligand electro3téfiesbelieve hat knowledgebased

scoring functions can be improved by leveraging the information about electrostatic potentials around atoms.
However, timeintensive quantum mechanical calculations are required for generating molecular ESP surfaces.
Therefore, to devep a fast ESRjuided knowledgdased scoring function, a quick and accurate model is required
for the prediction of molecular ESPs.

We will present a model for predicting ESPs around atoms (specifically, in the direction of atomic features, e.g., lone
pairs, hydrogens, p orbitals, etc.) developed using graph convolutional deep neural network teéhhfsues.
QHWZRUN ZDV WUDLQHG RQ a GLYHUVH PROHFXOHY PHDQ KHDY\ DWR
were generated by running quantum meatsn(QM) calculations (B3LYP with 81G* basis set for optimization

and 6311G** basis set for energy calculation). The input layer of the model receives 209 atomic descriptors
calculated using the scikithem library built on RDKitplus atomic connectity matrices. The output layer returns

ESP values in the direction of the atomic features. The optimized model performs very well on predicting ESP
values for a validation set of ~12,000 molecule$ £F.95, p << 0.001 for a correlation with ESP valueswkd

using QM calculations). The mean absolute error in predicting ESP values is ~3 kcal/mol for the validation set
suggesting that our model can provide good estimates of ESP values obtained usintgtisiee QM calculations,

but in a fraction of theomputing time. This level of precision should also allow a successful application in guiding
knowledgebased scoring functions, and we will exemplify how this may be achieved for the Protein Ligand
Informatics force field (PLIff}.

1. Vinter, J. G. Extendeelectron distributions applied to the molecular mechanics of some intermolecular
interactions. Il. Organic complexek.CompwAided. Mol. Des1996,10, 417-426.

2. Chessari, G.; Buck, I. M.; Day, J. E.; Day, P. J.; Igbal, A.; Johnson, C. N.; LewisMarilns, V.; Miller,
D.; Reader, M. Fragmeittased drug discovery targeting inhibitor of apoptosis proteins: discovery of a non
alanine lead series with dual activity against clAP1 and XUARled. Chem2015,58, 65746588.

3. Kearnes, S.; McCloskey, K.;eéBndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: moving
beyond fingerprints]. ComputAided. Mol. Des2016,30, 595608.

4. The scikitchem library  https://github.com/richlewis42/scikihen), built on RDKit
(http://www.rdkit.org.

5. Verdonk, M. L.; Ludlow, R. F.; Giangreco, |.; Rathi, P. C. ProtdgandInformatics force field (PLIff):
WRZDUGYV D IXOO\ NQRZOHGJH GULY Hnferactigrid.5.HMed. Bi@@2016R39, ELRPROH
6891-6902.
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B-4: NextGeneration MRQSAR Models of Dynamic Kinbebitor Interactions
Based on Machine Learning and Molecular Dynamics

Denis Fourches

! Department of Chemistry, BioinformatiBesearch Center, North Carolina State University, Raleigh,
USA

Quantitative Structuréctivity Relationships (QSAR) typically rely on the twand threedimensional structures of
molecules to assess their bioactivity. These models have proven to beeaeoaagh for screening large chemical
libraries but have also shown poor performances when it comes to lead optimizationdapdhirassistance to
medicinal chemists. In this presentation, | will present the@®AR modeling approach that uses machiaenieg

and MD descriptors directly computed from the molecular dynamics trajectories of-kihdstor complexes. |

will discuss the rationale of the approach, its origin with early attempts-@3BR modeling, and two case studies
involving a sé of 85 ERK2 kinase inhibitorsand another large set of 925 Bl tyrosinekinase inhibitors (all

being imatinib analogues). Our MRSAR modeling workflow includegi) the structurébased docking of all
compounds in the binding site of the kina§g, the independent molecular dynamics (MD) simulations of each
proteinligand complex (Desmon@PU, 15 ns, NTP, 300K, TIP3P, 1f§)i) the computation of MD fingerprints to
FKDUDFWHUL]H OLJDQGVY FRQIRUPDWL Righbitr InieraftofsLoDdr ié tRjec@rigd, KH G\
and(iv) both training and crosgalidation of MDQSAR models using machine learning techniques (random forests
and artificial neural networks). Not only MRSAR models afforded similar or better prediction performances
comparedo classical 2D and 3D QSAR models, but the interpretation of MD descriptors was facilitated with the
direct visualization of their associated dynamic kingebitor interactions. This nexgeneration modeling
workflow combining machine learning, 3D dael, and molecular dynamics simulations could provide key
knowledge for the design of more potent and selective small molecule inhibitors.

1. Ash, J.; Fourches, D. Characterizing the Chemical Space of ERK2 Kinase Inhibitors Using Descriptors
Computed from Macular Dynamics Trajectorie3.Chem Inf ModeR017 i

B-5: Automated selectivity inversion of kinase inhibitors

Simone Fulle

BioMed X Innovation Center, Heidelberg, Germany
Current affiliation: Novo Nordisk, Copenhagen, Denmark

Elimination of inadvertent binding is crucial for inhibitor design targeting conserved protein classes like kinases. In
turn, compounds in clinical trials provide a rich source for initiating drug design efforts by exploiting such secondary
binding events. Consideringoth aspects, we shifted the selectivity of a kinase inhibitor, originally developed
against a cancer target, towards a pain target. In line with the design objectives rdmekénpcompound has a
significant selectivity improvement against a selectfetarget and is highly selective in a kinase panel. This was
achieved in a single round of automatedsilico optimization, highlighting the power of recent advances in
computeraided drug design technologies to automate design and selection processes.

The presentation will describe the employed muofiiective selection scheme that filters for selective and highly
active compound based on orthogonal methods grounded in computational chemistry and machine learning. The
benefit of the underlying technolas (e.g. refl3), primarily developed for the design of selective inhibitors, will be
exemplarily demonstrated and discussed using our novel compound series for a pain target.

1. Merget, B.; Turk, S.; Eid, S.; Rippmann, F.; Fulle Pofiling Prediction of Kinase Inhibitors: Toward the
Virtual Assay.J Med Chem2017, 60, 474485.

2. Turk, S.; Merget, B.; Rippmann, F.; Fulle, Soupling Mathed Molecular Pairs with Machine Learning
for Virtual Compound Optimizatiord Chem Inf Model2017, 57, 30793085.

3. Eid, S.; Turk, S.; Volkamer, A.; Rippmann, F.; Fulle, l§nMap: a webbased @ol for interactive
navigation through human kinome daBMC Bioinformatics2017,18:16.
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B-6: Multivariate Regression with kefhsored DatdEfficient Use of Incompletely
Measured Bioactivity Data for Predictive Modelling

K. Baumannt, M. Mathea" , W. Klingspohn, A. ter Laak?, N. Heinrich?

!Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitat Braunschweig,
BeethovenstralRe 55, 38106 BraunseigwGermany

2 Bayer AG, Drug Discovery, Pharmaceuticals, 13342 Berlin, Germany
Current address: BASF SE, 67056 Ludwigshafen am Rhein, Germany

In industrial drug discovery research, bioactivity data are often incompletely measured so that for weakly active
compounds no exact pdeor pK value is known. In these cases, it is onlyown that the plg or pK; value is

smaller than a certain coff value. Data of this type are called teftnsored. Such data frequently occur in
econometrics and environmental chemistry (values below the determination or detection limit) and efficient
regression algorithms to include those data into calibration models are well kndowever, in the latter two
application areas only few predictors are typically processed. Regression algorithms for handling hundredths or
thousands of predictors are notmdable. For righicensored survival data, highmensional regression algorithms

have been published. Yet, the censoring mechanism in these cases is often very different from the one at work for
the aforementioned leftensored data. Hence, not all avaliéaalgorithms can efficiently be adapted to the-left
censored case.

Here, we describe the adaption of the BucKlaynes algorithAto principal component regression (PCR) and partial
leastsquares regression (PLS), as well as to other penalized regrakgoithms for handling highimensional

structure descriptor data with lefensored bioactivity data. Two different implementations are conceivable: In the

first case, the regression algorithm is left untouched and the Bud&lags imputation schemedsdapted to left

censored data using a reverse Kagpldier estimator. In the second case, the aforementioned regression algorithms
are decomposed into many univariate regression steps for matrix decomposition and each univariate regression step
is replacd by the respective Bucklelames regression. This has the advantage thatwabdation schemes can be
implemented more efficiently.

Numerical stability and predictive capability is equivalent for the different implementations. Although the adaption

is rather straightforward, pitfalls are possible. Critical issues with respect to estimating intercepts and the predictive

ability will be discussed. The specifically tailored regression algorithms will be compared to the naive case where

the censored dataeahandled as if they were uncensored and to the case where simply all censored data are removed
from the data set. Not surprisingly, the tailored regression algorithms use the data more efficiently and thus perform
better. The performance differences Wil discussed with simulations and real data.

1. Helsel, D. R..Statistics for censored environmental data using Minitab® anddRn Wiles & Sons,
Hoboken, NJ, USA, 2012"2Ed.
2. Buckley, J.; James, I. Linear regression with censored Bitmetrika.1979 66, 429436.
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C-1:In The Need of Bias Control: Evaluation of Chemical Data for Machine Learning
Methods in Structw®ased Virtual Screening

Jochen Sielg Florian FlachsenbetgMatthiss Rarey
! Center for Bioinformatics, Hamburg, Germany

Currently, machine learning (ML) methods receive increasing attention. This includes the field of stasade

virtual screening, where these methods are used for predicting binding of small leleriprotein targets.
Improved predictions for the scoring of protdigand complexes in comparison to established empirical scoring
functions are reported for example with convolutional neural networks (CRINgdwever, trained ML models are
treatedoften as black boxes and are not straightforward interprétabhe difficulty of interpretation makes it
laborious to identify which features and patterns are responsible for activity prediction and makes these methods
prone to unnoticed bias.

New method are usually evaluated by retrospective validation on benchmark datB##esent ML methods have
achieved impressive results on commonly used benchmark datasets. Exemplary, utilizing CNN3irectiry of
Useful Decoy¢DUD)® and Directory of Usetfil Decoys *Enhanced DUD-E)® values of the area under the receiver
operating characteristic curve (AUC) of 0?&ind 0.86 have been reported, respectively, for discriminating active
and inactive molecules. Thus, it seems that these datasets are nogehfatethese ML methods. Nevertheless, the
guestion of the true prospective predictive capability and the applicability domain remains.

Benchmark datasets are usually designed for a specific evaluation scenario. While DUD addotChave been
developd for the evaluation of structumased virtual screening (SBVS) methods, tlaximum Unbiased
Validation (MUV)’ dataset is a benchmark for ligabdsed virtual screening. A benchmark dataset can be seen as a
selected chemical subspace that is appropt@teonstitute good test cases for a specific group of methods and
descriptors. Although the prediction task might remain the same, a benchmark might be inapplicable once methods
or descriptors change. A benchmark dataset designed for SBVS with empioicag danctions is not necessarily

be suited for ML. As a consequence, unphysical bias might become the cause-&stiovated performance.

We show exemplary on current literature that it is possible to learn bias unobserved and implicitly. Spewiécally,

show that the molecules property of being active against any target can be learned with only ligand features for
example from an established benchmark datasets like DUD with an AUC of 0.83. Here, we present a new approach
aiming at more realistic estates on SBVS performance. Our approach utilizes domain knowledge to recognize
good performance caused by unphysical data patterns when applying a specific composition of methods and
descriptors to a given dataset as illustrated in Figure 1. Therefosepdissible to identify descriptor and method
combinations that cause unreasonable good performance on the given dataset, which helps to choose a suitable
dataset for validation.

1. Our findings suggest that there is a need for bias control in the validatiachine learning methods. For
this reason we propose best practice guidelines for designing validation experiments to identify and control
bias. Furthermore, these steps can be used to create new benchmark datasets with reduced risk for implicit
bias. Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes D. R. Prdigyand Scoring with
Convolutional Neural Network3ournal of Chemical Information and Modeli@Q17, 57 (4), 942957

2. Pereira, J. C.; Caffarena, E. R.; Santos, C. N. Boosting Do@lasgdVirtual Screening with Deep
LearningJournal of Chemical Information and Modelig§16 56 (12), 24952506

3. Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: a deep convolutional neural network for bioactivity
prediction in structuréased drug discove015 arXiv preprintarXiv:1510.02855

4. Polishchuk, P. Interpretation of Quantitative Structédivity Relationship Models: Past, Present, and
FutureJournal of Chemical Information and Modelig§17 57 (11), 26182639

5. Huang, N.; Shoichet, B. K.; Irwin, J. JeBchmarking sets for molecular dockidgurnal of Medicinal
Chemistry2006 49 (23), 67896801

6. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced-(DUD
E): Better Ligands and Decoys for Better Benchmarklagrral of Medicinal Chemistr2012 55 (14),
65826594

7. Rohrer, S. G.; Baumann, K. Maximum unbiased validation (MUV) data sets for virtual screening based on
PubChem bioactivity datdournal of Chemical Information and Modeli2§09 49 (2), 169184

49



Plenary Session Abstracts

Figure 1. Workflow of our approach to identify bias. This workflow uses domain knowlemgpredefined validatic
experiments to identify property distributions in a given dataset which are violating physical reality. The differer
expected score and the predicted score are used to calculate a bias score.

C-2: An Exhaustive Assessment of CompBtsed Drug Discovery Methods
by HighThroughput Screening Data

Christiane Ehf Dennis M. Kriiger?, Tom Mejuch, Sonja Sieverfs Herbert Waldmant)
Oliver Koch

'Faculty of Chemistry and Chéral Biology, TU Dortmund, Dortmund, Germaighemical Genomics
Centre of the Max Planck Society, Dortmund, GermdMax Planck Institute of Molecular Physiology,
Dortmund, Germany

In silico methods, especially virtual screening approaches, proved tmsdial sources of inspiration for drug
discovery as well as suitable tools for modern drug design [1], although there are potential pitfalls [#].diliost
screening approaches highly rely on experimental data which can be eitheditheasional suctures of the

proteins of interest or knowledge about ligands binding to the respective target. In the ideal case, the research is
guided by the knowledge of proteiigand complex structures.

Here, the outcome of a virtual screening study is presehtdatmed to identify small molecule ligands for a
protein whose structure was solved in the presence of a peptide ligand. The impact of different dwaspdter
methods on the virtual screening performance was assessed without previous knowledgenoblemakl binders

and exclusively based on onery structure. A combination of MD simulations, fspiot analyses, pharmacophore
searches and docking approaches was used to identify potential ligands and circumvent virtual screening pitfalls.

In contrast® the popular method of performance assessment using benchmarking data sets [3] the screened database
of about 150,000 compounds was subsequently tested experimentally. This data enabled a detailed analysis of the
performance of this exhaustive structgrgded virtual screening approach in an unbiased manner. In addition, the
abundance of available experimental data provides the opportunity to opposebligaadand structudgased in

silico screening approaches in a retrospective manner. Thus, thensxmti data was used to analyse the
maximum enrichment that could be obtained during pharmacophore screening and molecular docking.

I will present and discuss the outcome of this prospective screening and compare these results to the knowledge
based resutto finally answer the question: How much knowledge is needed to save time and money during drug
discovery?
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1. Tanrikulu, Y., Krueger, B., Proschak, E.: The Holistic Integration of Virtual Screening in Drug Discovery.
Drug Discov. Today013 18, 358364.

2. Sdor, T., Bender, A., Tresadern, G., MediReanco, J.L., Martinekayorga, K., Langer,
T., CuanaleContreras, K., Agrafiotis, D.K. Recognizing Pitfalls in Virtual Screening: A
Critical Review. J. Chem. Inf. ModeR012 52, 867881.

3. Lagarde, N., Zagury-B., Montes, M. Benchmarking Data Sets for the Evaluation of
Virtual Ligand Screening Methods: Review and Perspectiye€hem. Inf. ModeR015
55, 12971307.

C-3: Lessons learned in benchmarking Virtual Screening for polypharmacology.

E.B. Lenselink, L. Burggraaff, B.J. Bongers X. Liu!, M. GorostiolaGonzAlez?, J. van
Engeler, H. Hoos, J.K. Wegnet, M. Steijaert, W. Jespers, Hugo Gutiérreze-Terar,
H.W.T van Vlijmert3, A.P. IJzermah G.J.P van Westén

1 Division of Drug Discovergnd Safety, Leiden, The Netherlands, 2 Leiden Institute of Advanced
Computer Science, Leiden, The Netherlands, 3 Janssen Pharmaceutica NV, Beerse, Belgium, 4 Open
Analytics NV, Antwerp, Belgium 5 Department of Cell and Molecular Biology, Uppsala, Sweden

Polypharmacology is typically regarded as a drawback in drug discovery, as side effects might occur due to
interactions with other targets than the main target. However, it has been estimated that on average a drug will
interact with at least 6 targets,agioning the fact if true selectivity existén Novembe 2017 the MultiTargeting

DREAM challenge was launched with the aim to Virtually Screen the ZINC database for molecules that adhere to a
profile of targets and antargets?

Here the results will be presented of the rigorous benchmarking we performed prior to running the actual Virtual
Screen for the DREAM challenge. Ophilosophy was to select an optimal workflow per protein target, consisting

of three successive stages: statistical modelling, ensemble docking, and metadynamics. For the statistical modelling
we used modelscreated on public data (i.e. EXCAP&nd ChEMBL). Models were benchmarked and compared,

and predictions of the best models were used to filter compounds to proceed to the docking stage. Benchmarking of
docking was performed based on active compounds, inactive compounds, and®d#emalected 5 high enriching

X-rays for an ensemble, using the Z2 séafeboth the docking scores and SPEIFThis ensemble yielded high,
predictive BEDR@ and ROC scores for most targets and-@amgets. Finally, for the primary targets the top 100
ranking compounds were also scored using binding pose metadynamics enriching the results evé Ifurther.
general this successive Virtual Screening Viloi can be applied to any target with sufficient data.

1. J. Mestres; E. GregoeRuigjane; et al. Data completenédke Achilles heel of drugarget networksNat.
Biotechnol.2008 26, 983984.

2. Schlessinger, A.; Abagyan, R.; et al., liltargeting Drug Community Challeng€ell Chem. Biol2017,
24,14341435.

3. E.B. Lenselink; N. ten Dijke; et al., Beyond the hype: deep neural networks outperform established methods
using a ChEMBL bioactivity benchmark sét.Cheminf2017, 9, 45.

4. Sun,J.; Jeliazkova, N.; et al., EXCAHBB: an integrated large scale dataset facilitating Big Data analysis
in chemogenomicsl. Cheminf2017 9, 17.

5. A. Gaulton; L.J. Bellis; et al., ChEMBL: a largeale bioactivity database for drug discovexycleic
Acids Res2012 40, D11067.

6. M.M. Mysinger; M. Carchia; et al., Directory of useful decoys, enhanced (BYbetter ligands and
decoys for better benchmarkinh.Med. Chen2012 55, 65826594.

7. Sastry, G. M.; Inakollu, V. S.;et al., Boosting virtual scregrénrichments with data fusion: coalescing hits
from two-dimensional fingerprints, shape, and dockihgChem. Inf. ModeR013 53, 15311542.

8. E.B. Lenselink; W. Jespers; et al., Interacting with GPCRs: Using Interaction Fingerprints for Virtual
Screenig. J. Chem. Inf. ModeR016 56, 20532060.

9. Da, C.; Kireev, D., Structural proteitigand interaction fingerprints (SPLIF) for structdrased virtual
screening: method and benchmark studyChem. Inf. ModeR014 54, 25552561.

10. AJ. Clark; P. Tiwaryget al., Prediction of proteitigand binding poses via a combination of induced fit
docking and metadynamics simulatiodsChem. Theory Comp@016 12, 29962998.
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C-4: Assisting sitedirected mutagenesis in silico to optimize liganding

Hugo Guiérrez de Teranwillem Jespers, Silvana Vasile, Johan Aqvist.

Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 5961SE
Uppsala, Sweden.-Bail: hugo.gutierrez@icm.uu.se

Site-directed mutagenesis (SDM) is a powerind widely used tool to understand ligaridding at the structural

and molecular level. The characterization of ligand binding affinities against a set of mutant pirterinstedoy
computationaimodeling,is a processhat hasbeenusedin the hit-to-lead optimization of many drug targets, with

the GPCR superfamily of membrane receptors being a paradigmatic example due to the traditional lack of structural
information.

| will outline our recently developed computational scheme, based on freg geetgrbation (FEP) simulations, to
guantitatively and routinely assess the effects of pmintations on ligand binding (Fig £ The procedure is based

on an MD sampling of the proteligand binding site, using spherical boundary conditions centerddeobinding

site, which makes it computationally efficient. The methodology is now automated and will be soon released as part
of the Qgui graphical interface of our MD software Q, where it can be combined with classical FEP simulations on
ligands seriesproviding a full picture of the energetics of ligand binding in the scope of mutagenesis data er ligand
SAR.

Recent applications include assisting on antagonist design on theaWd A adenosine receptors, and
deorptanization of receptor GPR139n collaborative projects with medicinal chemists and pharmacologists. | will
focus here on explaining our the most recent results of this application, centered on understanding agonist binding to
the type 2 (Y2) neuropeptide Y receptor, to assist on furthendigoptimization in collaboration with scientists from

Novo Nordisk.

1. Keranen, H.; Aqvist, J.; Gutierrade-Teran, HChem Commur2015 51, 3522
2. Nghr AC, Jespers W, Shehata MA, etStdi Rep2017, 7, 1128.
3. Xu, Vasile et alMol Pharmacol 2018 in press
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C-5: Structural analysis of chemokine recelpand interactions for computational
modelling integration in drug design.

M. Arimont}, S. Suf, M. Vasg, A.J. Kooistra? R. Leur$?, I.J.P. de Esdft, C. de Gradf

! Division of Medicinal Chemist, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and
Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Nethef@easce for Molecular
and Biomolecular Informatics (CMBI) Radboudumc, Nijmegen, The Netherfa@d#in Discoveries
BV, Department of Medicinal Chemistry, Amsterdam, The Netherlands.

Construction and application of structural chemokine receptor models are essential for the elucidation of molecular
determinants of chemokine receptor modulation and the stedgéised discovery and design of chemokine receptor
ligands-2 We present a comparative analysis of ligand binding pockets in chemokine receptors and their implication
on modeling receptedigand interactions This is specially challenging in chemokineceptors as they present
multiple druggable binding sites, including the minor and major pocket in the orthosteric site (small
molecules/peptides), the extracellular vestibule (chemokines, antibodies), and even an intracellular binding site
(small moleculs, nanobodies). We will show how this data can be integrated with pharmacological data using
structural chemoinformatics worflow$and applied in drug discovery. We will also present how the integration of
new structural information of chemokine receptovith extensive structwactivity relationship and sitdirected
mutagenesis data is necessary for the prediction of the structure of chemokine Hlegaptacomplexes that have

not been crystallized yet. Finally we will illustrate how molecular dyearmimulations and analyses combined with

the use of structural interaction fingerprints are key tools for optimization of molecular models that can be used for
proteinbased virtual screening approaches. Strudbased ligand discovery and design stuthi&@sed on chemokine
receptor crystal structures and homology models illustrate not only the possibilities, but also the challenges to find
novel ligands for chemokine receptors.

1. Scholten, D. J.; Canals, M.; Maussang, D.; Roumen, L.; Smit, M. J.; Wijtivansgle Graaf, C.; Vischer,
H. F.; Leurs, R., Pharmacological modulation of chemokine receptor funBiichPharmacolk012,165
(6), 16171643.
Arimont, M.; Sun, S. L.; Leurs, R.; Smit, M.; de Esch, I. J. P.; de Graaf, C., Structural
Analysis of Chemokia Receptotigand Interactions] Med Chen2017,60(12), 47354779.
McGuire, R.; Verhoeven, S.; Vass, M.; Vriend, G.; de Esch, I. J.; Lusher, S. J.; Leurs, R.; Ridder, L.;
Kooistra, A. J.; Ritschel, T.; de Graaf, C., -88ChemVM: Structural Cheminformats Research
Infrastructure in a Freely Available Virtual MachirleChem Inf Mode2017,57 (2), 115121.
5. Kooistra, A. J.; Vass, M.; McGuire, R.; Leurs, R.; de Esch, I. J.; Vriend, G.; Verhoeven, S.; de Graaf, C.,
3D-e-Chem: Structural Cheminformatics Wéldws for ComputerAided Drug DiscoveryChemMedChem
2018

o

C-6: Generation of Structubased Pharmacophore Models in Protein Binding Sites
Obtained from Molecular Dynamics Simulations: Towards UnderstarmdifgpO0
Ligands

T. Seidet, D. Schit?, M. Kérbel, A. Garorl, M. Wiedet, G. |big, G. F. Ecke', T. Langet
! University of Vienna, Vienna, Austrfante:Ligand GmbH, Vienna, Austria

Structurebased pharmacophore models are usually derived from knowndimeasional structures of active
ligands (i.e. small organic molecules) bound to a protein target of interest in their active conforniiatimany
different application domains such models have been proven to be useful as sielstiit@screening filters.

Recently, we have extendduktstatic pharmacophore approach by a dynamic one, deriving interaction models from
molecular dynamics trajectory snapsHaisd including also a novel consensus screening approach, which was
shown to be superior to previous pharmacopth@®ed virtual seening methods.

One of the main benefits of performing molecular dynamics simulations of pfig@nd complexes is the
possibility to detect global changes in protein geometry, and thus enabling the observation of emerging pockets of
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potential interesfor the formation of additional ligangrotein interactions. To address this challenge, we have
developed an algorithm that is able to detect transient protein pockets and to place pharmacophore features in such
empty target binding sites without the guida of a known bounstate ligand structure. The generated features are
placed and oriented in the protein pocket in a way that an optimal interaction with complementary binding partners
in the receptor environment is ensured. The thus derived dyrepuipharmacophore modelsrovide invaluable
information that can be put to good use for tee novodesign of new ligands as well as for the refinement of
existing lead structures in the drug development process.

Details about the algorithm developed togethiigh the results of its validation with a series of protein conformation
snapshots obtained from molecular dynamics simulations of Hsp90 ligand complexes will be presented.

1. Wolber, G.; Langer T. LigandScout: 3D pharmacophores derived from plugeimd igands and their use
as virtual screening filters. Chem. Inf. ModeR005 45, 160169.

2. Langer, T. Pharmacophores in Drug Reseavtil. Inf., 29, 470475.

3. Wieder, M.; Perricone, U.; Boresch, S.; Seidel, T.; LangeEVvRluating the stability of pharroaphore
features using molecular dynamics simulatid@ischem. Biophys. Res. Coni2016 470, 685689.

4. Wieder, M.; Garon, A.; Perricone, U.; Boresch, S.; Seidel, T.; Almerico, A.M.; Langer, T. Common Hits
Approach: Combining Pharmacophore Modeling andlddalar Dynamics Simulationsl. Chem. Inf.
Model 2017, 57, 365385.

C-7: How significant are unusual intermolecular interactions?

Bernd Kuhn Oliver Korb

Roche Pharmaceutical Research and Early Development, Innovation Center Basel, F. Haffimann
Rocheltd, 4070 Basel, Switzerland

In recent years a large number of novel interaction types have been postulated to have a stabilizing effect-on protein
OLJDQG FRPSOH[ IRUPDWLRQ +RZHYHU WKH VLJQLILFDQFH dattd VRPH WK
with experimental and theoretical studies of model systems as well as statistical analyses of crystallographic
databases. We have pursued the latter approach and extended the recently publishsijlinanalysis by Taylér

to proteinligand comgexes from the Protein Data Bank. With this method confounding secondary interactions are
pruned out and statistically significant interaction propensities for different functional groups can be derived. In
addition this approach provides insights into gleemetric preferences of intermolecular contacts.

As a result of our studies we will present crystal structure based statistical analyses of different interaction types and
highlight preferred protein environments of selected functional groups of rekean medicinal chemistry. This
will be complemented by illustrative examples from drug discovery projects.

1. Taylor, R. Which Intermolecular Interactions Have a Significant Influence on Crystal Packing?
CrystEngComn2014 16, 68526865.

C-8: Interaction Rttern Analysi2What are we Missing?

A. NaR?!, G. Wolbert

! Molecular Design Lab, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Berlin,
Germany

The main principles found in almost all higffinity proteinligand complexes are high stecomplementarity, high
complementarity of surface properties and an energetically favourable ligand conformation.

However, static structures only show a small part of the whole picture: For example is the entropic contribution to
the binding energy of dgand usually not observable in static structures. Further have flexible protein parts been
shown to prefer flexible ligand moieties over rigid ones which can hardly be investigated with one static structure.
Only a few methods like the recently develdpBynophore’s (dynamic pharmacophores based on molecular
dynamics data) take into account the flexibility of both protein and ligand for interaction analysis.
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Unfortunately, classic interaction analysis tools are mainly focusing on one of the thredgwidispovered in high

affinity binding complexes neglecting the steric complementarity and favourable ligand conformation.
Consequently, a tool was created and implemented in R that can quantify shape complementarity of a ligand to a
protein over a moledar dynamics simulation of the bound ligand. The tool further supports the calculation of shape

fit per ligand atom and therefore allows statements about favourable and unfavourable parts of the ligand in terms of
shape fit. Ligand strain energy is monédrsimultaneously to detect good shape fit on the expense of extremely
unfavourable ligand conformations due to trapping of the ligand in the protein binding site.

The tool was validated on slightly selective PTP1B ligands to explain the observed atitigitynces in PTP1B
and the closely related TETP which are not explainable by interaction based methods.

Since shape complementarity could also be a valuable means to increase selectivity in cases where no ligand is
available as starting point, a sedoiwol was developed: It allows identification of selectivity relevant binding site
areas especially for cases where interaction feature patterns are highly similar and facilitates exploitation of the
discovered differences for virtual screening. Calcafegiare based on clustering of binding site shape point maps
extracted from molecular dynamics frames with the help of the open source tool PAVIIEbinding site shape
clustering tool was also validated on the test case of PTPIBTICin order to iddify active site inhibitors of

PTP1B with increased selectivity.

Both tools developed in this study address the issue of selectivity in a flexible pigaeith context with different
scenarios of available input data and therefore provide novel opjtieun design ligand selectivity in challenging
cases.

1. Bock, A.; Bermudez, M.; Krebs, F.; Matera, C.; Chirinda, B.; Sydow, D.; Dallanoce, C.; Holzgrabe, U.; De
Amici, M.; Lohse, M. J.; Wolber, G.; Morh, K. Ligand Binding Ensembles Determine GradedisAgon
Efficacies at a G Protei@oupled Receptod. Biol. Chem2016,291(31), 16375.6389.

2. Durrant, J. D.; de Oliveira, C. A.; McCammon, J. A. Povme: an Algorithm for Measuring Bifdicket
Volumes.J. Mol. Graph. Model2011, 29(5), 773776.

C-9: Hydrgen bonds as determinants of structural stability

M. Majewskit, S. RuizCarmond, X. Barril?

'Facultat de Farmjcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Sgitglan
Institution for Research and Advanced Studies (ICREA), Spain

Structural stability is a fundamental property of proféggand complexeghat so far has beeignored in drug

design It can be provided byydrogen bonds (HBondisthanks to theisharp distance and angular dependehcies
Certain HBonds present strong opposition to small structural distortions and can act as kinetic traps. The local
environment imders the transition from a direct HBond to a wdtedged interactioh As an early unbinding event,
rupture of the saalled watershielded HBonds can influence the whole dissociation process. The concept has been
recently implemented in the Dynamic tlicking (DUck$, a new method consists of series of steered molecular
dynamics. During the simulation, the ligand is being pulled from the bound to the Buasi state, in which the

ligand has just broken the most important HBond with the receptor. dloe of work consumed in the process
(Wag) is an effective factor associated with structural stability.

Here we present a first large scale assessment of robustness of HBonds. We have calgblie@éwsty single

HBond in a subset of 77 proteiigand complexes from the Iridium data $étotal 341 HBonds). HBondriven
structural stability is very common in protdigand complexes. Strong HBonds can be found in 75% of complexes
and tend to group in fragmesized structural anchors. For the remaingtguctures, with weak HBonds, other
stability-providing interactions have been identified. Furthermore, additional calculations have shown that we can
modulate the strength of the HBond by modifying the ligand. Manipulating the microenvironment around a
HBondhas important implication for structural stability and is a useful drug design principle.

1. Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chenfigiuide to molecular interactions. Med. Chem.
2010,53, 50615084.

2. Schmidtke, P.; Luque, F. J.; Murray, B.; Barril, X. (2011). Shielded hydrogen bonds as structural
determinants of binding kinetics: application in drug desigim. Chem. Sq011,133, 1890318910.
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3. RuizzCarmona, S.; Schmidtke, P.; Luque, F. J.; Baker, L., Matassova, N.; Davis, Bhl&gLS.; Murray,
J.; Hubbard, R.; Barril, X. Dynamic undocking and the obasind state as tools for drug
discovery Nature Chemistry2017,9, 201.

4. Warren, G. L.; Do, T. D.; Kelley, B. P.; Nicholls, A.; Warren, S. D. Essential considerations for using
proteinligand structures in drug discoveBrug Discovery Todgy2012,17, 12701281.

C-10:Selectivity determining features in proteins with conserved bindingasites
case study using-Myristoyltransferase as model system

R Brenk?!, FC Kersterf

! University of Bergen, Department of Biomedicine, Bergen Norway, City, Cotihttyannes Gutenberg
University, Institute of Pharmacy, Mainz, Germany

One particular challenge in structdsased design is how to derive selective inhibitors for proteinsceitiserved

binding sites. To investigate this topic on the molecular level, we studied a model system of two related enzymes,
namely Nmyristoyltransferase (NMT) frorh. majorandH. sapiensThe binding sites of both enzymes are highly
conserved (Figure 1Nevertheless, unselective and selective inhibitors were develéped.

Figure 1 Superposition ofL. major and H. sapiens
NMT binding sites together with unselective ligand.

We used a combination of molecular dynamic simulations, isothermal titratioriroetry, enzyme inhibitiomssay,
site-directed mutagenesis, andry crystallography to analyse protein dynamics, water network formation and their
changes upon ligand binding. Using this approachtviorcompound series to two different selectiuigtermining

features were identified. For one series, a change in protein flexibility upon ligand binding seemed to responsible for
selective inhibition. In the other compound series, selectivity was caused by the ability to displace a highly
conserved watemolecule. Based on these finding, a virtual screening for selective compounds was conducted
resulting in three hit compounds with the desired selectpribfile.

1. Frearson, J. A.; Brand, SVcElroy, S.P.; Cleghorn,L. A.; Smid, O.; Stojanovski, L.; Rre, H.P.; Guther,
M. L.; Torrie,L. S.; Robinson, D. A.; Hallyburton, I.; Mpamhanga,RC,Brannigan,

2. J. A.; Wilkinson, A. J.; Hodgkinson, M.; Hui, R.; QiW.; Raimi, O.G.; van Aalten, D. M.; Brenk, R;
Gilbert, I. H.; Read, K. D.; Fairlamb, A. H.; Fgrson, M. A.; Smith, DF.; Wyatt, P. GNature201Q 464
(7289), 728.

3. Brand, S.; Norcross, N. R.; Thompson, S.; Harrison, J. R.; SMitks,.; Robinson, D. A.Torrie, L. S.;
McElroy, S.P.;Hallyburton, I.; Norval, S.; SculliorR.; Stojanovski, L., Simeons,

4. F.R.;van Aalten, D.; Frearson, J. A.; Brenk, R.; Fairlamb, A. H.; Ferguson, NiVyait, P. G.Gilbert, I.
H.; Read, K. DJ. Med. Chen2014 57 (23), 9855.

5. BranniganJ.A.; RobertsS.M.; Bell, A. S.;Hutton,J. A.; HodgkinsonM. R.; Tate,E. W.; Leatherbarrow,
R. J.; Smith, DF.; Wilkinson, A. J.IUCrJ 2014 1 (4), 250.
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C-11:Active Search for Computsided Drug Design

S. Oatley!, D. Oglic?3 S. Macdonald, T. Mclnally?!, R. Garnet®, T. Gartner, J. Hirst!

1School of Chemistry, Uwersity of Nottingham, Nottingham, UKSchool of Computer Science,
University of Nottingham, Nottingham, UKnstitut fir Informatik 111, Universitat Bonn, Bonn,
Germany; GlaxoSmithKline, Stevenage, UQepartment of Computer Science and Engimegri
Washington University in St. Louis, St. Louis, USA

Chemical space is large, to the point of precluding its explicit enumerakioums, it represents a salled
intensionally defined design space. Search strategies for intensionally designed spamasrarg area of interest

in machine learning. In the context of a drug design problem, we have investigated the application-dfigetiata
adaptive Markov chain approach, where the acceptance probability is given by a probabilistic surrogateget the ta
property, modelled with a maximum entropy conditional m&d\We apply the approach tlead discovery search

IRU LQKLELWROWHRIUDRQ .XVLQJ D PROHFXODU GRFNLQJ intdgind dreDV WK
currently an important target for the treatment ofuanber of fibrotic diseases e.g. idiopathic pulmonary fibrosis, an
increasingly prevalent lung disease. Thagegrinsarelarge, bidirectionaltransmembransignalling proteinsthat

sharea common RGD binding motif. Our algorithm is (i) soundly based in machine learning; (ii) proposes structures
from an implicitly defned space of potential designs; (iii) is guaranteedonverge; and (iv) achieves a large
structural variety of proposed target structures, some of which provoke significant interest from a medicinal
chemistryperspective.

Figure 1. Overview of the madhe learning alogirthm used.

The algorithm is summarised in FiguteThe parent compound (FiguBg is substituted, with a bias toward lower
molecular weight, along with other restrictions from synthetic and medicinal chemistry considetdt@ns.
Markov chain Monte Carlo algorithm is designed to propose compounds that maximally increase the known
information. This is achieved by accepting new compounds according to a Metropolis criterion based on an estimate
of theprobabilitythe currentmodel predictsthe compoundsas hits. Oncethe Markov chain hasbeen sufficiently

mixed, the compound is evaluatiedsilico and the information returned used to updhgemodel. This iteratesuntil

a number (budget) of evaluationshas been reached.Using this active algorithm shows, with as few as 100
evaluations, an approximately tvfold improvement in predicting hits over standard Mo@gelo.

Molecules are represented as nodes (atoms) and vertices (bonds), i.e., as graphs, accortlfgsteitbel ehman
graphkernel.Compoundsreproposedandgeneratedy the algorithm and passed to thesilico yuRUDFOHY ZKHUH
coordinates are generated and the protonationists#tto thatat pH 7.4. ConformersaregeneratedisingOpenEye
Omega.Theseare passedo the molecular docking program, OpenEye FRERDo be docked to an, s crystal

structure AUM9, from the RCSB database. The search space was centred on the Thr221 residue in the centre of the
binding site and extended past important features, th& idigs and the Asp218 residue. This gave a total search
volume of 17,0183, The search was performed using ¢hemgaussécoring function with a final grid spacing of

0.5A.
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A dockedcompoundcanbe seenin Figure 3, showinga 3-Cl substituentimportantinteractions withthe Asp218
residueand chelationwith the centralMg?* are presentwith distancesof 1.83A and2.65A, 2.94A, respectively.
Acrossfive simulationswith a searctspaceof around185,000 compounds and an oracle budget of 500, compounds
with high activity from previous synthetic effdfisvere discovered, see multiple time®! in addition to previously
mentioned novel compounds of significant interest to medicimaists.

Figure 2. The parent compound considered in t Figure 3. 3-Cl substituent docked in the binding si
study; green circles denote points where substitu Mg?* shown as CPK and Asp218 as stick, displa;
could be attached. using OpenEye VIDA.

1. Oglic, D.; Garnett, R.; Thomas, G. Active Seanghntensionally Specified Structured Spacesoc. 31th
Conf. Artif. Intell. (AAAI 20172017, 24432449.

2. Odlic, D.; Oatley, S. A.; Macdonald, S. J. F.; Mclnally, T.; Garnett, R. Active Search for Cordpdést
Drug DesignMol. Inform.2018 In Press

3. McGann, M. FRED Pose Prediction and Virtual Screening Accurhcghem. Inf. Model2011, 51 (3),
578596.

4. Adams, J.; Anderson, E. C.; Blackham, E. E.; Chiu, Y. W. R.; Clarke, T.; Eccles, N.; Gill, L. A.; Haye, J. J.;
Haywood, H. T.; HoenigC. R.; Kausas, M.; Le, J.; Russell, H. L.; Smedley, C.; Tipping, W. J.; Tongue, T.;
Wood, C. C.; Yeung,.;JRowedder, J. EFray, M. J.; Mclnally, T.; Macdonald, S. J. F. Structure Activity
5H O D W L R Q Ve VAnRgonists for Pulmonary Fibrosis by Variation in Aryl Substitueh@S
Med. Chem. LetR014 5(11),1207H212.

C-12: Conformational sating of macrocycles in both the seidd solutiorstates

Paul C. D. Hawkin$ & Stanislaw WlodeR
! OpenEye Scientific, Santa Fe, USA.

Molecules containing large rings, or macrocycles, have become of greater and greater interest to the drug discovery
community over the past decade. A key part of productively exploiting this class of molecules as therapeutics is
understanding their conformational landscape, and there have been a number of different approaches to this problem
presented recenth? Here ve will present a new approach to macrocycle conformation sampling based on distance
geometry, OMIGEN. In the most extensive comparison performed to date in this area we evaluate OMIGEN against
a wide variety of other algorithms in reproducing conformatfonsd in the soliestate, the most popular approach

to validating conformer generators.

While conformations found in the solglate are easy to validate against, and are relevant to a number of problems
in macrocycle design, including pose prediction diycking and structurguided lead optimization, generating
conformations relevant to the solution state is also important. We will present preliminary data on the use of distance
geometry to generate conformations consistent with experimental data fratredderiments.
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1. Sindikhara, D.; Spronk, S. A.; Day, T.; Borrelli, K.; Cheney, D. L.; Posy, S. L. Improving Accuracy,
Diversity and Speed with Prime Macrocycle Conformational Samplnghem. Inf. M odel2017, 57,
1881-1894.

2. Coutsias, E. A,; Lexa, K. W\Wester, M. J.; Pollock, S. N.; Jacobsen, M. P. Exhaustive Conformational
Sampling of Complex Fused Ring Macrocycles Using Inverse Kinemati€hem. Theory Comp@016
12, 46744687.

C-13: Automated Fragment Evolution (FrEvolAted) Applied to AsaBoeard to
NUDT21

Moira Rachman, Serena Piticchi§ Xavier Barril*2

1 Facultat de Farmacia and Institut de Biomedicina, Universitat a®ed&ona, Av. Joan XXIII 231,
08028 Barcelona, Spain, 2 Catalan Institution for Research and Advanced StQ&ES\), Passeig Lluis
Companys 23, 08010 Barcelona, Spain

In the last twenty years, FBDD has proven to be a successful method, evident from resulting drugs that have already
been marketed and those currently undergoing clinical &i&BDD is an appding approach due to its ability to

explore a broader chemical space, however, once a fragment has been found to bind, growing the fragment into a
leadtlike compound is a challendé.

For this reason, we have developed FrEvolAted (Automated FragmenttiBadl a computational procedure that
automatically evolves fragments into lellce molecules, whereby, the evolved ligands are extracted from
commercially available or synthetically tractable ligand databases. The FrEvolAted workitpwe( 1) includes I)
similarity searching of ligands containing a maximum of two heavy atoms more, Il) tethered docking with rDock
whereby the main scaffold does not deviate from the initial fragment, 1ll) dynamic undocking SjDutitiking

crucial receptotigand infamation and IV) MMGBSAminimization for consensus scoring. In this work, we apply
FrEvolAted to fragments bound to the NUDT21 protein provided by XChem and compare the results to a more
traditional fragment growing approach in terms of hit rate and novelty

Figure 1. Schematic overview of the FrEvolAted (Automated Fragment Evolution) platform.

Erlanson, D. A.; Fesik, S. W.; Hubbard, R. E.; Jahnke, W.; Jhohat.Rev. Drug Disco2016

Schulz, M. N.; Hubbard, R. Eurr. Opin. Pharmacol2009 9 (5), 615621.

Hall, R. J.; Mortenson, P. N.; Murray, C. \Rtog. Biophys. Mol. Biol2014 116(2 8), 8291.

Ruiz-Carmona, S.; AlvareGarcia, D.; Foloppe, N.; Garmendoval, A. B.; Juhos, S.; Schmidtke, P.;
Barril, X.; Hubbard, R. E.; Morley, S. IPLoS Comput. BioR014 10 (4), 1#.

Ruiz-Carmona, S.; Schmidtke, P.; Luque, F. J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray,
J.; Hubbard, R.; Barril, XNat. Chem2017, 9 (3), 201206.
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ANALYSIS OF LARGE CHEMICAL DA TASETS
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D-1: Hit Dexter 2.0: Machine Learning for Triaging Hits from Biochemical Assays

J. Kirchmair*, C. Stork!, J. Wagnet, N.-O. Friedrich! C. de Bruyn KopsDQ G 0 4%FKR

! Universitat Hamburg, MIN Faculty, Department of Computer Science, ClentBioinformatics,
Hamburg, Germany CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Laboratory of
Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology
Prague, Prague, Czech Republic

High-throughput screening is a key technology in early drug design that enables the experimental testing of tens of
thousands of compounds per dajlowever, falsepositive signals triggered by badly behaving compodnds
frequent hitters, paassay interference compuds (PAINS), aggregators and otherontinue to pose a major

pitfall in early drug discovery and still lead to a substantial number of false hits reported as valid active compounds
in the scientific literaturé Few computational approaches that allowitietification of badly behaving compounds

exist, and those that do offer limited applicability and accuracy.

In this contribution we report the further development of Hit Dexter, a free web service that allows the identification
of badly behaving compousdwith high accuracy.The initial release of Hit Dexter included two extremely
randomized tree classifiers trained on a wedpared dataset of 311k compounds that have been tested on at least 50
different proteins. Hit Dexter is able to discriminate {pvomiscuous from promiscuous and higplpmiscuous
compounds of large external test sets with MCC and AUC values of up to 0.67 and 0.96, respectively.

Since the initial release of Hit Dexter we have refined the data preparation and modeling procedirage \Aiso

added several new components that allow, e.g., the identification of true promiscuous binders that may be of
particular interest in the context of polypharmacology and drug repurposing. In this talk we will also provide
evidence that the reaemd accuracy of the established methods for the identification of badly behaving compounds
are not sufficient and showcase their limitations in case studies.

The talk will conclude with the introduction of the Hit Dexter 2.0 web service, which, for gtdifire, will provide
researchers a simple tool for testing the likelihood of their hit compounds of being (i) true promiscuous binders, (ii)
EDGO\ EHKDYLQJ FRPSRXQGV RU LLL 3GDUN FKHPLFDO PDWWHU " ,PSR
on the data underlying a prediction, which will enable researchers to makeiffettered decisions on the further

perusal of their hit compounds.

1. Macarron, R.; Banks, M. N.; Bojanic, D.; Burns, D. J.; Cirovic, D. A.; Garyantes, T.; Green, D. V. S.;
Hertzberg, R. P.; Janzen, W. P.; Paslay, J. W.; Schopfer, U; Sittampalam, S. Impact-dhkigbhput
Screening in Biomedical Resear®at. Rev. Drug Disco011, 10, 188#195.

2. Baell, J.; Walters, M. A. Chemistry: Chemical Con Artists Foil Drug Discovidgpure 2014 513, 481t
483.

3. Stork, C.; Wagner, J.; Friedrich, N2 GH %UX\Q .RSV & atFKR O .LUFKPDLL
MachineLearning Model for the Prediction of Frequent Hitter€hemMedChem?2017, DOI
10.1002/cmdc.201700673.

D-2: Recent Advances Chemical and Biological Search Systems: Evolution vs.
Revolution

R. A. Saylé, J. W. Mayfieldd 1 0 29Y%R\OH
INextMove Software, Cambridge, United Kingdom

The fields of cheminformatics and bioinformatics are both embroiled in perpetual wars dlgairsiponential

growth of the scientific data on which they build. The number of small molecules available to chemists and of
sequences (and genomes) analyzed by biologists appear to double at astounding rates. For example, the number o
3pDMiHdemand PROHFXOHY DYDLODEOH IRU SXUFKDVH IURP (QDPLQH GRXI
2017, to 337M in October 2017, to 647M in April 2018). This rate of increase is significantly faster than the rates of
technological hardware advances, such asthoSUHGLFWHG E\ ORRUHYVY ODZ FUHDWLQJ DC
scientific researchers and the informatics and IT groups that support them.
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The fundamental crux of the problem is that the performance of many applications typically scales progddionall

the size of the input data, a situation tern@d) in computer science. This means that if a database grows to ten

times its original size, searching it takes ten times as long (or requires ten times as many computers). This presents

two possible sategies; to either make the existiQfn) searches as fast as possible, or to radically change the
DSSURDFKHV XVHG E\ VZLWFKLQJ WR 3VXEOLQHDU" PHWKRGYV ZKLFK KDYH
WHUP WKHVH VWUDW HHYR/O3W IRROXWLHRWYS HFMA. ¥HO\ DQG GHVFULEH H[DPS

Chemical similarity searching, using the Tanimoto coefficient to compare binary ECFP fingerprints, is an example

of O(n) search. Despite much research effort, and attempts tg agpanced spatial indexing data structures, all

modern chemical database search systems need to inspect the majority of a database when searcHirgebr non

numbers of nearest neighbor compounds. Henceatdle-art search systems such as Chem@&®V PDGIDVW DQG
'DONH 6FLHQWLILFTYVY &KHP)3 DWWH P S Wfoedrspe&iO Ivi thisviak HveSdéRibOtHePuse\ S X U H
of optimizing Justin-Time compilation and advanced sorting techniques to push modern multicore hardware, such

as Intel/AMDCPUs and NVidia GPUs as fast as they (their memory) will go.

A more revolutionary strategy in 2D chemical similarity searching is the use of graph databases to greatly accelerate
the calculation of the Graph Edit Distance (GED) [and Maximum Common Subg@hM@S)] between query
molecules and their nearest neighbors in a chemical database. At the costatuyeging and storing a large
number of subgraphs, chemical database searching then requires consideration of only a tiny fraction of the original
database. This significantly sublinear behavior promises to solve the challenge of exponential database growth. We
report progress on constructing a graph database index of chemical space with less than 99 bonds, which currently
contains about 200 virtuaubgraphs for each real input molecule, and which corresponds to over 80 billion
subgraphs, but requires only 6 terabytes of disk space using advanced compression techniques. -Tilie space
tradeoff would have been impractical a few years ago, but tan fain single external USB disk today, and should

even fit in memory (RAM) within the next few years.

A similar spacdime tradeoff is also applicable to the problem of biocinformatics sequence searching. The traditional
O(n) sequential scan approacheBafAST and FASTA can sometimes be replaced with a more efficient sublinear
search based upon a data structure known as a suffix array. This data structure effectively encodes all of the
subsequences in a database efficiently, in much the same way deeihiead subgraphs above. Although suffix

arrays have been known for some time, recent advances in storage technology now make them practical for protein
sequence applications, though such indexing of typical nucleic acid and genomic sequences (pehalvlg) r
impractical.

Exponential database growth will always be a technical challenge but evolutionary strategies offer to hold off the
inevitable in the short term and revolutionary strategies promise a H@rgesolution.

D-3: Advancing Automated Sya#is Via Reaction Data Mining and Reuse

C. A. Nicolaoy T. Masquelin, J. Wang
Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN 46285, USA

Ongoing attempts to identify optimal synthetic routes for compounds of interest, preparé librarées of
synthesizable compounidand automate drug desfgrequire better tools for synthesis predictability as well as
robust synthetic route planning and optimization approaches. Algorithmic advances combined with the availability
of large colledbns of reaction data has enabled the development of several computational tools for chemical
synthesis support ranging from simple organic reaction lookup tebaded reaction planning and retrosynthetic
analysis. Of particular interest are retrosyntiseanalysis (RA) tools which design synthetic routes by recursively
identifying synthesizable chemical bonds in a target structure, removing a bond, converting the resulting fragments
to the necessary reactants and checking for reactant availabilitcal' yph methodologies may provide multiple
theoretical synthetic routes for a target structure and, often, require human expert knowledge to define reaction
mechanisms and synthesizable bonds to break. Expert chemists are also the recipients of suasslistand are

tasked with the assessment of the proposed routes and the selection of the one(s) with the highest feasibility
potential. Recent advances in automated synthesis syspeasents an opportunity to fully automate compound
designto-synthesisby submitting select routes for robotic execution. In order to achieve this goal the most
appropriate route for each target needs to be identified and custom reaction execution workflows need to be
implemented.
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In this presentation we describe our efoto (i) mine corporate reaction data, stored in electronic laboratory
notebooks (eLN) and automated synthetic systems databases, and compile a corporate synthetic knowledge
repository; (ii) develop a dat@riven RA engine aiming to provide feasible swiib routes for input chemical
structures; (i) assess the proposed synthetic routes using a neural network predictive model to select samples for
automated synthesis execution. We thoroughly discuss our reaction mining process, the implementatiognand des

of our RA engine and the deep learning approach used for synthetic route feasibility assessment. We present results
from the training of the RA engine using a patent reaction dataset and the application to a collection of approved
drugs. The RA tool, @ginally developed to serve-nouse needs, is provided to the cheminformatics community in

an effort to facilitate research in synthetic route design and reaction informatics in general. A discussion on lessons
learned, issues to be resolved, and futdegelopment directions including ongoing work to instantiate system
specific synthetic workflows for automated synthesis execution concludes the presentation.

1. Nicolaou, C. A.; Watson, I. A.; Hu, H.; Wang, J. The Proximal Lilly Collection: Mapping, exmgaaind
exploiting feasible chemical space.Chem. Inf. ModeR016 56 (7), 12531266.

2. Schneider, G. Automating drug discovelat. Rev. Drug Disco2017.

3. Ravitz, O. Datadriven computer aided synthesis desibnug Discov. Today: TechnoR013 10(3) 443
449,

4. Godfrey, A. Masquelin, T. Hemmerle, H. A remaentrolled adaptive medchem lab: an innovative
approach to enable drug discovery in the 21st Cenlmyg Discov. Today013 i

D4: Revealing important Molecular Fragments in Drug Discovery Using Time Trend
Analyses

B. Zdrazil’, N. Brown?, R. Guh&

! Department of Pharmaceutical Chemistry, University of Vienna, Vienna, AusBenevolentAl,
London, UKZNational Center for Advancing Translational Sciences (NCATS), National Institutes of
Health (NIH), Rockville, Maryland, US

Recently, we analysed data from ChEMBb examine the evolution of scaffetterived properties, such as the
number of enumerated mpounds, biological activity, and liabilities, over 17 years. Our analysis highlights that
certain properties such as the number of enumerated compounds, but not liabilities, show statistically significant
increasing trends for some scaffolds. We alsavgited to explain why a scaffold receives more attention over time
and highlighted that obvious aspects such as synthetic feasibility do not explicitly drive atteitiparallel
investigation on the origins of threkmensionality in drugdike moleculesyevealed a tendency towards molecular
planarity?

Next, we were interested how different parameters for -lkegess (such as QED, Lipinski rules), molecular
complexity (such as Fsp3, Principal moment of inertia, Plane of best fit), and solubilitgvaved over time. After
fragmentation of the data compounds were grouped by fragment. Next, we examined the trends of these drug
discovery relevant properties per fragment. We were interested how well the investigated parameters correlate on
average andgy fragment and which parameters have experienced greatest changes over time. Also, differences in
the time trends for the major target classes were investigated.

In summary, trend analyses inform on distinct tendencies in-disegvery related propees. This analysis can
suggest directions that the drug discovery community is heading, in terms of relevant fragment and property space.
In addition, such analyses support the prioritization of fragments in small molecule development projects.

1. Gaulton, A; Hersey, A.; Nowotka, M.; Bento, A. P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.;
Bellis, L. J.; CibriarUhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magarifios, M. P.; Overington, J.
P.; Papadatos, G.; Smit, |.; Leach, A. R. The ChEMBL beada in 2017Nucleic Acids Re2017, 45
(Database issue), D945954.

2. Zdrazil, B.; Guha, R. The Rise and Fall of a Scaffold: A Trend Analysis of Scaffolds in the Medicinal
Chemistry Literaturel. Med. Chen2017Dec 27.

3. Meyers, J.; Carter, M.; Mok, NY.; Brown, N. On the Origins of ThreBimensionality in Drugike
Molecules.Future Med. ChenR016 8 (14), 17531767.

65



Plenary Session Abstracts

66



Plenary Session Abstracts

Session E :

DEALING WITH BIOLOGICAL COMPLEXITY
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E-1: Strategies for assembling an annotated library for phenotypic sgreenin

H. Willems?, S. Andrew$ S. Ashendeh A. Bendet, A. GandhiKohli 2, A. Merritt®, C.
Mpamhang3 J. Skidmorg P. Sterk

'$0O]KHLPHUTV 5HVHDUFK 8. 'U X FCénté& flarvieleculaQnfonriaiitsy WikerBit) G
of Cambridge, Cambridge,KJ 3LifeArc, Stevenage, UK

Phenotypic drug discovery involves screening with a functional cellular assay ofbased disease model, where

the specific molecular target is not known. This approach can be more representative of the human disease than a
targetbased assay, but when screening small molecules, subsequent optimization steps can be more difficult because
there is no protein structure or pharmacophore hypothesis to guide design. One approach to identifying which target
mediates the response ebgd for a phenotypic hit is to screen an annotated, or chemogenomic, library. This is a
collection of small molecules that are known to interact relatively selectively with their primary target. Ideally,
compounds in an annotated library would be potselective, cell permeable and soluble. Multiple, structurally
diverse ligands with affinity for the same target can be included to help target deconvolution.

This report describes our efforts to create an annotated library for phenotypic screeningnbytimeirChEMBL23

database and the issues we encountered along the way. A key decision point in the process was the definition of
selectivity: how many targets does a compound need to be tested at before selectivity is a meaningful concept? What
is an accefable number of targets to hit if a compound has been in lots of assays? Is selectivity over subtypes
important for a phenotypic library? Another point of discussion was how to achieve a wide target coverage. GPCR
and kinase targets have many ligands, eadld be overrepresented. Other target types only have few known
ligands, and target diversity may need to be traded off againstidemgss of the annotated ligands. Also, several

tool compounds from our internal collections were not in ChEMBL. Thisesaguestions on what is missed by
focussing on ChEMBL as a datasource, and what other datasources could be explored.

On the technical side, we used SQL to extract all potent (<300 nM in a binding assay) small molecules (MW <1000)
from ChEMBL . A window sore and ranking score were then calculated in R using an algorithm published by Bosc,
Meyer and Bonnétto assess selectivity. The scored outpusis then processed in KNIME to extract 3 sets of
MVHOHFWLYHY FRPSR XQds¥electivity Rwéitthe Zedbhid best target; those that were tested at more

than 20 targets and were lebsmn 106fold selective at no more than 10% of these; and those that héxdd10
selectivity over 1 target and > 180ld over at least 1 other. The 30,000 selective camgs and all potent SGC

and chemical probe tools compouhdgere checked for commercial availability and pushed through a further
.1,0( ZRUNIORZ WR VHOHFW WKH PRVW SRWHQW DQG RU VHOHFWLYH VV
was asseesl using iTol. Coverage for GPCR and kinase targets is shown in Figure 1. A total of 448 compounds
were selected for purchase, covering 297 targets.

Figure 1. GPCR family (left) and kinase family (right) target coverage for the annotated librargarBhen the
outside of the circle indicate the number of ligands that have been included in the library for that target
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1. Bosc, N., Meyer, C., Bonnet, P. The use of novel selectivity metrics in kinase resBaich.
Bioinformatics2017, 18, 17-29. https://doorg/10.1186/s12859161413y
http://www.thesgc.org/chemicalrobes http://www.chemicalprobes.org/

Letunic, I. and Bork, Pinteractive Tree Of Life (iDL) v3: an online tool for the display and annotation of
phylogenetic and other tredducleic Acids Re2016doi: 10.1093/nar/gkw290

wn

E-2: Targeting of the disease related proteome by small molecules

Modest von Korff Thomas Sander
Idorsia Pharmaceutical Ltd, Allschwil, Switzerland,

How many disease related proteins encoded by the human genome have been already targeted by small molecules?
This is an open question of high interest in the pharmaceutical industry. Nowadays, databases like ChEMBL and
SwissPot can be used to answer the question. However,-dapth analysis of the targets available in the ChEMBL
database showed that many proteins used in biological test assays were derived from species other than human. This
triggered a second question. Wigthe similarity of the human proteins to their flmamman counterparts that were

used for biological testing? If the homology between the human protein and Hbein@m analog is high enough, it

can be assumed that the ligand space of both proteingppse

An exhaustive analysis of the actual ChEMBL 23 library was done to answer these two questions in the dimensions
of chemical space and proteome space. All molecules in the ChEMBL 23 library were mapped to their target
proteins. Scaffolds of all mapd compounds were analyzed. From the mapped compounds, the scaffolds were
analyzed. For all target proteins, the most similar ones from the human genome were searched with the BLAST
engine from SwissProt. It is a rule of thumb in molecular modeling thed aBLAST similarity of 0.4 two proteins

are similar enough to allow homology modeling. The disease related proteome was compiled by the Gene2Disease
tool.! This in-house tool relates all approved genes by the Human Genome Organisation Gene Nomenclature
Committee with all diseases defined by the MeSH tree from the NIH. Gene2Disease analyzed approximately 26
million records available in the PubMed database to detect pigdeiedisease relations.

Results of the analysis were captured in a large andes@dmsmProteome matrix, with rows containing molecular
structures and columns containing disease related proteins connected to the respective diseases. If the biological
activity of a small molecule was tested on a target protein, the corresponding fileédrimatrix was filled with the
biological test value. Analysis of this matrix showed that no bioactivity value was found in the ChEMBL database
for > 80% of disease related proteins. Including the chemical space which covered homologous proteins did not
significantly increase the percentage of covered proteome.

In conclusion, there is a huge unexplored chemical space potentially targeting disease related proteome. Many
protein targets are waiting to be exploited, while our ChemProteome matrix showspelectial norexploited
targets are linked to diseases.

1. Korff, M. v.; Fink, T.; Sander, T., A new relevance estimator for the compilation and visualization of
disease patterns and potential drug targetBakific Symposium for Biocomputingawaii, 2017
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E-3: Gearing Transcriptomics Towards Higbughput Screening: Compound
Shortlisting From Gene Expression using in silico information

Natalia Anicetd*?, Andreas Bendér Florian Nigsclt

L Centre for Molecular Informatics, University of Cambrid@ambridge, United KingdomChemical
Biology and Therapeutics Informatics, Novartis, Basel, Switzerland.

The ability to efficiently screen large libraries compounds in order to find candidates that will exhibit a specific gene
expression profile of intest is potentially very useful, and doing so without requiring experimental data is very
appealing. Here we propose a new approach that creates shortlists of compounds for a query gene expression
signature. This approach uses a previously proposed vafitdre kNN procedure (called variabN) where a test

signature results from the weighted average from the signatures of surrounding neighluoueser we propose an

added modification to this method, where predicted signatures are submitted to ya(qual@nfidence) criterion

based on standard deviation of predictions.

Two transcriptomics datasets were used in this work, LIN&®I a Novartis internal transcriptomics panel
(PANOMICS), and two different similarity measures were tried, calculated $tamtural and biological (predicted)
signatures, in order to explore the feasibility of a recently available in silico biological sighature.

The signatures for the full dataset, obtained from the varldblgorocedure, were ranked by similarity to tetrg
(desired) signatures. This process showed to consistently enrich the top of the ranked compound lists with the
compounds that match each of the target signatures. Obtained median ranking percentiles of true €ompound
signature matches, which were oridipaonsistent with random sorting when confidence is not taken into account,
were as high as 90% when confidence was used to correct similarity. This translates into obtaining shortlists formed
of the top 10% of ranked compounds that are likely to contarbest compound candidate. This process allows
filtering target signature queries according to reliability in such a way that correlates with compound enrichment,
and different levels of tradeff between coverage and compound enrichment can be sebgctieel user.

The use of confidence criteria to filter signatures was pivotal in the ability to enrich the top of the ranked lists with
the compounds correctly matching the target signatures, where, for example, we were able to locate 20% of the
LINCS ggnatures for which a shortlist formed by the top 10% of the full compound list would likely contain the
compound that more closely yields each of those query signatures. This approach allows locating candidates for a
target gene signature purely from iflic® information, thus enabling higthroughput virtual screening of
compounds libraries to find compounds associated with a gene expression profile of interest.

1. Liu, R.; AbdulHameed, M. D. M.; Wallgvist, A. Molecular StructtBased LargeScale Predictio of
Chemicalinduced Gene Expression Change<Chem. Inf. ModeR017, 57, 21942202.

2. Subramanian, A.et al A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000
Profiles.Cell. 2017, 171, 143#452.e17.

3. Martin, E. J.; Polyakov, VR.; Tian, L.; Perez, R. C. Profi@SAR 2.0: Kinase Virtual Screening Accuracy
Comparable to Fou€oncentration IC50s for Realistically Novel CompountisChem. Inf. ModelR017,
57, 20772088.

E-4: Discrimination of @rotein coupled receptors andithenformational states
using intramolecular interaction

F. Koensgen, F. Da Silva, E. Kellenberger

! Laboratoire d'Innovation Thérapeutique, UMR 7200 CNBSiversity of STRASBOURG,
2Medalis Drug Discovery Center, lllkirch, France

G protein coupled eceptors (GPCR) are membrane receptors able to transmit stimuli to cells. The molecular
mechanism of signal transmission involves the receptor coupling to effector in response to ligand binding, and this
depends on the receptor conformational state. Te, dae 3Dstructures of 50 different GPCRs have been
characterized by Xay crystallography and the dynamics of some of them have been extensively studied by
molecular dynamics simulation, suggesting general mechanism of activation/inactlvation.
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Here we popose a new method to compare different GPCR structures, independently of predefined structural or
functional determinants. This method is based on the detection and comparison of intramolecotarateor
interactions in the seven transmembrane don(@ikg.

In more details, the analysis of a Hdructure involves the extraction of TM coordinates followed by the
representation of hydrogen bonds (labeled vittter dhelix or intra dhelix, and with with sidechainor within
backbong ionic bonds and aromiatbonds as either a graph or a fingerprint built from Ballestéfemstein
numberingZ Comparing two 3Dstructures does not require that they are described in a common frame. Two graphs
are aligned for the bestfit superimposition of the maximum commdistsicture. Similarity between two
fingerprints is calculated using the Tanimoto coefficient.

We have applied the method to the classification of 215 GPCR structures available in the Protein DataBank.
Networks built from the comparison of graphs showleat with sidechain inter/intrabelix hydrogen bonds are
sufficient to differentiate GPCRs. All polar interactions exosjthin backbondntra helix hydrogen bonds well
differentiate the activation states of a GPCR. Global analysis of interactions sdggpestéic signatures of GPCRs

and their activation state.

We have also applied the method to the analysis of two molecular dynamics trajectories where a GPCR experiences
a transition from the active to the inactive stafehe allagainst all comparisoaof frames delimited a few clusters.
The characterization of clusters by consensus interaction fingerprints revealed which interactionsispedfate

In conclusion, we developed a new method able to discriminate GPCR from a simplifieghr@Bentatio (8-46
interaction points). The same approach also distinguishes conformational states, and has proved to successfully
cluster and describe the conformational states generated by molecular dynamics simulation.

1. Manglik, A.; Kobilka, B. The Role of Protein\QDPLFV LQ *3&5 )XQFWLRQ ,QVLJKWYV IUF
RhodopsinCurr. Opin. Cell Biol.2014 27, 136:443.

2. Desaphy, J.; Raimbaud, E.; Ducrot, P.; Rognhan, D. Encoding Pioigémd Interaction Patterns in
Fingerprints and Graph3. Chem. Inf. ModeR013 53(3), 623637.

3. Miao, Y.; McCammon, J. A. Graded Activation and Free Energy Landscapes of a MuscaRnite@+
coupled ReceptoProc. Natl. Acad. Sck016 113(43), 1216242167

4. Dror, R. O.; Arlow, D. H.; Maragakis, P.; Mildorf, T. J.; Pan, A. Bu, H.; Borhani, D. W.. Shaw, D. E.
$FWLYDWLRQ OHFKRAQdénerBic RecapterProal Natl. Acad. Sci2011, 108 (46), 18684t
18689.
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F1: Comparison and Analysis of Molecular Patterns on the Example of SMARTS

Robert Schmidt, Emanel S. R. Ehmkt, Matthias Rarey
! Universitat Hamburg, ZBH:Center for Bioinformatics, BundesstraRe 43 20146 Hamburg, Germany

Chemical patterns are widely used to filter structural properties in molecular design endeavors. These properties are
definedin filter sets like PAINS! or companyspecific filter list§. Although frequently applied, filter sets and their

use are currently under discusstbrFor the analysis of filter sets, an algorithmic approach to compare chemical
pattern with each othevould be highly desirable, however, has not been published so far. Here we present a novel
algorithm, its implementation and application for the calculation of pattern equality, inclusion, and similarity.
SMARTScompare, the accompanying tool, allows flberf set analysis, pattern hierarchy verification and chemical
pattern feasibility tests.

A chemical pattern P can be understood as a description of the infinite set of all molecules matched by it. Two
patterns can be considered equal or isomorphic whein tmolecule sets are the same. Based on the subset
relationship between the sets of matched molecules, patterns can be characterized as more or less specific. Similarity
of two patterns is expressed via a probability model for atom matching. Sinceelatiems are defined by the set of
molecules matched, they are independent of the language the patterns are formulated in.

The comparison of molecular patterns is based on the following strategy: Within a chemical model, the spaces of all
feasible atom obond states are enumerated. Based on these enumerations, each node and edge of a chemical pattern
can be described by a fingerprint representing all compatible atom or bond states. Equality, subset relations and
similarity are easy to calculate on fingenps. After the assignment of fingerprints, a maximum common subgraph
(MCS) algorithm is applied resulting in theaximum common subpattern (MCSBased on the MCSP, subset
relations and similarity scores are computed. The approach naturally allowsyfomatric similarity scores,

providing an estimation of the coverage of one pattern in another.

The algorithm is implemented in a new software named SMARTScompare designed for similarity assessments and
subset classifications of SMARTpatterns. It supprts most of its features, including recursion and the negation of
properties. Although possible in theory, isotopes, radicals and chirality are not supported by the algorithm so far.
Besides pattern comparison, SMARTScompare detects chemically infessildeures in patterns, meaning all

kinds of incorrect valence states or impossible property combinations. Beyond that, redundant formulations of
SMARTS recursion are detected.

One main application of SMARTScompare is the analysis of structural filteradtacular screening applications.

We analized similarity and pattern inclusion in between eight structural filté?.sEts example, quinone patterns
showed high similarity scores and are manually labelled what makes them excellent test casesalhddhiein
heterosubstituted derivatives (e.g. quinonimines) cause complex patterns making them incredibly hard to read for
humans. SMARTScompare found 14 patterns in seven filter sets including dyes with ¢ikecubstructures.

Besides general pattercomparisons, SMARTScompare can verify hierarchically structured pattern collections.
Knowledgebased conformation generation relies on statistical analysis of available data, like for example the
Torsion Libraryfl. SMARTScompare can verify an assignésiss membership and even reorder patterns within such
classes. We were able to identify a few examples of formerly missed subset relations. The software helps to avoid
common mistakes when writing SMARTS and removes redundancy in recursive SMARTS padtemedl as

pattern collections. Furthermore SMARTScompare allows for similarity search atepih discussion of patterns

for similar structural properties.

1. Bell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference acatapou
(PAINS) from screening libraries and for their exclusion in bioassagarnal of Medicinal Chemistry
201Q 53, 27192740.

2. Bruns, R.; Watson, |., Rules for Identifying Potentially Reactive or Promiscuous Compduuntal of
Medicinal Chemistry2012 66, 97639772

3. Capuzzi, S.; Muratov, E. N.; Tropsha, Alexander, Phantom PAINS: Problems with the Utility of Alerts for
Pan Assay interference Compound8urnal of Chemical Information and Modeli@@17, 57, 417427.

4. Daylight Theory Manualhttp://www.daylight.com/dayhtml/doc/theory/theory.smarts.hfadcessed Feb.

6, 2018)

5. Gaulton, A.; Hersey, A.; Nowotk M; et al. The ChEMBL database in 20Ntcleic Acids Resea017,
45, D945D054

6. Scharfer, C.; Schulasch, T. Ehrlich, H.C.; Guba W.; Rarey M.; Stahl M., Torsion angle preferences in
druglike chemical space: A comprehensive guieirnal of MedicinalChemistry2013 56, 20162028
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7. Schomburg, K; Ehrlich, H. C.; Stierand, K; Rarey, M., From Structure Diagrams to Visual Chemical
PatternsJournal of Chemical Information and Modelig§1Q 50, 15291535

Figure 1. Results of the search for Quinonestie filter sets referenced by ChEMBL The pattern on the left is
annotated as Quinone and was detected by SMARTScompare. The second pattern is not annotated as Quinone, but
contains a Quinone substructure. The pattern on the right was not found by SkARIEe. We consider its
annotation as false or incomplete since it contains a quinomethane substructure. Pattern depictions are generated
with SMARTSViewel .

F2: Anisotropic Atom Reactivity Descriptors for the Prediction of Liver Metabolism,
Ames Toxiity and Hydrogen Bonding

Andreas H. Gollet, Arndt Finkelmanrf, Lara Kuhnké, Christoph Bauer

!Bayer AG, Computational Chemistry, Wuppertal, GermaB{;H Ziirich, Dept. of Chemistry and
Applied Biosciences, Switzerland, Zurich, SwitzerldBayerAG, Computational Chemistry,
Berlin,Germany

Contrary to many other ADMET properties of small molecules which aredesttribed by molecular descriptors,
the identification of atoms susceptible to metabolic reactions or the activation of primary aroniagis pAA) via
N-hydroxylation requires atomic reactivity descriptors and atomic resolution machine learning.

We here report on the application of our recently developed sets of atomic descriptors that encode the anisotropic
electron density distribign using conformatiotindependent quantuimechanical atomic charge schemes (see
Figure 1)

First example is sitef-metabolism prediction. We have extended our cytochrome P450 dmmdghase I
metabolism by incorporation of about 25,000 carefully aelametabolic transformations from the Accelerys
Metabolite database, resulting in cresdidated atonposition Matthews correlation coefficients of 0.61 and 0.76
for phase | and phase Il, respectively, and MCC of 0.41 for a validation set of recent ndmpollected from 2015
and 2016, not being part of the training set.
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Figure 1. Anisotropic circular descriptors are created be either topological or 3Bspaa¢ binning of atomic
properties like e.g. atomic chargesf() and mapping to a linear vector (right).

Second example is the prediction of the activation of PAA in the Ames assay with S9 mix. There, the first reactive
step is Nhydroxylation, leading finally to the formation of a reactive nitrenium ion thatbaash to the negatively
charged DNA. Here, we successfully combined an EGFgerprint counts, HOM@UMO gap and an atom
reactivity model.

Third example is the prediction of maximal hydrogen bond acceptor strengths from chemical structure alone, again
taking advantage of the anisotropy and conformdependence of our novel descriptors, with the aim to extend the
concept to the prediction of hydrogen bond donors.

1. Finkelmann, A.R.; Gdller, A.H.; Schneider, Bobust molecular representations for mddglland design
derived from atomic partial charg&shem. Commur2016 52, 681-684.

2. Finkelmann, A.R.; Gdller, A.H.; Schneider, Gite of metabolism prediction based on ab initio derived
atom representation€hemMedChen2017, 12, 606612.

F3: Explorirg 3D molecular shape using spectral geometry

M Seddort, D Cosgrové M Packer, V Gillet?

! University of Sheffield, Sheffield, UKCozChemix Limited, Macclesfield, UKAstraZeneca,
Cambridge, UK

Threedimensional molecular shape is a key determimfmolecular interactioris To date, widespread use of 3D
similarity methods in drug development has been hampered by computational complexity surrounding structure
alignment and molecular flexibility. Structure alignment is eitleried out at runtime, thus incurring a computation

cost, or avoided through the use of 3D shape descriptors, which results in a loss of information. Typically, 3D shape
comparison treats the molecules as rigid bodies and flexibility is taken into acsmgtonformation ensembles to
sample conformational space, which significantly increases the computational cost of 3D similarity searching on
large molecular databases.

Spectral geometry provides a framework for exploring concepts of flexible 3D%sthagief, spectral geometry

treats the surface of a 3D shape as a curved 2D surface and encodes the geometric propesgjeExirutheof the
LaplaceBeltrami Operator over that surface. The field of spectral geometry originates in 3D computer vision where
typical use cases are to identify the same figure in different poses. These methods are of particular interest for high
throughput virtual screening because they produce rich descriptors of 3D shape that are aligvariant and also
invariant to a specific class of flexibility, callésbmetric deformationFurthermore, the conceptual framework has a

large amount of promider investigating the relationship between 3D molecular shape and conformational variation

in a mathematically robust manner.

We have used the spectral geometry framework to explore the relationship between conformational variation and
molecular shape. Iparticular, the extent to which the variation in conformational shape can be captured by the
isometric deformation assumption was explored. Furthermore, the chemistry of these variations was investigated to
identify the cases in which these methods arén@ht Our results suggest a method of determining when two
conformations of a molecule are sufficiently different to be considered different shapes in spectral geometry. Finally,
we implemented an alignment invariant shape descriptor for the purposehahhdgghput virtual screening and
compared its performance to open source implementations of a standard alignment based shape comparison method
and a shape descriptorwe show thathe spectral geometry descriptors outperform these methods using the
Directory of Useful Decoys Enhance@UD-E) data set.
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1. Nicholls, A.; McGaughey, G. B.; Sheridan, R. P.; Good, A. C.; Warren, G.; Mathieu, M.; Muchmore, S.
W.; Brown, S. P.; Grant, J. A.; Haigh, J. A.; Nevins, N.; Jain, A. N.; Kelley].Bved. Chem201Q 53

(10), 386243886.

Biasotti, S.; Cerri, A.; Bronstein, A.; Bronstein, lomput. Graph. Forurg015 n/an/a.

Grant, J. A.; Gallardo, M. A.; Pickup, B. J.Comput. Chenll996 17 (14), 16531666.

Ballester, P. Jruture Med. Chen011, 3 (1), 6548.

Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B.XMed. Chen2012 55 (14), 65826594.

akrwn

F4: Creating atoAn-atom mapping in chemical reactismg machine learning
methods

T. MadzhidoV!, A. Khayrullina!, R. Nugmanov, |. Baskir?, A. Varnek®

! A.M. Butlerov Insitute of Chemistry, Kazan Federal University, Kazan, Ragsiaylty of Physics,
M.V.Lomonosov Moscow State University, Moscowsigpid_aboratory of Chemoinformatics,
University of Strasbourg, Strasbourg, France

The fundamental first step in the computer analysis of chemical reactions is determination of the correspondence
between atoms of substrats and products, called theatymmapping (AAM). AAM is used to find the changing

part of substrate and product molecules, i.e. the reaction teltwing reaction center it is possible to run
advanced reaction search, like substructure and similarity search, establish reactietctyfige most weknown

and consummate algorithms are implemented in EPAM Indigo, Accelrys Automapper, JChem Standardizer and
ICMap programs. All of them are based on maximum common substructure (MCS) detection; however other
approaches exist as well

Known programs are based on complex heuristics that guarantee correctness of AAM on most cases. Our idea was to
create an algorithm that could learn how to create AAM based on known reactions with correct AAM. In this work
we propose a novel approach iiodf optimal AAM that is based on application of machine learning techniques. The
task is formulated as classification: for every pair of reagemiuct atoms one need to establish whether their
mapping is correct. To train the classifier for each reacpairs of atoms were generated that correspond to the
correct and incorrect AAM. A simple probabilistic "Naive" Bayesian (NB) and shallow neural network-(&4elti
Perceptron) classifiers were used. The attribute vector for every rgagelnict atom pia contains information on
environment of both atoms, represented by fragment descriptors of different topology: sequences, augmented atoms
and their combinations. For a given atom pair from the test set the probability that this pair correspondstto correc
AAM is returned. Using Munkres algorithm mapping of atoms from product to reagent that correspond to maximum
likelihood was identified. Special approaches were added to correctly handle molecular symmetry.

The proposed approach was implemented and testefl reaction types: substitution (SN2), elimination (E2),
rearrangement (tautomeric transformation), cycloaddition (Bi&der) and esterification reactions. Cressidation

was used for validation of our approach and the ratio of correctly assignedwes used as a quality metric. Our
approach was compared with other programs for AAM identification. Despite in this work we used the simplest
machine learning methods it already showed quality at the level of commercial tools in the creation of AAM. The
quality of produced AAM is almost the same as for ChemAxon Automapper on most datasets and in 4 of 5 reactions
significantly outperforms Indigo Automapper. Failure in tautomeric reaction AAM creation by our approach is
caused by the fact that dataset waslb and diverse. For esterification reaction our approach outperforms both
commercial tools.

Thus, we proposed and implemented the first atmatom mapping determination tool that learns how to create
AAM on the basis of known reactions.
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Fig.1 Perentage of correct AAM produced by our approach using Naive Bayes classifier (NB A&B and NB
AkronB, that differ in a way of fingerprint generation), shallow neural network (MLP A+B+A&B) vs commercial
MCS-based tools ChemAxon JChem Automapper (ChemAxonE&#M Indigo Automapper.

1. Chen, W. L.; Chen, D. Z.; Taylor, K. T. Automatic Reaction Mapping and Reaction Center Detection.
Wiley Interdisciplinary Reviews: Computational Molecular Scie@64.3 pp 560593.
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P-01 Accelerating problem solving and decision making in medicinal chemistry
through visualisation

Paul C. D. Hawkin$ & Krisztina Boda
! OpenEye Scientific, Santa Fe, USA.

Modern ligand discovery and optimization projects, and chemists involved in thosetprogly heavily on complex
threedimensional data for success. Whether this data is obtained from experiment (structural data from
crystallography), or computation (active site pose and interaction predictions, molecular simulations, quantum
mechanics)it is valuable and frequently expensive to obtain. Efficient conversion of this 3D data into
comprehensible information and then into actionable knowledge to drive the project is a problem that is exacerbated
by a language barrier; the natural languagprofect chemists is 2D, while the native form of the highest value data
that they use is 3D.

Here we present an approach to the effective and efficient visualization of 3D data in 2D in order to accelerate the
process of decision making in ligand desigramples of this approach will be provided for data often analysed in

2D (crystallography, pose prediction) and from methodologies that, while commonly used in medicinal chemistry,
are not generally interpreted in 2D, including molecular dynamics and euanéchanics.
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P-03: Nanomaterial safety data integration with substance data model and federated
search

Nina Jeliazkovy Nikolay Kochev?, Vesselina Paskale¥sGergana TanchetaPenny
Nymarké#, Margarita D. Apostolova Andrea Haas@

Yldeaconsilt Ltd, 4 A. Kanchev str., Sofia 1000, Bulgafagpartment of Analytical Chemistry and
Computer Chemistry, University of Plovdiv, 24 Tzar Assen Str., 4000 Plovdiv, Butgaralinska
Institutet,Institute for Environmental Medicine, Nobelsvag 13 Stok SwederfMisvik Biology,
Toxicology Division, Karjakatu 35b, Turku, Finlarii{jedical and Biological Research Lab., Institute of
Molecular Biology +Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, Sofia 1113, Bulgaria,
®German Federal Istitute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max
Dohrn-Strasse 8.0, 10589 Berlin, Germany

The basis of most public chemical databases is the direct link between the chemical structure and properties. This
paradigm has beensed for several decades, providing a platform for virtual screening and modelling of the
properties of small molecules. However this approach is too restrictive for many challenging cases, including
nanomaterials and industrial chemicals, which may hawmplex compositions. The REACH definition of a
substance encompasses all forms of substances and materials on the market, including nanomaterials. The
nanomaterial safety assessment has become an important task following the growth in production efedngine
nanomaterials (ENMs) and the increased interest in ENMs from various academic, industry and regulatory parties.
Nanomaterials data management is also challenged by the lack of agreed representation of nanomaterials, e,g, the
graph theoretic represetitsn of welldefined chemical structures and linear notations such as SMILES and InChl

are unsuitable for representing nanomaterials. We present experience with integrating large sets of nanosafety data
generated from past NanoSafety Cluster projects thighhelp of a substance data model, implemented in the
eNanoMapper databadeThis data model is also successfully used to handle chemical substances and safety data
from ECHA dossiers.

Data generated by multiple nanosafety projects is compiled, annotated and imported into separate eNanoMapper
database instances. These databases offer a user friendly web interfRE&SandPI* and serve as building blocks

to provide federated search across all or subsets of the database instances, enabled by Apache Solr backend. The
eNanoMapper ontologdyis used for harmonisation of the terminology and as a synonym list for query expansion.
While multiple structured import formatse supported (IUCLID, RDF, JSON), the nanosafety data from past and
ongoing projects use custom spreadsheet templates, currently encompassing over 1000 Excel files. Import of Excel
files is enabled by a configurable parser that maps the spreadsheetadexéernal configuration files. Multiple

export formats are supported, including tab delimited files, RDF andJES2N. Free text and faceted search
applications, with public and restricted access for different subsets of data, are available at
https://search.data.enanomapper.neThe NanoReg2 integrated databasd-igfre 2) is online at
https://search.data.enanomappet/manoreg2and allows project partners to access data from past EU FP7 funded
projects (NANoOREGhttp://www.nanoreg.eu/ MARINA, NanoGenotox, Nanotest) through a common view and
faceted searchThe database is aetily used by project partners, helping to identify and, where possible, resolve a
range of data quality and completeness issues.

$FNQRZOHGJPHQW 7KLV SURMHFW KDV UHFHLYHG IXQGLQJ IURP WKH (’
Innovation programme ured Grant Agreement No. 646221.

1. Jeliazkova, N.; Chomenidis, C.; Doganis, P.; Fadeel, B.; Grafstrom, R.; Hardy, B.; Hastings, J.; Hegi, M.;
Jeliazkov, V.; Kochev, N.; Kohonen, P.; Munteanu, C. R.; SarimveisSideets, B.; Sopasakis, P.; Tsiliki,
G.; Vorgrimmler, D.; Willighagen, EBeilstein J. Nanotechnd015 6, 16094634.

2. Jeliazkova, N.; Koch, V.; Li, Q.; Jensch, U.; Reigl, J. S.; Kreiling, R.; Georgiev, |.; Hubesdmx®Bol.
Lett. 2016 258 S11445115.

3. Hastings, J.; Jeliazkova, N.; Owen, G.; Tsiliki, G.; Munteanu, C. R.; Steinbeck, C.; Willighagén, E.
Biomed. Semantic015 6 (1), 10.
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Figure 2. Screenshot of NanoReg2 database free faceted search application. The matepasition and studies
links for each nanomaterial entry lead to the corresponding eNanoMapper database instance.

P-05:Can we agree on the structure represented by a SMILES string? A benchmark
dataset

1 2 1% R\XMayfield!, R Sayle
!NextMove Sofvare, Cambridge, UK

Let us start with a question for the reader: How many hydrogens are on the nitrogen in the molecule described by the
60,/(6 VWULQJ 31 & & & & " :KHQ ZH DVNHG WKLV TXHVWLRQ UHFHQWO
correctlyanswered.

In February 1988, Dave Weininger published a description of the SMILES language in the Journal of Chemical
Information and Computing Scienéand in the 30 years since then, SMILES has become one afetliacto
standards for exchanging chemiodormation. It has a concise yet expressive form that remains reasonably-human
readable, and it is convenient for a broad spectrum of use cases whether copying and pasting a single SMILES string
into a webapp, or for storing millions of molecules inatadbase. As a result, SMILES readers and writers abound in
every chemistry toolkit and application.

Here we investigate to what extent these SMILES readers agree on the structure represented by a SMILES string.
Our goal is to highlight corner cases andidos consensus on their handling, with the ultimate goal of improving
information exchange between chemistry tools. For this reason, we focus exclusively on SMILES #eadiinge

can agree on the meaning of a particular SMILES string, there iglifith¢ in discussing SMILES writing.

Our benchmark datagetonsists of almost 50 thousand scaffolds derived from structures in ChEMBL, and
converted to aromatic SMILES by a variety of tools. The benchmark test itself is simple: each tool to be tested must
read each SMILES string and report the number of hydrogens on each atom.

We describe results for more than a dozen tools, from both the open source and commercial worlds, and highlight
both the areas of contention and agreement. Furthermore, we showstioy sgainst the benchmark has already
led to improvements in several toolkits.
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1. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and
encoding rules]. Chem. Inf. Comput. Sdi988 28, 31-36.
2. SMILES readingbenchmark. https://github.com/nextmovesoftware/smilesreading (accessed Feb 15, 2018).

P-07:Computational Studies of Integrin Inhibitors

S. Alarfaji?, T. Mclnally?, S. Macdonald, J. Hirst*
1School of Chemistry, University of Nottingham, B&|axaSmithKline, Stevenage, UK

Compounds containing amides play a key role in the pharmaceutical industry and have been used widely in the
treatment of diabetes and have been shown to limit tumour growth: @ame threedimensionalquantitative
structureactivity relationships (2D/3BRSARs) were used to model the correlation between the physicochemical
properties of some amides and their biological actiyiiCso) to predict the activities of new molecules. An
autocorrelation based method, topological maximuass correlatioh(TMACC), was employed to build our 2D

QSARs models. We have generated models across four sets of data, ranging in size from 25 to 47 molecules on a
number of integrins subtypes. The results were evaldated using a leaveneout (LOO)approach. Using partial
leastsquares regression PLS, a TMACC model with good predictive ability was generated based on training set of

25 compounds and showed satisfactory statistical results ( , ). Other TMACC models for 40
and 47 molecules were generated and showed similar but slightly lower predictivity: ( , ,

and ( , , respectively. 3BQSARs models were also established for the same data sets using
comparative molecular fieldnalysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA).
The CoMFA and CoMSIA models were not sensitive to changes in the orientation of the amide structure. The
TMACC QSARs showed better predictive ability than the @BARs.

1. Melville, J.L.; Hirst, J.D., TMACC: Interpretable Correlation Descriptors for Quantitative Structure
Activity RelationshipsJ. Chem. Inf. Mogd 2007,47, 626634.

P-09: Fast prediction of the specific conductivity of electrolytes from the molecular
structure othe solvent

R. Bouteloug, D. Mathieut

1CEA Le Ripault, Monts 37260, France

With the development of battery utilization in a lot of devices, the needs to improve their safety and performance are
in expansion. For this purpose, new liquid electrolytesiavestigated, which require new solvents and/or additives.

In view of screening efficiently the chemical space for suitable candidate compounds, this work exposes a way to
predict the specific conductivity of a nonaqueous electrolyte solution withFg &&ft.

The purpose of this method is to predict this property, quickly and simply, with only the 2D structure of each
molecule of the solvent and their proportions as input parameters. To this aim, we have chosen thArdiasteel
empirical equatiort to represent the specific conductivity as a function of the salt concentration and the solvent
composition.

The four parameters of this equation can be related to properties of the solvent, since in our case, the salt is always
the same. The two propertigat determine the specific conductivity are the ionic mobility and the ionic association.

To connect them with solvent properties, we approximate that these two can be represented on the basis of the
viscosity and the dielectric constant of the solveaspectively. If we can predict them for each solvent, we can
calculate the specific conductivity.

For the viscosity, we have developed an additive model, based only on the 2D structure of pure solvents. For the
dielectric constant of pure compounds, we theeFréhlich equatiof that allows to calculate the dielectric constant

from the molar volume, the refractive index and the orientational parameter guy? (with p the dipole moment). To this
aim, we have developed additive models for these three properties
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Figure: Method to predict the
specific conductivity from 2D
structures

1. Casteel, J. F.; Amis, E. S. Specific Conductance of Concentrated Solutions of Magnesium Salts-in Water
Ethanol System]. Chem. Eng. Dat&d972 17, 5559.

2. Frohlich, H. Theory of Delectrics: Dielectric Constant and Dielectric Lesg&™ ed.; Oxford at the
Clarendon Press, 1958.

P-11: Identification of novel sodiglependent glucose d¢mnsporter 1 inhibitors
using proteochemometrics

Lindsey Burggraatf Paul Oranj& Robin Gouk3 Pieter van der Pfj] Marian Geldof, Guus
Duchateay Herman W.T. van Vlijmel?, Adriaan P. IJzermapand Gerard J.P. van Westen

'Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University,
Einsteinweg 55, 2338C, Leiden, The Netherlandg)nilever Research & Development, Olivier van
Noortlaan 120, 3133 AT, Vlaardingen, The Netherlafitnssen Research & Development,
Turnhoutseweg 30, 2340 Beerse, Belgium.

Sodiumdependent glucose doansporter 1 and 2 (SGUISGLT2) are solute carriers responsible for glucose
(re)absorption. SGLT2 is a target in the treatment of diabetes type 2 because of its high glucose transporting capacity
12 Additionally, dual inhibitors blocking both SGLT1 and SGLT2, are currentbfiimcal development* SGLT2

blockers exert their function at the renal tubules, whereas SGLT1 is mainly present at the apical side of the small
intestine®. In contrast to SGLT2, selective SGLT1 inhibitors have not yet been marketed and are rdittevely
explored.

Here we aim at finding novel SGLT1 inhibitors to reduce intestinal dietary glucose absorption. We hypothesize that
inhibition of intestinal SGLT1 requires a lower effective dose compared to inhibition of renal SGLT as the inhibitor
is not subject to absorption, distribution and metabolism before reaching its target at an effective concentration.
Solute carriers are complex and their hydrophobic nature in the cell membrane makes them difficult to crystalize.
Hence, we applied machine leargito detect novel SGLT1 inhibitors as it does not require structural infornfation

We performed proteochemometrics by implementing 1D protein information into our models using Zcales

We obtained a predictive model with a Matthews correlation imbefit of 0.52, sensitivity of 0.45, specificity of

0.97, positive predictive value of 0.78, and negative predictive value of 0.87. Subsequent to model training, we
applied our model in virtual screening to select SGLT1 hit compounds. Of the 40 purcbagsaliods, 15 were
experimentally validateth vitro leading to a hit rate of 38% with activities in the low micromolar range.

1. Clar, C,; Gill, J. A.; Court, R.; Waugh, BMJ Open2012 2 (5), e001007.
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2. Rosenstock, J.; Seman, L. J.; Jelaska, A.; HanteRiSnetti, S.; Hach, T.; Woerle, H. Diabetes, Obes.
Metab.2013 15(12), 11544160.

3. Sands, A. T.; Zambrowicz, B. P.; Rosenstock, J.; Lapuerta, P.; Bode, B. W.; Garg, S. K.; Buse, J. B,;
Banks, P.; Heptulla, R.; Rendell, M.; Cefalu, W. T.; StrumptDiBbetes Car015 38 (7), 11814188.

4. Rendell, M. SExpert Opin. Pharmacothe2017, 14656566.2017.1414801.

5. Gorboulev, V.; Schirmann, A.; Vallon, V.; Kipp, H.; Jaschke, A.; Klessen, D.; Friedrich, A.; Scherneck, S.;
Rieg, T.; Cunard, R.; VeylAlNichmann, M.; Srinivasan, A.; Balen, D.; Breljak, D.; Rexhepaj, R.; Parker, H.
E.; Gribble, F. M.; Reimann, F.; Lang, F.; Wiese, S.; Sabolic, I.; Sendtner, M.; Koepdelght¢tes2012
61(1), 187496.

6. Tresadern, G.; Trabanco, A. A.; Péifgenito, L.; Overigton, J. P.; van Vlijmen, H. W. T.; van Westen, G.
J. P.J. Chem. Inf. ModeR017, acs.jcim.7b00338.

7. van Westen, G. J. P.; Wegner, J. K.; IJzerman, A. P.; van Vlijmen, H. W. T.; BendgiedA.Chem.
Commun2011, 2 (1), 1680.

8. Sandberg, M.; Eriksson,.LJonsson, J.; Sjostrom, M.; Wold,J5Med. Chem1998 41 (14), 24812491.

P-13: Application of 3QSAR Methods in Drug Design & Discovery: Two Case
Studies

Giulia Chemit, Simone Brogt, Margherita Brindist, Stefania Butint, Sandra Gemm'a
Giuseppe Campiati

!European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of
Biotechnology, Chemistry, and Pharmacy, DdE 22082, University of Siena, Siena, Italy.

The purpose of 3ERPSAR (threedimensional structuractivity relationships) technique is to derive the statistically
significant relationships between molecular structures and biological activities by chemometric methods leading to
the development of predictive mathematical models. During the time, num&®A&R approaches have been
developed for different purposes including the identification or design of new chemical entities for a selected target,
and the prediction of specific properties or undesirable effects of novel molééides.we describe two soessful
applications of 3BQSAR method: i) the discovery of novel compounds by virtual screening witproni profile

and ii) the assessment of undesirable toxic effect of new chemical entities $iEFR@K" channels liability.

In the first work, &8D-QSAR model was developed to screen a library of compounds to find novel chemicals able to
prevent prion protein misfolding. Prion (PrP) is a protein that, after an incorrect folding, causes not curable
neurodegenerative disorders: the transmissible gsftom encephalopathies (TSE). There are two forms of that
protein: the cellular one (PfP IRUPHG EAKWRWURHY. D Q GshéeBRand KR petkological variant, the
misfolded one (P -sheet motif rich protein that tends to accumulate inbtfaén of infected patients. The 3D

QSAR model was used as a first filter in a virtual screening protocol to select a limited number of potential
molecules able to prevent the misfolding of the ®rPhen the model was combined with a molecular docking
procedure and the prediction of ADME properties, to choose only that molecules able to bind the protein and to
cross the bloodbrain barrierln vitro tests led us to select 9 hit compounds that effectively reduced the leveFof PrP
and showed a netoxic profile. Among them, one hit showed an interesting activity in preventing the pathological
transition of PrP to PrP° (ICso = 1.6 uM). This compound can also bind and stainSPaggregates in infected
ScN2a cells. The combination of this interesting-gritin cellular profile with a fluorescence imaging behavior, and

the good brain permeability, suggests that this compound could be considered as a novel prototypic tool useful for
the development of diagnostic and therapeutic probes foPTSE.

While in thesecond protocol, 3MSAR has been used to identify ensilico method for predicting, at an early

stage of the drug discovery trajectory, the capability of compounds to interferéBRG K" channels, a well

known antitarget.Blockade ofhERG K' channéhas become a severe limitation for the introduction of new drugs

in the market. In the past, several drugs have been withdrawn due to their relevant affinity for this channel and the
consequent possible cardiotoxicity. In our work, a-@BAR model was deloped, employing a common
pharmacophore as an alignment rule built on a subset of 22 highly active compounds (titeS®IdM) active
againsthERG K' channel. The sequential model developed with a set of 421 compounds with different span of
activity (randomly divided in training and test set) proved to be predictive with respect to an external test set of 309
compounds e s= 0.86). The model was further validated by applying a decoys set, evaluating the Guiner and
Henry score (GH) and the Enriclemt Factor (EF), and by the ROC curve analysis. The outcome demonstrated the
high predictive power of the inclusive 3QSAR model, confirming the validity of this approach to obtairiran
housetool useful for the design of new molecules with redudeBGrelated cardiotoxicity.
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1. Cherkasov, A.; et al. QSAR Modeling: Where Have You Been? Where Are You Going. &d. Chen).
2014 57 (12).

2. Zaccagnini, L.; et al. Identification of Novel Fluorescent Probes Preventingf Replication in Prion
DiseasesEur. J. Med. Chem2017, 127, 859873.

3. Chemi, G.; et al. Computational tool for fast in silico evaluatiohERG K* channel affinity.Front. Chem.
2017 5:7.

P-15:Applications of in silico approaches to decipher the structure and functions of
ADAMTS13:rroute to novel therapeutics of TTP

Bogac Ercig?3 Johana Hrdinova?®Kanin Wichapong, Chris Reutelingspergéf, Karen
Vanhoorelbeké, Jan Voorberd, Gerry A.F. Nicolaes$?

! Department of Biochemistry, Cardiovascular Research Instifiztadricht (CARIM), Maastricht
University, Maastricht, The Netherland€)epartmenof Plasma Proteins, SanquMC Landsteiner
Laboratory, Amsterdam, The NetherlantBharmaTarget, Maastricht, The Netherlantisaboratory

for Thrombosis Research, IRF LBeiences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium

A cryptic epitope in the ADAMTS13 spacer domain is targeted in most of the immune TTP patients. Based on these
findings an auteantibody resistant, gaiof-function variant (GoF) of ADAMTS13 wadesigned containing the
following amino acid substitutions in spacer domain: R568K / F592Y / R660K / Y661F / Y6&H&iictural studies
revealed that GOl ADAMTS13 exists in an open (active), while WDAMTS13 is found in closed (inactive)
conformation, Wth the Gterminal CUB domains bound to the spacer domain. Our aim is to employ in silico
approaches to predict the network interactions between the spacer domain and its binding partners (i.e; CUB
domains and autoantibodies) which will provide structaral functional data that will be translated into therapeutic

use.

The experimental structure oft€rminal CUB domains of ADAMTS13 are not available in Protein Data Bank. The
YASARA Structure tool was used for homology modeling of thdéeinal CUB12 domaing. The anti
ADAMTS13 autoantibodies were modelled by Bioluminate module in Schrodinger suite. HADDOCK protein
protein docking were employed to study the interactions of both CUB domains and autoantibodies against spacer
domain of ADAMTS13. GoF ADAMTS13nutations were in silico introduced to final poses, next both @fid

GoF ADAMTS13 were subjected to binding free energy calculation with AMBER16 over a 100ns molecular
dynamics simulation. Subsequently, these poses were investigated to reveal wihighsrese contributing to
conformational changes of ADAMTS13.

A pose with relatively higher binding affinity against WWADAMTS13 and lower binding affinity against GeF
ADAMTS13 at the same time was found to be informative to predict which residues amtaimgor binding of

CUB domains and autoantibodies. These residue predictions are subjected to in vitro mutation studies in order to test
changes on conformation, proteolytic activity and resistance againsamtitodies.

We have used the available stiwral bioinformatics tools to predict the nature of conformational changes which
switches the human ADAMTS13 protein between active and inactive states. The derived knowledge from the
current study will further be used for the design of novel therapeftiosmune TTP.

1. Jian, C.; Xiao, J.; Gong, L.; Skipwith, C. G.; Jin, S. Y.; Kwaan, H. C.; Zheng, X. L.-@Bimction
ADAMTS13 Variants That Are Resistant to Autoantibodies against ADAMTS13 in Patients with Acquired
Thrombotic Thrombocytopenic PurpuBlood2012 119(16), 3836+ 3843.

2. Ercig, B.; Wichapong, K.; Reutelingsperger, C. P. M.; Vanhoorelbeke, K.; Voorberg, J.; Nicolaes, G. A. F.
Insights into 3D Structure of ADAMTS13 : A Stepping Stone towards Novel Therapeutic Treatment of
Thrombotic Thrombodppenic Purpuralhromb. HaemosR018 28#41.
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P-17: Confidence estimation of ADME properties using conformal prediction

C. Fountt, V. Gillet!, G. Vessey
Information School, The University of Sheffield, Sheffield,AKasa Limited, Leeds, UK

The impact of predictive models to guide the drug discovery cycle is broadly accepted, particularly for the
optimisation of ADME properties. The application of QSAR models for property prediction reduces the need for
iterative in vivo and in vitro testing dnconsequently saves a significant amount of resources. Building a QSAR
model that will predict at a suitable level of accuracy for the intended application, however, can be a complex task
and depends on the composition of the dataset. Furthermore, enratagrediction could lead to a lost opportunity

for a potent compound and further delays in development.

Conformal prediction provides a machilearning framework that integrates confidence estimation in QSAR
modelling. For QSAR regression modelsgetimain objective of the framework is to produce compespetific
prediction intervals that represent the reliability of the prediction at adesered level of confidence. Prediction
intervals are obtained by training a machine learning algorithm goréiper training set and generating a ranked list
of nonconformity scores from a calibration set. Compesipekific prediction intervals are obtained by normalising
the scores with estimates obtained from an error model. The nonconformity score corregporadusedefined
confidence level on the list is then used to calculate the prediction intervals for all future predictions.

In this study, the validity and efficiency of prediction intervals produced by random forest and support vector
machine confanal predictors is evaluated for ADME datasets. The normalisation of standard prediction intervals
using different error models is investigatetiand evaluated against the already establishedakest neighbor
algorithnt.

Abbreviations:
QSAR: Quantitatie Structure Activity Relationship
ADMET: Absorption, Distribution, Metabolism, Excretion

*7KH UHVHDUFK OHDGLQJ WR WKHVH UHVXOWY KDV UHFHLYHG IXQGLQJ
Programme (FP7/2062013) under grant agreemefi6n2347.

1. Eklund, M.; Norinder, U.; Boyer, S.; Carlsson, L. Application of Conformal Prediction in QSAR. In:
Artificial Intelligence Applications and Innovations. AlAl 2012. IFIP Advances in Information and
Communication Technologyliadis L., Maglogiannis |., Papadoplos H., Karatzas K., Sioutas S., Ed.;
Springer: Berlin, Heidelberg, 2012; Vol 382.

2. Sheridan, RP. Three useful dimensions for domain applicability in QSAR models using randomJforest.
Chem. Inf. Model2012 52: 814823.

3. 7TRSODN O OR p QLINM.;5et al3 RsGebahénDof Machine Learning Reliability Methods for
Quantifying the Applicability Domain of QSAR Regression ModdlsChem. Inf. Mode2014 54: 431
441.

4. Papadopoulos, H.; Vovk, V.; Gammerman, A. Regression Conformal Prediction withsiNarghbours.

J. Artif. Intell. Res2011, 40: 815840.

P-19:Selectivity profiles in Activity Atlas

M. Mackey, P. Toscd
! Cresset, Litlington, UK

At the last ICCS we presented methods for computing activity cliff metrics based on 3D similarityoared Srow

these can be utilized to identify pairs of molecules where small changes in steric or electrostatic potential have a
disproportionate effect on activity. More recently we have developed the Activity Atlas method, which summarizes
information obt&ned from multiple 3D activity cliff pairs. This provides an analysis of the molecular shape and
electrostatic features which correlate with a change in activity across multiple pairs, highlighting the regions critical
to binding (Fig. 1)
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Fig. 1: The Adivity Atlas method provides interpretable maps of the SAR around a series.

In this talk we show how to extend the Activity Atlas method to investigate selectivity. For closely related proteins, a
reasonable assumption is that the ligand alignment wilbbbsearved. In this case, the Activity Atlas method can be

used to investigate selectivity. Two methods are presented. In the first, the analysis proceeds separately on the
different activity values. The resulting models can be compared to give insightghantdifferent activity
requirements for the subtypes, and hence what changes might increase activity at the desired subtype and/or reduce it
at the undesired one (Fig. 2).

Fig. 2: The Activity Atlas maps for adenosine Al, A2a and A3.

Alternatively, the analysis can be performed on activity differences giving a direct readout of the changes leading to
selectivity (Fig. 3). This method is significantly more powerful at teasing out the direct influences on selectivity, at
the expense of losing informati@m whether the highlighted differences increase or decrease the affinity across all
subtypes.
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Fig. 3: Activity cliff summary maps for adenosine A2a over Al selectivity. The maps are superposed to the most
selective (left, shown in darker gray) and thast selective (right, shown in lighter gray) compounds in the training
set.

P-21:KnowToxRisk Assessment by Automated R&aabss and Machine Learning

Andrea Morget, Janosch AchenbaéhMiriam Mathea?, Antje Wolf2, Robert Landsiedé|
Klaus-Jurgen Schleifef, Andrea Volkamet

In Silico Toxicology Group, Institute of Physiology, Charité, Berlin, GernfaB#SF SE,
Ludwigshafen, Germany

With new chemicals being synthesized every year, assessment of their toxicological pantiakir harmful

effects on humans, and the environment is a prerequisite for production and marketing. Most of the toxicological
testing required by regulations is still requesting animal studies. In this coimesiico methods have great
potential to reduceirhe, cost, and ultimately animal testing as they make use of thegewging amount of
available toxicity data.

In our KnowToxproject, we develop a toxicity prediction tool that makes use of available knowledge from external
and inhouse data to providrational support for Reaficross, including modern machine learning (ML) techniques

to come closer to the vision of transforming toxicology into a predictive science. Our major data source is the freely
available ToxCast dataset, consisting of ~8300 cpounds, such as pesticides, pharmaceuticals, and industrial
chemicals, tested on up to 1000 different endpoiatg, effects on cell cycle, cytotoxicity, or steroid receptor
interactions. We will present a workflowtogether with a case stud¥to searchthe entireToxCastdataset for
substances, which are most similar in terms of features and structure to any query compound. Information about
WKHVH VXEVWDQFHVY FRPPRQDOLWLHYV VXFK DV WR[LFRORJLFDO NH\ HY|
features can automatically be generated. Furthermore, previously identified substructures associated with toxic
effect$* are highlighted to warn the user and either guide the design of less toxic compounds or target slibsequent
vitro and in vivo testing. r ML application, we adapted an open source standardization workflow to remove
duplicates, salts, and mixtures, yielding a reduced set of ~7500 clean compounds. Random Forest models for toxicity
predictions on this dataset are currently trained and eealudy exhaustively sampling different combinations of
fingerprints, ML parameters and data balancing strategies per endpbawing promising prediction accuracies.

Identification of sufficiently similar chemicals will support rationales for RAatbs$, and accurate toxic
mechanism or endpoint predictions will guide further toxicity testing or the deselection of most likely harmful
compounds in an early stage of the often lengthy research and development process. Our combined prediction tool
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can, bgether with the experience of toxicologists, help to improve efficiency and reduce the need for animal testing
for toxicological assessments in development projects and regulatory product registration.

1. Mayr, A. et al. DeepTox: Toxicity Prediction usingd2p LearningFront. Environ. Sci2016 3, 80.

2. Richard, A. M.et al. ToxCast chemical landscape: paving the road to 21st century toxic@lbgm. Res.
Toxicol.2016 29(8), 12251251.

3. Sushko, l.et al. ToxAlerts: a web server of structural alerts foxit chemicals and compounds with
potential adverse reactions.Chem. Inf. ModeR012 52(8), 231e2316.

4. Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds
(PAINS) from screening libraries and for thexclusion in bioassayd. Med. Chem201Q 53(7), 2719
2740.

5. Teubner W.; Landsiedel R. Readross for hazard assessment: The ugly duckling is growingligwn.
Lab. Anim.2015 43, 6771.

P-23:Machine learning to predict the recruitment puaffirgracellular binding
partners of ®rotein Coupled Receptors

Trung Ngoc NguyenMarcel Bermudez, Gerhard Wolber
Freie Universitat Berlin, Molecular design lab, Institute of Pharmacy, Berlin, Germany

G proteincoupled receptors (GPCRs) are generakyl@ U D FW H U L | Hh8lica travisinéid@ane domains (TM1

7). They transfer diverse extracellular stimuli into intracellular downstream signals. Treptencof GPCRs as

mere oroff switches for a given pathway has changed drastically over the last deladizy we know that GPCRs

are highly dynamic signaling machines with multiple signaling pathways like G @otBiFW LY DWrteRtiQ D QG
recruitemeng Due to significant progress in structural elucidation of GPCRs, ligand design using sthasede
modeling became more feasible. However, the identification of small organic molecules binding to the extracellular
part is aly loosely coupled to the desired pharmacological effect. A prominent example id3R{Oliceridine},
ZKLFK LV D ELDVHG RU-WKkig xevéptds brid i@as 4 préfé&retdRaktivation gfrGtein instead of 3

arrestin resulting in a more effective pain medication with less side effects. Currently, such ligands can only be
discovered by serendtp, because no comprehensive models for predicting intracellular effects upon extracellular
ligand binding exists so far.

The presented study aims at identifying and utilizing structural properties of class A GPCRs to predict specific
signaling induced bylifferent ligands. Starting with the extraction of thidimensional structural descriptors from

195 different crystal structures of 40 GPCRs, supervised machine |€aatgugithms are used to predict the
recruitment profile of intracellular binding partners. Additional descriptors are generated through molecular
dynamics simulatiorfswith different ligands with known intracellular recruitment predil We present a comparison

of static and dynamic structural descriptors in the context of different machine learning algorithms with respect to
their ability to predict intracellular binding partner selection and the resulting signaling bias.

1. Szczepek, M.; Beyriére, F.; Hofmann, K. P.; Elgeti, M.; Kazmin, R.; Rose, A.; Bartl, F. J.; Stetten, D. von;
Heck, M.; Sommer, M. Eet al. Crystal structure of a common GP@ithding interface for G tein and
arrestin.Nature communication2014 5, 4801.

2. Pavlos, N. J.; Friedman, P. A. GPCR Signaling and Trafficking: The Long and ShortToénds in
endocrinology and metabolism: TER17, 28, 213226.

3. Hilger, D.; Masureel, M.; Kobilka, B. K. Straeare and dynamics of GPCR signaling complex¢ature
structural & molecular biology018 25, 442.

4. Chen, X:T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C. L.; Rominger, D. H.; Koblish, M.;
Dewire, S. M.; Crombie, A. Let al. Structureactivity UHODWLRQVKLSY DQG GLVFRYHU\ R
opioid receptor ligand, ¢BethoxythiopherR-yl)methyl({2-(9R)-9-(pyridin-2-yl)-6-oxaspira4.5decard-
ylethyl})amine (TRV130), for the treatment of acute severe phiornal of medicinal chemisti3013 56,
8019:8031.

5. Jordan, M. |.; Mitchell, T. M. Machine learning: Trends, perspectives, and prosgetace (New York,
N.Y.)2015 349, 255260.

6. Bermudez, M.; Mortier, J.; Rakers, C.; Sydow, D.; Wolber, G. More than a look into a crystal ball: Protein
structure elucidation guided by molecular dynamics simulati@meg discovery today016 21, 1799+
1805.
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P-25:Estimation of electrophilicity for warheads of covalent protease inhibitors

S. PachC. Tauber, J. Rademann, G. Wolber

Pharmaceutical and Medicah Chemistry, Institute of Pharmacy, Freie Universitat Berlin, Konigise
StralRe 2+4, Berlin 14195, Germany

Enteroviral infections are associated with increased risk of neurological and cardiac complications. The enteroviral
cysteine protease €3 is involved in processing of viral polyprotein during the replication into functional
components of viral particles. Therefore, it represents a promising target to fight enteroviral infections efficiently.
Our goal is to target viral proteases by covalenthition.

Covalent inhibitors have improved efficiency of enzyme inhibition compared t@owalent one§l]. Furthermore,

WKH\ SRVVLEO\ DOORZ WDUJHWLQJ RI 3 XQGUXJJDEOH"™ ELQGLQJ VLWHYV |
Efforts to find a sut&« OH ZDUKHDG DUH W\SLFDOO\ EDVHG RQ 3W-UttoOestingQG HUURL
Hence, there is a need for a ratioimasilico method describing mechanisms of covalent binding to enzymes.

We investigate the activity of eleven Michael accepton C3Protease. Considering only electronic effects as
described by classical chemical theories (e.g. the HEABcept) only fails to explain activity trends. For this
reason, we developed a geometric descriptor based on the reaction mechanism Hetirephile warhead and
nucleophile proteasactive site. The change of essential angles between different steps of reaction shows that
reactivity of electrophiles and thereby reaction kinetics depends on steric parameters (Fig. 1). Our novel approach
expands the classical view on covalent ligagazymeinteraction (Fig. 2) and allows prediction of electrophile
guality, including electronic and steric effects during the binding reaction.

Fig. 1: Measurement of doublebond-
plane-angle for noncovalent comnplex
and intermediate

Fig. 2: Classic description of reaction
mechanism (black) and extended path
(grey) between ligand (L) and enzyme
(E) [mod. After 1]

1. Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence of covalent diNags.Rev.Drug
Discovery[Online] 2011 i

2. Bauer, R. A. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and
designed therapid3rug Discovery TodajOnline] 2015 20 (9), 10611073.
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P-27: A welbased informaticglatform for PhysChem/ADME/Tox property
predictions

A. Sazonova$?, K. Lanevskij-? R. Didziapetrig-?

1952 A$XNAWLHML DOJRULW PD8117 \$ilrius AKndanizNCD/Kabs, Inc., 8 King
Street East, Toronto, Ontario, M5C 1B5, Caaad

Percepta for ACD/Portal is a new platform that builds upon the well established components of ACD/Labs Percepta
desktop softwaretreliable predictive algorithms for a multitude of physicochemical, ADME, and sedéied
properties, powerful data mimg, visualization, compound profiling and risk assessment capabilities, as well as
ACD/Structure Design Engine for generating libraries of virtual analogs compatible with the desired characteristics.
Percepta for ACD/Portal combines these features witRiblle networkbased deployment, raising software
interactivity to a new level and offering some exciting features. This work brings particular focus to the components
of the web version of Percepta that leverage the power of high performance computiegvieranvironment. The
serverside architecture of ACD/Portal relies on multiple calculation units (kernels) that enable parallel processing of
very large amounts of data in real time. These capabilities paved the road for new developments in sevees. key

The addition of a quick exploration of the predicted property values for a multitude of structural analogs of a
compound enables ehe-fly liability checking, i.e. identifying the areas of the molecule potentially responsible for
unfavorable ADMETox characteristics. Adaptation of the ACD/Structure Design Engine to the employed
architecture gave rise to a new generation of this tool that enables extensive enumeration of substituent property
space in accordance with specific udefined constraintat up to four independently varying substituent positions

at the same time. Along with a biiit database of more than“lfuilding blocks, this leads to exploration of up to

10% virtual analogs, which is actually feasible in real time inside PerceptaGdD/Portal. Such broadened scope of

the chemical space investigated greatly enhances the potential of encountering new compounds with the most
favorable property profiles.

P-29: Development of a novel structure descriptor combining molecular shape and
surface properties

A. Schultz!, K. Baumann

!Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitat Braunschweig,
Beethovenstis5, 38106 Braunschweig, Germany

Molecular shape and the spatial localization of potential bindingMp@HUYVY SOD\ D PDMRU UROH |
interaction with its complementarily shaped target. Methods using the 3D geometry to represent a molecule can be
divided into alignmenbased and alignmeimdependent approaches. The alignzaded methods have the
drawback of high computational costs and potential bias due to the process of finding the optimal alignment prior to
computing their respective descriptors, while the alignAredependent approaches are often more difficult to
interpret visually. A chdénge faced by both, alignmebased and alignmeimdependent methods, is the
conformational flexibility that needs to be taken into account when dealing with 3D representations of molecules.
The standard approach is to create a relatively large ensefrddaformers per molecule and to use this ensemble

for the intended study. The downside of the ensemble method is the computational cost required to generate
appropriate conformers as well as the exponentially rising amount of calculations for enaudiingnaerically
processing the ensembles for machine learning.

For the representation and comparison of the 3D shapes of macroscopic objects, Gal et al. developed the local
diameter function which is not only invariant to scaling, translation and rotétignis also insensitive to
transformations which are based on skeletal articulated movement

In the following, we describe the adaptation of the local diameter function to molecular shapes and the development
of a descriptor based on this adapted fiamct Starting with a triangulated mesh of the molecular surface the
PROHFXOHfVY GLDPHWHU LQ WKH QHLJKERUKRRG RI HDFK YHUWH[ LV F
PROHFXOH \LHOGLQJ D VKDSH UHSUHVHQWDWhén(ral PeaivésardulBdalUH S U
hydrophilicity/lipophilicity are mapped onto the molecular surface. Properties on the local surface touched by a
FRQHYVY RULJLQ DQG EDVH DUH UHFRUGHG WRJHWKHU ZLWK WKél ORFDC
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descriptor is applied to several benchmark datasets and compared to established approaches. The most critical
hyperparameters (cone angle, number of rays) of the novel descriptor are systematically varied and their influence on
predictive power is denmstrated.

1. Gal, R.; Shamir, A.; Cohe®r, D. PoseDblivious Shape SignaturéEEE Trans. Vis. Comput. Graph
2007, 13, 261271.
2. The RDKit: Opeprsource cheminformaticttp://www.rdkit.org(accessed Jan 30, 2018).

P-31: Classification of corneal permeability of-tlkegcompounds using data
mining and machine learning

Jo&o Meirele$, Carlos Simde's Rui Brito!?

1 BSIM Therapeutics, Coimbra, Portugahemistry Departmentniversity of Coimbra, Coimbra,
Portugal

The eye cornea works as a protecting barrier against the penetration of xenobiotics, including drugs. The
determination of corneal permeability by experimental means is actim&uming and expensive processuieng

fresh biological tissue and significant amounts of pure compounds. As such, the ability to predict the corneal
permeability of drug candidates from their molecular propeitiesilico would be a valuable instrument in the
development of new drugsifophthalmologic indications, as illustrated by previous efforts by a few researéhers

The main goal of this work is to find mathematical functions that map selected chemical features onto corneal
permeability through a careful use of machine leay@ind data mining techniques.

Through interaction with an ophthalmologist and mining of scientific literature and patent data, we assembled a set

of 70 compounds: 35 of which are known to be capable of penetrating the cornea at therapeutic concentrations
FRUQHDBSRVLWLYH RU 3" FODVV DQG DUH RKQD¥WVH TNKRH R O/HRF XFGRHMNQ H

were built, clean and processed into lowenergy tdigeensional structures using open source tools, including

Avogrado, OpenBabel and MOPAEor each compound, 3082 molecular descriptors were then computed using

well-known packages such as CDK, MOLD2, OpenBabel and PaDEL. With the exception of the compound name

and its ocular permeability class, all data is numeric.

The characteristics of thresulting data set pose several challenges to mathematical analysis: 1) there are many more
features (variables) than samples; 2) the variables are highly correlated, and 3) many variables-slyavmetny,
significantly different scales and ranges, aagmumber of zero entries, modes, etc. Thus, our first concern was the
cleaningup and transformation of the data using robust statistical tools. Since our main goal is to understand how
corneal permeability is related to certain chemical features, yatitioothers, in this study we use feature selection

and global optimization methods to uncover the most relevant attributes. We explore many different types of
variable selection to derive multiple predictive models: 1) filtering information based alisthibution properties

of the chemical features, using less restrictive statistical assumptions like nonparametric tests, 2) filtering the
attributes based on ensemble strategies, 3) averaging the quality of the variables according to their conditional
dependencies, 4) building robust linear latent variables, and 5) exploring multidimensional scaling, stochastic
proximity embedding, and other nonlinear dimensionality reduction methods.

Given the small size of the data set, model validation is carriedi@u€aveoneout crossvalidation (LOGCV)
and bootstrap with several repetitions yielding highly accurate predictions. Moreover, we compare the
performance of our machine learnibgsed classifiers using robust Amarametric tests.

Considering prewvus attempts to predict cornea permeability, our strategy brings the advantage of not making
unrealistic assumptions about the molecular data and combines the strengths of multiple approaches to interpreting
the proposed predictive models.

1. Kidron, H.; Vellonen, K. S.; Del Amo, E. M.; Tissari, A.; Urtti, A. Prediction of the Corneal Permeability
of Druglike CompoundsPharm. Res201Q 27 (7), 13984407.

2. *KRUEDQ]DGT( O J)DWHPL 0 + .DULPSRXU O $QGHUVVRM 3 [/ 4XI
of Corneal Permeability for Drulike CompoundsTalanta2011, 85(5), 26862694.
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P-33: Coarsgrained approaches for prediction of solubility and membrane
permeability of large drugs: The Why and the How

Johannes (Hans) G.E.M. Fradije
! Culgi BV andLeiden University, Leiden, The Netherlands.

Drug discovery is currently addressing molecular compounds that are larger than could be anticipated at the times of
the seminal Lipinsky contributidnOne may think of proteiprotein interaction inhibitorkinase inhibitors, and all
biologicals. Ageold statistical methods to predict development qualifiers such as soRilE@ly membrane
permeability (reviewed if4), date from the times that pdate the new chemistries. They are, without exception,
calibrated on data for small molecules, and for that reason must be considered of less relevance now. Unfortunately,
many a commercial or free software bases its algorithms on the older methods, for lack of anything better. The
necessary experimental data fbetnew molecules is simply not available (in the public domain) to the extent
necessary for a datiriven approach. For this reason, more modern-didt@n approaches such as artificial
intelligence, to supplant the existing QSPR models, are very difffaudt impossible to develop.

Even if data would be public, one realizes quickly that the necessary database would have to be extensive to be of
use. The drift to larger and larger molecules is driven by the quest for selectivity, to address trpeforid were
considered undruggable. Selectivity translates into large molecules, with many handles to find an exquisite and
unigue binding pattern. The same mdmndles property translates into great many more potential combinations of
sidegroups (andscaffolds) than any calibration subset could cover. At the same time, a literature survey points to
reliable solubility data for large dridlike molecules measured in the hundreds, and, similar, public membrane
permeability datasets have perhaps an evealler numbet* of trustworthy datapoints. An illustrative example is

from the burgeoning field of protejorotein inhibitors. Such inhibitors (modified peptides) suffer greatly from lack

of membrane permeabilityA datadriven approach would not only @@ to take into account the extremely large
chemical space but also the flexibility of the molecules, and potential folding in the membrane; this seems almost
impossible. Therefore, however unfortunate, purely datadriven approaches cannot work, notdnout, ianthe
foreseeable future.

When data is scarce, the only alternative we have is a pHyssesl approaéh, such as we discuss here. The
physicsbased modeling we propose rests on the cegnaieed paradigf, that lumps groups of atoms into dma
fragments. Efficient simulation algorithms then use the fragments for the calculation of thermodynamic interactions.
Our coarsegyrained algorithms permit the complete calculation of solubility and permeability for a largéikerug
molecule (up to MW 1000) in one go, in a mere few minutes on an ordinary desktop computer. The algorithm
includes automated ways for calculation of charge distribution, the cutting of molecules into pieces and, the
calculation of thermodynamics and diffusion through thermadyin integration. A dynamics simulation is a basis

for the thermodynamics and diffusion calculation, and automatically includes flexibility, differential folding,
regrouping, etc., and makes no a priory assumption regarding positioning of fragmentsfréxpattte original
calibration on datasets outside the phaduoeain, very few additional parameters are needed for finetuning to the
applications at hand, which makes the method excellently suited for the-dasacproblems in solubility and
membrane peneability.

Application of the method includes calculation of diffusion coefficients of more than 11k mofeevitesa rather
astonishing agreemerwith earlier empirical lawsThe figure shows the correlation between simulated and
experimental resultdVe obtained the results in a few minutes per molecule on a singtm®C While the new

method is physicbased, the computational speed is on par with typical QSPR calculation times and makes the
method suitable for virtual screening studies. The irdeWilke & KDQJ HPSLULFDO UHODWLRQ LV |
study is the first time to recover such correlation by either theory or simulation.

From a theoretical perspective, there is no difference in our method between that of solubility and membrane
perneability prediction. Both algorithms rely on the same cogra@ing protocol, with the same set of parameters.

We will present the method of calculation and illustrative examples from the prediction of-kihdstr and

peptide solubility, and membrampermeability.

Culgi is sponsored by a consortium of industries from personal and home care industries, oil industries and chemical
industries.
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Figure 1 Coarsgrained prediction of diffusior
coefficients. Each point takes a few minut
calculationtime on one core.

1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches
to estimate solubility and permeability in drug discovery and development setfidganced Drug
Delivery Review4997,23 (1-3), 325.

2. Jorgensen, W. L.; Duffy, E. M., Prediction of drug solubility from structdrdvanced Drug Delivery
Review2002,54 (3), 355366.

3. Leung, S. S. F.; Mijalkovic, J.; Borrelli, K.; Jacobson, M. P., Testing Physical Models of Passive Membrane
PermeationJ Chem Inf Mode2012,52 (6), 16211636.

4. Leung, S. S. F.; Sindhikara, D.; Jacobson, M. P., Simple Predictive Models of Passive Membrane
Permeability Incorporating SiZBependent MembrarA@/ater Partition.J Chem Inf ModeR016, 56 (5),
924-929.

5. Matsson P.; Kihlberg, J., How Big Is Too Big for Cell Permeability?Med. Chem2017,60 (5), 1662
1664.

6. Fraaije, J. G. E. M.; Van Male, J.; Becherer, P.; Serral Gracia, R., G8eas®ed Models for Automated
Fragmentation and Parametrization of Moleculatabases]. Chem. Inf. ModeR016,56 (12), 23612377.

7. Fraaije, J. G. E. M.; van Male, J.; Becherer, P.; Serral Gracia, R., Calculation of Diffusion Coefficients
through Coars&rained Simulations Using the AutomatEchgmentatiofParametrization Methodnd the
Recovery of WilkefChang Statistical Correlatiodournal of Chemical Theory and Computat@il 7.

P-35: Molecular Dynamics Fingerprints (MDFP): Combining MD and Machine Learning
to Predict Physicochemical Properties

Shuzhe Wany Sereina Riniket
! Laboratory of Physical Chemistry, ETH Zurich, VladifRirelogWeg 2, 8093 Zurich, Switzerland

Molecular dynamics fingerprints (MDFP) are a novel approach that combines MD with cheminformatics modeling.

In brief, short simulations are performed on dmadlecules followed by extracting statistical moments of calculated
terms (e.g. potential energy components, radius of gyration, s@veeassible surface) to form fingerprint vectors.

Such MDFP are constructed for a set of molecules in different ssleewt physical states. Then, using supervised
machine learning (ML), models can be trained with MDFP as inputs to predict various physicochemical properties,
e.g. solvation free energy, partition coefficient, vapor pressure, melting point and solubiiity, ave important
guantities for both pharmaceutical and environmental research. MDFP are inforntiatescriptors that are

highly versatile and can easily be adapted to the property to be predicted (i.e. which physical states are simulated and
whichterms are calculated).

Recently: we have shown that solvation free energies in different solvents can be predicted accurately using the
MDFP-based approach. The models performed similarly to other more rigoraaiiico methods such as free
energy perturation (FEP) and COSM@S, with the added benefits of being easier to implement and
computationally less expensive. From the predicted solvation free energies, partition coefficients in numerous
mixtures can be obtained. When applied to the moleculeseirS&MPL5 blind challendgeretrospectively, the

98



Poster Session Abstracts RED

MDFP-based approach performed better than the submitted apprédadieesire further testing our approach by
participating in the current SAMPL6 blind challengln addition, we present a MDHRpased approacio tpredict
vapor pressure.

1. Riniker, S. Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data To Prediet Free
Energy Differences]. Chem. Inf. ModeR017, 57, 726741.

2. Bannan, C. C.; Burley, K. H.; Chiu, M.; Shirts, M. R.; Gilson, M. K.; lN&y, D. L. Blind Prediction of
CyclohexaneWWater Distribution Coefficients from the SAMPL5 Challenge Comput. Aided Mol. Des
2016 30, 927944.

3. Mobley, D. L. SAMPL6 Challenge Homepage, https://github.com/MobleyLab/SAMPL6 (accessed Jan 26,
2018).

P-37 Towards Small Molecule Inhibition of HSP90 Dimerization

D. Bickel, E. Ciglid, S. Bhatig, F. Hanse?) T. KurZ, J. Hauet, H. Gohlké

!Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Diisseldorf,
Dusseldorf, Germany Department of Pediatric Oncology, Hematology and Clinical Immunology,
Medicinal Faculty, Heinrich Heine University Dusseldorf, Disseldorf, Germany,
3pPharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Leipzig, Germany

Proteinprotein interactions are known to be involved in a wide variety of physiological and pathophysiological
processes. Thus, the interest in targeting prgisatein interfaces in drug discovery is increasing steadily.

The heat shock protein of 90 kDa (HSP®@s shown to be involved in malignant transformation and tumor
progression in several cancer cell lines. As such, HSP90 represents an attractive target for canceil trgetng

the dimerization interface in the-t€rminal domain should provide a r@dway to interfere with HSP90 function.
Here we present an approach for deenovadesign of dimerization inhibitors for HSP9O0.

The approach is based on a structural analysis of the dimerization interface of HSP90 and prediction of binding
hotspots, usg a structural decomposition of the effective energy of binding, computed byGRISA
calculationd. Afterwards, these hotspots were used to guide the development of rwsgasmpeptide and
peptidomimetic inhibitors These were tested in enzymatic aetlular assays, demonstrating their ability to inhibit
HSP90 dimerization as well as aptioliferative activity against various tumor cell lines.

In order to find a set of drulike small molecule inhibitors, we used the most active peptidic compamtsad
structures for a pharmacophernd shapéased virtual screening. Refining the queries to emphasize interactions
with previously identified hotspots, we were able to obtain smaller molecules with improved physicochemical
properties. In a prelimimg screening, arproliferative activity in the lower uM range could be confirmed for some

of these compounds. This highlights the possibility to identify dilkegproteinprotein interaction inhibitors from
structural analysis of the dimerization inteé.

1. Whitesell, L.; Lindquist, S. L., HSP90 and the chaperoning of caNe¢iRev Cance?2005,5 (10), 76172.

2. Ciglia, E.; Vergin, J.; Reimann, S.; Smits, S. H.; Schmitt, L.; Groth, G.; Gohlke, H., Resolving hot spots in
the Gterminal dimerization donia that determine the stability of the molecular chaperone HIpRES
One2014,9 (4), e96031.

3. Bopp, B.; Ciglia, E.; Oual€Chaib, A.; Groth, G.; Gohlke, H.; Jose, J., Design and biological testing of
peptidic dimerization inhibitors of human Hsp90 trerget the @erminal domainBiochim Biophys Acta
2016,1860(6), 104355.

4. Diedrich, D.; Moita, A. J. R.; Ruther, A.; Frieg, B.; Reiss, G. J.; Hoeppner, A.; Kurz, T.; Gohlke, H.;
/[*GHNH 6 .DVV RPAmMkox OlRjopeptides: Synthesis, Secondamu&tre, and Cytotoxicity of
a New Class of Anticancer Foldame@hemistryA European Journa2016,22 (49), 1760017611.
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P-39:Reverse Virtual Screening Procedure for Identifying the Target of an
Antiplasmodial Hit Compound

Simone Brogt, Giulia Cheni?, Stefania Butint, Margherita Brindist, Giuseppe Campiahi
Sandra Gemma Soon Goo Le& Joseph Jez

'European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of
Biotechnology, Chemistry and Pharmacy DdE 2Q082, Univerdy of Siena, 53100 Siena, Italy,
“Department of BiologyVashington University, St. Louis, USA

Phenotypic screening has become a crucial approach to discovery novel compounds, especially in the field of anti
cancer and aninfective agents.Despite recent advances, phenotyhiven target identification remains a
challenging task that could be approached through several methodologies including biochemical methods, genetic
interactions, computational approaches, or most likely by combinam.tin the framework of antimalarials drug
discovery in my research group, we focused our attention on the MMV Malaria Box compound MMV019#18 (
[5-(4-broma-2-chlorophenyl) furarR-yl]-N-[(piperidin-4-yl)methyllmethanamine) for its dual activity against
asexual stages and gametocytes. After a struatttieity relationship study based on phenotypic screening and
cytotoxicity evaluation, we selected derivativeé (1-(5-(2-phenyt4-chlorophenyl)furar2-yl)-N(piperidin-4-
ylmethyl)methanamine) as a promisiagtimalarial agent. To further optimize derivat®eour next challenge was

to understand its target and its mechanism of action. To this end, a computational effort for identifying the drug
target of2 is described herein. Hit compouridand its optimied analogue2 were used in a reverse docking
procedure, also known as reverse virtual screening or target fishing. Firstly, we retrieved from the PDB database all
the proteins relevant fa?lasmodiurnbiology (108 crystal structures). Next, compouddnd2 ZHUH XVHG WR 3ILVK
potential targets, employing a higlroughput docking procedureising Glide and Prime softwdragainst the
mentioned proteins after appropriate preparation. ifitglico results indicated a small number of potential targets

for 1 and 2 due to unfavorable docking scores and ligand binding energies found among the examined docking
complexes. For one protein (phosphoethanolamine methyltransfé?#&,T) we noted for both compounds
favorablein silico scores. InterestinglPfPMT, an @zyme necessary for the phospholipid biosynthesis in all stages

of the parasite life cycle, is a validated drug target for which few inhibitors, mainly related to the natural substrate
(AdoMet), have been described so ¥aGratifyingly, enzymatic assaysstablished that botl and 2 inhibited

PfPMT. Although1 showed a weak inhibitory profile, compouddisplayed a significant inhibition dPfPMT

(70% of residual activity oPfPMT at 100 puM), so it was used as hit compound for developing a novel series of
antiplasmodial and transmissitocking agents. According to the composition of the binding site, a streuhges
approach based on molecular docking and molecular dynamiss performed, exploring different decorations of

the hit molecule2, also cosidering the synthetic accessibility. With the introduction of a methoxy group on the
phenyl ring we obtained one of the best performing molecBeq2¢(5-(5-chloro-3-methoxy[1,1-biphenyl}
2ylfuran-2-yl)-N-(piperidin-4-ylmethyl)methanamine)) in terntd computational scores, confirmed ioyvitro tests
againstPfPMT (3: 38.7% of residual activity oPfPMT at 100 uM). Briefly, employing diverse computational
methods we identifiedPfPMT as drug target for the antiplasmodial hit compo@ndbund througha phenotypic
screening, and we optimized its activity obtaining more potent inhibitors typifie8l Byre acquired knowledge

about PfPMT will allow the rational design of potefPMT inhibitors for developing antimalarials with an
innovative mechanism aiction.

1. Brindisi, M.; et al Structurebased discovery of the first naovalent inhibitors ofLeishmania major
tryparedoxin peroxidase by high throughput dock®g. Rep2015 5, 9705

2. Glide, version 6.6; Prime, version 3.9; Desmond, version 4.¥(8itlyer, LLC, Release 2015

3. Lee, S. G.et al Structure and reaction mechanism of phosphoethanolamine methyltransferase from the
malaria parasite Plasmodium falciparum: an antiparasitic drug tadrgBtol. Chem2012 287(2), 1426
134
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P-41: Conforntgonal Sampling and Binding Affinity Prediction of Macrocycles

Daniel Cappet
! Schrodinger GmbH, Q7 23, 68259 Mannheim, Germany

When optimizing ligand binding to a target protein during the drug design process a macrocyclic structure of the
ligandcan @ RYLGH DGYDQWDJHY ODFURF\FOLVDWLRQ LV DQ HIIHFWLYH ZD!'
compared to acyclic inhibitors with the potential to improve potency, selectivity and metabolic stability.

In the context of computationaHlyriven drug @sign this diverse class of chemical structures provides some
challenges when it comes to conformational flexibility. Here we will discuss a method for exploring macrocyclic
conformational space and the results of a benchmarking’simdthis algorithm.A dataset of 208 structures was
curated from the Cambridge Structural Database, the Protein Data Bank and the Biologically Interesting Molecule
Reference Dictionary. A conformational search algorithm using the program Prime reproduces the crystal structure
conformations in a highly accurate way and is fast compared to other published approaches. The sampling algorithm
is also used in the context of a membrane permeability prediction protocol for macrocyles.

Furthermore, results for binding affinity predat using the FEP+ framework for macrocycles are presénfeel.

have applied the method to 7 pharmaceutically interesting data sets taken from recent drug discovery projects
including 33 macrocyclic ligands covering a diverse chemical space. The preiintialg free energies are in
excellent agreement with experimental data, with an overall root mean square error (RMSE) of the predictions below
1 kcal/mol.

1. Sindhikara, D.; Spronk, S. A.; Day, T.; Borelli, K.; Cheney, D. L.; Posy, Siiproving Accuracy,
Diversity, and Speed with Prime Macrocycle Conformational Samplnghem. Inf. Model2017, 57,
1881-1894.

2. Yu, H. S;; Deng, Y.; Wu, Y.; Sindhikara, D.; Rask, A. R.; Kimura, T; Abel, R.; Wang, L. Accurate and
Reliable Prediction of the Binding Affinitiesf Macrocycles to Their Protein Targets. Chem. Theory
Comput.2017 13, 62966300.

P-43:Using FEP (Free Energy Perturbation) Calculations to estimate relative binding
affinities and selectivity for GPCR targets

Francesca DeflorigrBenjamin G Tehanlonathan S Mason, and Miles Congreve
Heptares Therapeutics Ltd

G proteinrcoupled receptors (GPCRs) are the largest family of membrane proteins. GPCRs are involved in a wide
variety of cellular functions, serving as key players in cellular signalling. Emng ligand binding from outside

the cell leads to conformational changes of the receptor and consequential pairing with signalling partners in the
LQWUDFHOOXODU HQYLUR Q P H einésting Xifitiating \sighal StdrisdudtddnQavid Dteduda
responses. GPCRs mediate an abundant variety of physiological responses throughout the body representing pivotal
candidate drug targets for the pharmaceutical industry.

The accurate estimation of protdigand binding free energy can be cruciattet lead generation and optimization
stages of a drug discovery program. Free energy calculations take into account protein flexibility and system
solvation, both very important aspects in the ligand binding process for GPCRs. In this poster we presanitshe

from FEP studies using FEP+ in collaboration with Schrodinger on GPCR targets offering different challenges to the
methodology.

The Orexin receptors have binding sites located in the TM domain andiwialging interactions are crucial for
ligand binding. We were also interested in selectivity between the subtypes OX1 and OX2 receptors with high
sequence similarity in the ligand binding region. Usinga) structures solved using the Heptares StaR® technology

of the OX1 receptor in complex witlegeral ligands, we conducted both retrospective and prospective FEP+ studies
with the aim to design selective OX1 antagonists.

The second target was the calcitonin geslated peptide (CGRP) receptor, a receptor with a very shallow and
solvent exposed biting site for norpeptide ligands. In this particular study, the ligands were small molecule
antagonists and thouse crystallographic structures of the CGRP binding site were used to support the program.
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P-45: Can | Have Seconds?

T. Brinkjost?, C. Ehrt?, P. Mutzel, O. Koclt

Department of Computer Science, TU Dortmund University, Germany,
“Faculty of Chemistry and Chemical Biology, TU Dortmund University, Germany

The automated assignment of secondary structure elements hastarforfystory sinceheir first discovery. A

reliable and in particular consistent assignment is of utmost importance for a multitude of applications in-structure
based drug design and function elucidation such as protein structure ali§rpoéyharmacology and conserved
motifs?, secondary structure predictipror the concept of ligargensing corés A variety of different approaches

have been developed that rely on either hydrogen bond criteria, geometrical characteristics or a combination of both
to allow for a reliabl@ssignment.

An alternative approach, SHAETwas dedicated toward the assignment of helices based on a structural
classification of different turn types. Herein we will present SCOT (Secondary structure Classification On Turns)
which optimizes and extes this basic idea to assign various helix types and sheets via a combination of hydrogen
bond and geometric characteristics.

Our novel method SCOT utilizes a hierarchical assignment of protein structural elements. Starting from the initial
level of turntypes, we identify right handed alpha3io-, pi-, and gammdelices as well their lethanded
counterparts for the first two types. Sheets are identified in seetlinomegions which interact with each other.
Furthermore, both, helices and sheets, areotted with additional kink information. As for helices, kinks are also
annotated with an individual classification reflecting the classes of the incident helix segments. This information will
additionally help to compare proteins on the secondary steitgvel, as in most cases the conformation of helices
and sheets highly deviates from its ideal one.

Summarizing, with a classification for turns, helices and sheets, SCOT fulfills all basic needs for a reliable protein
structure classification which wihopefully be of high interest in structubased design and protein engineering.

1. Ma, J.; Wang, S. Algorithms, applications, and challenges of protein structure alig@dentProtein
Chem. Struct. BioR014 94, 121-175

2. Koch, O. The Use of Secondaryr@&tture Element Information in Drug Design: Polypharmacology and
Conserved Motifs in Proteihigand Binding and ProteiRrotein Interfaced-uture Med. Chen2011, 3(6),
699-708.

3. Yang, Y.; Gao, J.; Wang, J.; Hefferman, R.; Hanson, J.; Paliwal, K.; ZhoBix¥five years of the long
march in protein secondary structure prediction: the final stretch? Briefings BROAG bbw129.

4. Koch, M. A.; Waldmann, H. Protein structure similarity clustering and natural product structure as guiding
principles in drugliscovery.Drug Discov. Today005 10(7), 471-483.

5. Tyagi, M.; Bornot, A.; Offmann, B.; de Brevern, A. G. Analysis of loop boundaries using different local
structure assignment methdesotein Sci2009 18(9) 18691881.

6. Koch, O.; Cole, J. An automated thed for consistent helix assignment using turn informatRroteins
2011, 79(5), 14161426.

P-47:Virtual Screening of CCR5 Inhibitors as PotentialChtdrectal Cancer
Agents

M. El-Zohairy?, Y. Mandout, H.Adwar? D. Zolotos

! Department of Pirmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German
University in Cairo, New Cairo, EgyptDepartment of Pharmacology and Toxicology, Faculty of
Pharmacy and Biotechnology, The German University in Cairo, New Cairo, Egypt

CCR5 is Gprotein FRXSOHG UHFHSWRU 3*3&5" ZLWK VHYHQ WUDQVPHPEUDQH ORI
with the corresponding ligand leads to subsequent downstream signaling. CCR5 is commonly expressed by T
lymphocytes, which acts as a-meceptor in the mostRPPRQO\ WUDQVPLWWHG +XPDQ LPPXQRGHII
for their entry to host celf?
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Recently, it was observed that CCR5 receptor is highly expressed on tumor cells in liver metastatic colorectal cancer.
Inhibition of this receptor in the patienteated with Maraviroc a CCR5 inhibitor. Showed a decrease in growth

signals for tumor cells and resulting in slowing down of tumor development. Through interfering with@IRS
axis.@ @ @ ©)

Our aim is to use virtual screening to detect new m@k CCR5 inhibitors that will be more active as anti
colorectal cancer agents.

A Pharmacophore model for CCR5 inhibitors was generated by clustering of CCR5 binding database composed of
2827 Compounds based on their scaffolds and their finger pmiiagty. Then the most active representative from

each scaffold was selected. The 39 selected representatives were aligned on the bioactive conformer of Maraviroc,
which is obtained from the exrystalized structure of Maraviroc bound to CCR5 receptor®FRGH 3 0% 6"~ $IWE
alignment this selected representatives generates a Pharmacophore model using MOE. The generated model was in
consensus with the reported pharmacophoric features and point mutations of the receptor. The model was validated
using a tesset composed of 1255 compounds. 1160 compounds are actives and 95 compounds are in actives and
decoys. This model was further used in virtual screening for potential CCR5 inhibitors.

1. Oppermann, M. (2004). Chemokine receptor CCRS5: insights into strudumetion, and regulation.
Cellular Signalling, 16(11), 1261210. doi:10.1016/j.cellsig.2004.04.007

2. Bronte, V., & Bria, E. (2016). Interfering with CCL5/CCR5 at the Tw8tmoma Interface. Cancer Cell,
29(4), 437439. doi:10.1016/j.ccell.2016.03.019

3. Deming, D. A. (2016). Advances in immunotherapeutic strategies for colorectal cancer commentary on:
tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectivelyOGRanti
therapy in cancer patients by Halama et al. rdalu for ImmunoTherapy of Cancer, 4(1).
doi:10.1186/s4042516-0197y

4. Kuritzkes, D., Kar, S., & Kirkpatrick, P. (2008). Maraviroc. Nature Reviews Drug Discovery, 7(1:85.15
doi:10.1038/nrd2490

5. Pervaiz, A., Ansari, S., Berger, M. R., & Adwan, H. (2D1ECRS5 blockage by maraviroc induces
cytotoxic and apoptotic effects in colorectal cancer cells. Medical Oncology, 32(5). doi:10.1007/s12032
015-0607-x

P-49: SILCS reproduces experimental binding trends for 31 TrmD ligands

SK Lakkaraju', O Guvench, S Jd, AD MacKerell, Jrt?

!SilcsBio, LLC, Baltimore, MD, USAUniversity of Maryland, School of Pharmacy, Baltimore, MD,
USA

Site-ldentification by Ligand Competitive Saturation (SIL&ESEomputational functional group mapping provides
insights intothe binding preferences of a target protein that can be used both qualitatively and quantitatively to drive
ligand design. SILCS is a robust structbased approach that gives informatioch Grid Free Energy (GFE)
FragMaps that account for critical &ss such as protein flexibility, desolvation penalties, as well as protein
functional group interactions.

Here we describe the use of the SILCS approachRINA methyltransferase (TrmD) and 31 ligands belonging to
two series made publicly available thgtuthe Community StructurActivity Resource (CSAR) and the D3R
Database. SILGMC sampling of ligands in the field of the FragMaps yields Ligand Grid Free Energy (LGFE)
scores. SILCS scoring correctly predicts favorable vs. unfavorable modificatiomgerédad reference ligand (27/30
predictions correct). Additionally, SILCS FragMaps recapitulate functional group patterns of both series of ligands.
This information can be used to drive design and optimization visually.
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1. Guvench, O. and MacKerell, A.DOr. Computational FragmeBiased Binding Site Identification by Ligand
Competitive SaturatiolPLoS Comput. BioR009 5, €1000435.

2. Raman, E.P., Yu, W., Guvench, O. and MacKerell, A.D., Jr., Reproducing Crystal Binding Modes of
Ligand Functional Groupgsing Siteldentification by Ligand Competitive Saturation (SILCS) Simulations.

J. Chem. Inf. ModeR011, 51, 877890.

3. Lakkaraju, S.K., Raman, E.P., Yu, W., and MacKerell, A.D.Sa&mpling of Organic Solutes in Aqueous
and Heterogeneous EnvironmentsngsiOscillating <x Grand Canonicdike Monte CarleMolecular
Dynamics Simulationsl. Chem. Theory Comp@014 10, 22812290.

4. Raman, E.P., Yu, W., Lakkaraju, S.K., and MacKerell, A.D., Jr. Inclusion of multiple fragment types in the
Site Identificationby Ligand Competitive Saturation (SILCS) approagdhChem. Inf. Model2013 53,
33843398.

P-51: Fuzzy ligands for allosteric target detection and lead identification

S. M. A. Herman$, C. Pfleget, D. Schmidt, M. Boehn?, A. M. MathiowetZ, C. L.
McClendor?, K. Omotc?, H. Gohlke™

! Department of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal
Chemistry, Heinrich Heine University Dusseldorf, Diisseldorf, Gernfavigdicine Design, Pfizer Inc., 1
Portland Street, Camllge, Massachusetts 02139, United States, *Email: gohlke@uesseldorf.de

Targeting allosteric regulation in biomolecules is a promising strategy in drug discovery, due to advantages over
conventional orthosteric ligandsHowever, the identification ohovel allosteric pockets is complicated by the

variety of allosteric mechanisms, differing by the extent of conformational change upon ligand binding. Particularly,
dynamic allostery, which can occur in the absence of conformational chandifjcult to detect from static crystal
VWUXFWXUHYVY DORQH +HUH ZH GHYHORSHG DQ DSSURDFK IRU JHQHUDWL
which allosteric responses can be calculated by rigidity andlysis.

The performance of the fuzzy ligand appeh was applied to 85 proteigand complexeé.For theapo states,

generated by removing the original ligand from the protein, pockets were identified using PocketARtfatyzer
DrugScore paipotential§ were calculated for each of the binding pockets] ased as input to guide the design of

fuzzy ligands. The allosteric transmission caused by (fuzzy) ligand binding was determined by an enassble
perturbation approach that analyses biomolecular rigidithie fuzzy ligands were validated 1) in termf their
LQIOXHQFH RQ ELRPROHFXODU ULJLGLW\ FRPSDUHG WR WKH 3WUXH” OLJD
on fuzzy ligands allow for a successful identification of binders anebimafers in a retrospective virtual screening.

Altered pefresidue stability characteristics from rigidity analysis of our fuzzy ligands are in agreement with those

IURP 3 WUXH” OLJDQGYV 7KH YLUWXDO VFUHHQLQJ UHVXOWY EDVHG RQ IX]]
OLIJDQGVY UHVXOWYV

Analyzing urexplored pockets with our fuzzy ligand approach predicts whether binding a ligand to this pocket
triggers an allosteric response to affect biomolecular function. If an allosteric response is present, the fuzzy ligand
can be used for virtual screening toedily identify lead compounds for the identified target. The fuzzy ligand
approach can thus be a promising step towards identifying novel allosteric drug targets and drugs.
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1. Nussinov, R.; Tsai, C.J. Allostery in disease and in drug disco@etly.2013 153, 293305

2. Cooper, A.; Dryden, D.T., Allostery without conformational change. A plausible mBdel.Biophys.J.,
1984 11, 103109

3. Pfleger, C.; Minges, A.; Boehm, M.; McClendon, C. L.; Torella, R.; Gohlke, H. Ensemmbtk Rigidity
TheoryBased Perturliton Approach To Analyze Dynamic Allostedy ChemTheory. Comput2017, 13,
63436357

4. Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.M.; Mortenson, P.N.; Murray,
C.W. Diverse, highguality test set for the validation of pratdigand docking performancd. Med. Chem
2007, 50, 726741

5. Craig, I.R. ; Pfleger, C.; Gohlke, H.; Essex, J.W.; Spiegel, K. Pagate maps to identify novel binding
site conformations in proteind. Chem. Inf. Model2011, 51, 26662679

6. Gohlke, H.; Hendlich, M.; Klebe, G. Knowledgbased scoring function to predict protdigand
interactionsJ. Mol. Biol, 200Q 295, 337356

P-53:A fast and efficient rescoring mettaded on binding information of fragment
and drugdike ligands

Célien Jacquennd!, Malgorzata N. Drwa| Carlos Perez Jérémy DesapRyEsther
Kellenberget

'!'DERUDWRLUH GTLQQRYDWLRQ WKpUDSHXWLTXH 805 &156 8
France,’Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, 11988 USA3Lilly
Research Laboratories, Eli Lilly and Company, 28108 Alcobendas, Madrid, Spain

Protein structurdased computing approach to hit finding in Fragnisaded drug design (FBDD) is not yet a
reliable alternative to experiments, mostly becaus®w incomplete understanding of molecular interactions.
Recently, we analyzed the binding modes of fragments andlideutigands bound to four diverse targets in the
Protein Data Bank (PDB), and found that the two classes of compounds binding tontheasaty tend to have
comparable interaction patterhklere we ask whether the binding mode information of fragments can improve the
performance of molecular docking of drlige ligands andrice versaOur study compares two rescoring methods:
the max RIM method, which encodes reference ligammdtein interactions in individual graphand the new LID
method based on a consensusdidsity map built from the reference interactions.

Material and method$ocking was performed using PLANTP®o0ses were sced using ChemPLP and rescored by
similarity to interaction patterns found in the reference PDB complexes. The reference dataset includes 2702
crystallographic structures and describes 66 proteins, 72%likeutjgands and 964 fragments. Each protein is
represented by at least three-8fuctures of complexes with at least one dikg ligand and one fragment.

Results (1) Pose selectiofror all the compounds, we performed all possible edmeking experiments and
observed that drutike ligand bindinginformation always improved fragment docking, but the opposite was only
true for difficult targets. Combining the binding information of diikg ligands and fragments was the most robust
rescoring option(2) Virtual screeningWe evaluated GRIM and LIperformances in compound ranking using the
DUD-e benchmark available for six of the 66 proteins in the reference set. The two rescoring methods better
discriminates active compounds from decoys than the native scoring function.

ConclusionGRIM and LID mehods equally well improved docking predictions. LID is 100 times faster than GRIM
thereby allowing largecale calculations, such as the rescoring of multiples poses obtained for a ligand docked into
multiple structures of the protein. Building of LID cemsus 3Edensity map however implies that all 3fructures

of the reference complexes are well-aligned.

1. Drwal, M.; Jacquemard, C.; Perez, C.; Desaphy, J.; Kellenberger, E. Do Fragments And Crystallization
Additives Bind Similarly To Druglike Ligands?.Journal of Chemical Information and Modelir&917,
57, 11971209.

2. Korb, O.; Sttzle, T.; Exner, T. Empirical Scoring Functions For Advanced Protégand Docking With
PLANTS. Journal of Chemical Information and Modelieg§09 49, 8496.

3. Desaphy, J.; Raibaud, E.; Ducrot, P.; Rognan, D. Encoding Profgigand Interaction Patterns In
Fingerprints And Graphdournal of Chemical Information and Modelig§13 53, 623637.

4. Mysinger, M.; Carchia, M.; Irwin, J.; Shoichet, B. Directory Of Useful Decoys, Erdth(RUD-E): Better
Ligands And Decoys For Better Benchmarkidgurnal of Medicinal Chemistr012 55, 65826594.
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P-55: Mapping Binding Site Thermodynamics by 3D RISM Theory for Drug Design

Julia JasperYannic Alber, Florian Mrugalla, Stefan Kast, Oliweoch
Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany

The early stages of the drug discovery process require reasonably accurate and fast methods for optimising the
binding affinity of proteinligand complexes, taking into accdufirect and solventediated interactions. Inspired

E\ *RRGIRUGYTV *5we RerbVpiese@ a novel physlmmsed approach that incorporates-)YsEvation
contributions to the binding thermodynamics of probe particles mimicking functional ligandsgirowp protein

binding site. To this end, we calculate the potential of mean force (PMF) and the distribution functions of different
probes (uncharged C, charged N and O) insideaff®protein by 3D RISM (reference interaction site model)
theory?S,

The nethod allows for an intuitive and easy visualization of probe density maps inside the binding site (Fig. 1) and
can be exploited for various tasks in the drug development process. Applications range from pharmacophore and
dockingbased virtual screening up defining design directions for medicinal chemists. In a first proof of concept
study, the PMF results were embedded into the GQldaking process on a subset of the PDBbind d&ta&at
uncharged C probe is used to calculate hydrophobic fitting pthiatsare used for ligand placement throughout the
docking process. These 3D RISM based points display a more detailed representation of hydrophobicity yielding
improved docking success (Fig. 2).

Figure3: a) Density maps for @nged N (dark volumes) and O (light volumes) probes calculated faptierotein
structure of Thnn@pdb; b) binding site of Thnn@pdb with thergstallized ligand.

Figure 4: Fitting points for 1nav@pdb as calculated by a) GObBsed on the van der Waals interaction energy
between a bare C atom and the protein) and by b) our RISM based approach (uncharged C probe with a PMF
threshold of7.5 kJ/mol).

1. Goodford, P. J. A Computational Procedure for Determining Energetically &#dgoBinding Sites on
Biologically Important Macromoleculed. Med. Chem1985 28,849857.

2. Mrugalla, F.; Kast, S. M. Designing Molecular Complexes Using -Emergy Derivatives from Liquid
State Integral Beption TheoryJ. Phys. Condens. Matt@016 28, 344004.

3. Gussregen, S.; Matter, H.; Hessler, G.; Lionta, E.; HeiKdst, S. M. Thermodynamic Characterization of
Hydration Sites from Integral Equatidderived Free Energy Densities: Application to PiotBinding
Sites and Ligand Serie$. Chem. Inf. ModeR017, 57, 16521666

4. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic
Algorithm for Flexible DockingJ. Mol. Biol. 1997, 267, 727+#48.
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5. Li, Y.;Liu, Z; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R. Comparative Assessment of Scoring Functions on
an Updated Benchmark: 1. Compilation of the TestB&hem. Inf. ModeR014 54, 17004716.

P-57:Structure based design of potent and selective kgandhe adenosine
receptor family

W. Jespers 2 G. van Westefy R. Cooké, J. MasoR, A. IJzerman L. Heitmart, J. Azuajé, J.
Aqvist!, E. Sotel6, H. Gutierrezde Terart

! Uppsala University, Uppsala, Swedéhgiden University, Leiden, the Nettands,® Heptares Ltd.,
Hertfordshire, UK,* Universidade de Santiago de Compostela, Santiago de Compostela, Spain

The four adenosine receptors (ARS), Aza, Azs, and A, constitute a subfamily of G proteaoupled receptors
(GPCRs) with exceptionalbbfindations for structurbased ligand desighRecent advances in membrane protein
engineering and crystallography have sparked a surge of experimental GPCR structures. Among these structures,
ARs have emerged as one of the most thoroughly characterindb$awith AJAR and AAAR inactive structures,

and active structures of the latfer.

Figure 1. Thermodynamic cycle illustrating the calculation of the relative shift in binding free energy (vertical legs),
which theoretically matches the data from ekpents (horizontal legs) between two systems A and B. These can be
two ligands binding to the same receptor or the affinity of one ligand for two constructs of the receptor (i.e. WT and
single-point mutant), active and inactive receptor states or prpteitein interactions such as GP@Rprotein.

| will present results of our AR ligandesign program, where we combine advanced strubased computational
methods with efficient synthetic approaches (see FigufePHrticular emphasis is put on the d®pment and
application of free energy perturbation (FEP) protocols to modulate binding affinity, receptor selectivity and
pharmacological profiles for our ligand series. With these protocols, we have recently provided a detailed
understanding of the effes of point mutations on ligand binding on the.AR® and AAR*, the conformational
preference of partial agonists of thesAR* and assisted on the design of pyridines as a novel chemical structure for
AsAR antagonists from our previous series of pyred® Currently, we are investigating the role of mutations in the

G protein binding site in receptor activation and their role in breast cancer. Additionally, we are designing the first
nonribose agonists for the,Areceptor. Finally, we apply our pratol to understand the binding mode of a series of
chromones for the AAR, a method we recently applied to predict the binding mode of orphan GPCR GPR139
agonists

Gutiérrezde-Teran, H. et alCurr. Top. Med. Chen2017,17 (1), 40+58.

Jespers, W. dl. Trends in Pharmacological Sciencé&dsevier Ltd 2018, pp 789.
Vasile, S. et al. Humana Press, New York, NY, 2018; pg23

Jespers, W. et dllolecules2017, 22 (11).

Azuaje, J.; Jespers, W. etadlMed. Chem2017 60(17), 75027511.

Nghr,A. C.; Jespers, W.; Shehata, M. A. etSdi. Rep2017, 7 (1).
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P-59: Transferable Neural Networks Architecture for Low Data Drug Discovery

Mun-Hwan Leée', EungHee Kim, Ph.D?, YongJu Leé, HongGee Kim, Ph.D*

! Biomedical Knowledge Engineeringlh.aSeoul National University, SeoRlepublic of KoregDept. of
Global Software EngineeringSunmoon UniversityAsansi, Republic of Korea

Introduction ODFKLQH OHDUQLQJ 0/ fV DGYDQFHV LQ YLUWXDO VFUKHQLQJ 96
discovery accompanied by novel approaches based on deep neural networks (DNN). However, such techniques
require a considerable volume of both training and test data, in order to achieve comparable results. While certain
models have managed to learnnfremall datasetsthey optimize only within the defined range of data which is
nontransferable. Thus, the current limitation in ML models necessitates the need of a universal architecture for
generalization regardless of dataset size. In this study, apoge a transferable DNN to overcome such limitations

in generalizing abilityby incorporating binary response (positive or negative) rather tharfixemh output
dimensionsdepending on a datas&/e demonstrate that the proposed architecture is camalgarh transferable
informationbetween variedatasets

Figurel. Overview oftransferable DNN

Method The proposed modeatonsists offeature extractiorand prediction model by implementing proteoche
mometric (PCN approaches, which utilize the additad use of protein informatioas shown inFigure 1. First,
ExtendedConnectivity Fingerprints (ECFPand Mol2Vec were exploited for compound feature extraction and
ProtVec for target proteirthe dataset comprised both positive and negative exampleadorfeature pes, which

can bemathematicallydefined as

Secondseparatedayers pass the paired data into concatenated layer for classifieéiadjusting the dimensions
of hidden nodes through separated layerspibdelcan prevent a dispropostis between feature dimensions (e.g.
between 2048&limension for compounds and 288nesion for targets), and avoid bias.

Experiment and ResulThe poposedmodelswere trained on PubChem BioAssayPCBA), and evaluated on
Maximum Unbased Validation (MUV)and Tox21 as a query dataset. To justify the generalization ability of the
model, weremovedoverlapping data from evaluation datasgetorder to avoid learning bias in skewed distribution,

the same number of positive and negative pairs were extracéadlincompound. This resulted361,632 positive
examples an®61,632 negative example©ur proposed networks consist ®keparated layers and 1 concatenated
layer.For training the networks we used stochastic gradient descenfdaiitive Moment Estimtion (Adam). We

used 50% of dropout on the hidden layers to prevent overfitting of the networks. The proposed model shows better
performance over the randeforest baseline as shown in Table 1, Table 2, and Table 3.
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Table 1. ROCAUC Scores of Models olledian Heldout Task for Each Model on Dataséts

' Models MUV Tox21
Proposed Model 0.730+ 0.079 0.772+ 0.067
RF (100 treey 0.661+ 0.081 0.709£ 0.100

2Numbers reported are whars and standard deviations.

Table 2. ROCGAUC Scores of Models on Each Sk on MUV

Models MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -MUV -
466 548 600 644 652 689 692 712 713 733 737 810 832 846 852 858 859

Proposed Model 0.755£0.6840.7770.64€0.84C0.8320.7820.8680.7160.8230.7300.7300.6890.6170.6810.61£0.657
RF (100 tree} 0.7350.6670.57€0.54€0.77€0.76€0.6350.7800.63C0.69€0.7230.7020.6610.5630.6220.61€0.528

Table 3. ROCGAUC Scores of Models on Each Tasks on Tox21

NR- NR-AR- NR- NR- NR- NR-ER- NR-PPAR SR SR- SR- SR- SR-
Models AR LBD AhR  Aromatase ER LBD gamma ARE ATAD5 HSE MMP p53
Proposed Model 0.636 0.762 0.741 0.782 0.628 0.714 0.721 0.783 0.800 0.807 0.826  0.829
RF (100 treep 0461 0528 0.666 0.763 0.583 0.641 0.701 0.749 0.732 0.718 0.746 0.772

Conclwsion We propose dransferablddNN to improve a learning modeély transferring information from abundant
dataset$o small datasets. This allows generalization ability for ML models with various feature extraction methods
in a scalable wayWe alsodemongrated that the model learns transferable ability for various size of datasets
especially in small onén the future workwe are planning to augment transferability to multitask deep learning for
robust performancky adoptingconventionatransferearring approaches.

Acknowledgementsthis work was partly supported by Institute for Information & communications Technology
Promotion(lITP) grant funded by the Korea government(MSIP) (No.20Q@398, Development of drug discovery
software based on big datapd the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT and future Planning (No. NRB17R1A4A1014584, Epigenetic Regulation of Bone & Muscle
Regeneration Lab)
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P-61: Tetris of HDAC Inhibitor Design

J. Melesind T. Heimburd, T. Bayet, E. Ghazy, M. Marek?, P. Zeyeh K. Schmidtkun2, D.
Robad, R. Pierc& C. Romief, M. Jund, W. Sippl*

Institute of Pharmacy, Martin Luther University Halgittenberg, Halle, GermanyDépartement de
Biologie Structurale Intégrative, IGBMC, Université de Strasbourg, CNRS, INSERM, lllkirch Cedex,
France °Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Gerrfidniyersity of
Lille, CNRS, INSERM, Institute Pasteur de Lille, U1O0LMR 8204- CIIL - Centre d'Infection et
d'Immunité de Lille, Lille, France

What is common between eghpuzzle game Tetris and design of histone deacetylase (HDAC) inhibitors? After
several years of research dedicated to-pantasitic and anttancer drug development it became clear that in both
cases it is all about the shape. Just like Tetris tiles, Eibitors have specific shapes, which determine their
selectivity (Fig. 1). Just like Tetris tiles, HDAC inhibitors fit to the cavity if their shape is complementary to it. And
if not, then the unoccupied cavities and unemployed opportunities for dsigncdare left.

Figure 1. Shapes and binding modes of HDAC inhibitors:sijabed inhibitoSAHA, PDB ID 4LXZ*; b) Jshaped
inhibitor 20Y, PDB ID 4LY1}; c) L-shaped inhibitol9F4, PDB ID 4CBT; d) Oshaped inhibitoNU7, PDB ID
3ZNS.

Our quest for noveHDAC inhibitors started with virtual screening campaign on a newly validateeparatsitic
targetSchistosoma mansoRiDAC8 (SmHDACS). Around 15 million compounds have been screénadico to

find first SMHDACS inhibitors (Fig. 24) One of the virtulascreening hits a fragmentsized moleculg1038(Fig.

2b) - has been chosen for further optimization. An epgh Qshaped analoy/V4 was designed (Fig. 2c), which
targeted HDACS8specific side pocket and unique SmMHDACS8 amino acid residue H292. Its crystal structure with the
target protein confirmed th@redicted binding mode (Fig. Zd)

JLIXUH "H V L J @hBRpleddHRXE iBhibitors: a) virtual screening workflow used to find first SmMHDACS8
inhibitors* ; b) chemical structure of virtual screening Bit038¢8 F FKHPLFDO VWUXFWRpedH RI RSW|
inhibitor UV4® G E L QG L Q Jstiaped idhiBitbt#/4, PDB ID 5FUE.

$ OLEUDU\ R-bhaped WyknddJhas been designed and docked to different HDACs. The most promising
candidates were synthesized and tested. Their potency and selectuityemaoptimized

+RPRORJ\ PRGHOV RI YDULRXY SDUDVLWLF +'$&V KDYH EHHQ SUHSDUHG LC
shaped inhibito’s ) X UW K H U P R U Hshdpet iHHibitdisvveRd developed as antineuroblastoma agélhia

all, our omputer DLGHG PROHFXODU GHYV L-3l@pdd HOUWR Dilfikktorsl. WidcE drGved to be

promising drug candidates.
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P-63: Applications of Binding Free Energy Calculations and QSAR Modeling to
Design Novel Inhibitors for Human Mytl Kinase

A. Najjar, C. Platzer, M. Schmidt, W. Sippl

Institute of Pharmacy, Martin Luther University of Halldittenberg, Wolfgangiangenbeck Str.,4
06120, Halle (Saale), Germany

Membraneassociated inhibitory kinaddytl belongs to Weekinase family and regulates the cell cycle at G2/M
transition [1]. Mytl is responsible for inhibitory Cdk1l phosphorylation [1]. As result, the cell cycle is restricted until
DNA damage is repaired [2]. A new strategy for cancer treatris to keep the cell going in the cell cycle with
unrepaired DNA damage in premature mitosis. The abrogation of the G2 checkpoint results mitotic catastrophe and
immediately causes apoptotic or rapoptotic cell death [3].

In the current project wased a combination of in silico and in vitro screening to identify novel Myt1 inhibitors. The
in-silico screening was done using the available Mytl crystal structure (PDB 3P1A) and several docking methods
[4,5]. As databases for screening we usedduoselibraries of already tested inhibitors as well as focused kinase
inhibitor libraries (e.g. Selleckchem and GSK kinase inhibitor dataset | and Il). The docking solutions were analyzed
and rescored using binding free energy calculations. The tested inisibitere used to derive a quantitative
structureactivity relationships (QSAR) including different descriptors and scoring methods. The QSAR models
were validated using external test sets and showed good predictivity. Several scaffolds were identdigiticas st
point for the development of novel Mytl inhibitors. To optimize the identified hits, we used the fregpsedt
approach. The most promising docking solutions were used to identify putative binding groups for the individual
binding pockets of Myt1The first set of inhibitors was synthesized and submitted to the biological evaluation.
Novel active Myt1 kinase inhibitors have been identified.
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1. Mueller, P. R.; Coleman, T. R.; Kumagai, A.; Dunphy, W. G. Myti: A MembrAssociated Inhibitory
Kinas That Phosphorylates Cdc8ciencel1995 270, 8690.

2. Booher, R. N.; Holman, P. S.; Fattaey, A. Human Mytl is a cell eggalated kinase that inhibits Cdc2
but not Cdk2 activityJ. Biol. Chem1997, 272, 2230022306.
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42004207.
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P-65: Estimation of solvation free energies by continuum methods: How to tackle
halogenated species?

R. Nuneg?3 P. J. Cost&?

! Centro de Quimica e Bioquimica, Faculdade de Ciéncias disitade de Lisboa, Lisboa, Portugal,
BiolSI - Biosystems & Integrative Sciences Institute, Faculdade de Ciéncias, Universidade de Lisboa,
Lisboa, Portugal?® Centro de Quimica Estrutural, Faculdade de Ciéncias, Universidade de Lisboa,
Lisboa, Portugal

The incorporation of halogens into drug candidates has occupied an important role in drug discovery and
development processes. While traditionally this design strategy mainly aimed at improvifikelprgperties (e.g.
biomembrane permeability or pharmé&geetic stability), the pharmaceutical potential of halogenated compounds
has been increasingly explored for their ability to modulate prdtgand binding affinity by establishing halogen
bonds (XB}. These are highly directional nmovalent interactios explained by the existence of a positive region

RQ WKH HOHFWURVWDWLF SRWHQWLDO h¢le3whiBn iKavdlableHd) intelad® RIHQ V ~ ;
electronrich species (i.e. Lewis bases). The development of computational methods thatiedcuodel the charge
anisotropy of halogenated compounds is therefore of great importance, in view of their use in caidedtdrug

design and virtual screening routines. Particularly challenging is the case of molecular mechanigsagktiM)
methodssince these rely on point charges, therefore typically failing to represent XBs. The simplest approach to
describe the ESP anisotropy in halogenated species involves the addition efantiaffpositive extrpoint (EP) of
FKDUJH PLPLFNLQ\e haelsudceEsRilly ldpplied this type of methodology to the study of ptiaird
complexes by means of molecular dynamics (MD) simulafiddsgarding the prediction of absolute prot#igand

binding free energies, the use of molecular mechanics esecgimbined with PoisséBoltzmann surface area
(MM-PBSA) continuum solvation is a popular methodology. While EP addition has been shown to improve the
molecular mechanical description of halogamtaining systems, its effect on the accuracy of bindieg énergy as
estimated by MMPBSA is yet to be assessed. This method relies on the estimation of the solvation free energy of
the ligand, amongst other terms, for which an empirical assignment of halogen parameters, such as the PB radius, is
required. Hene, we conducted a comprehensive study on the effect of varying the X:--EP distance, together with the
halogen PB radii, on the performance of MMBSAbased solvation free energy calculations for a library of
halogenated ligands. The results, highlightihg tramatic impact of varying the two parameters on the computed
error, when compared with experimental data, will be disclosed. Implications for coragdrdrug design will

also be addressed.

Acknowledgments: This work was supported by Fundacao pafziéncia e a Tecnologia (FCT), Portugal, through
fellowship SFRH/BD/116614/2016 and projects IF/00069/2014/CP1216/CT0006, UID/MULTI/04046/2013 and
UID/MULTI/00612/2013.

1. Lu, Y. Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. Halogen Buan# Novel
Interaction for Rational Drug Desigid? Med. Chem2009 52, 28542862.

2. Wolters, L. P.; Schyman, P.; Pavan, M. J.; Jorgensen, W. L.; Bickelhaupt, F. M.; Kozuch, S. The many
faces of halogen bonding: a review of theoretical models and methWtidEs Comput. Mol. Sc2014 4,
523540.

3. a) Nunes, R; Vila&Vicosa, D.; Machuqueiro, M.; Costa, P. T4 Lysozyme/Halobenzene: A Test System for
Modeling Biomolecular Halogen Bonds. In Proceedings of the MOL2NET, International Conference on
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Multidisciplinary Sciences, 15 Janua#ls December 2017; Sciforum Electronic Conference Series, Vol. 3,
2017, doi:10.3390/mol2n€X3-05075; b) Nunes, R.; Costa, P. J.; et al., under submission.

P-67: A multtarget approach to neurodegenerative diseases

Sebastian OddsshiThomas Ball&Elin Soffia Olafsdéttir

YFaculty of Pharmaceutical Sciences, University of Iceland, Icefad,ulty of Pharmacy, The
University of Sydney

In order to address the lack of new strategies for drugs that can potentially treat neurodegetiseases such as
$O]KHLPHUYV GLVHDVH g’ ZKLFK DIIHFW WKH ZRUOGTV SRSXODWLRQ
decided to target more than one molecular player at once. Inhibition of the enzyme Acetylcholinesterase (AChE) is
currently thetreatment of choice for most AD patients and its mode of action is commonly explained with the
cholinergic hypothesis, whereby it is assumed that function of cholinergic synapses is impaired. Secondly, the drug
memantine, which is the only other approwedg for AD acting by a different mechanism than the aforementioned,
blocks NmethytD-aspartate (NMDA) receptor channels and was therefore also targeted. Thirdly, nicotinic
acetylcholine receptors (nNAChRs) are also implicated in the disease mechanigeddeéeause of this. A Virtual
Screening has been performed on a database of 5 million compounds against these three targets independently of one
another. Based on constraints and a variety of properties potential hits have been selected and are currently
undergoingn vitro testing Preliminary results are presented.

P-69:A Computational Platform For Fragment Evolution

S. Piticchig* M. Martinez!S. Scaffidit M. Rachmart, X. Barril .12

! Physical Chemistry Department, Faculty of Pharmacy, Barceldmgersity, Av. De Joan XXIIl, 231,
08028 Barcelona, SpaifCatalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis
Companys 23, 08010 Barcelona, Spain

Fragmertbased drug design has gained ground as a hit identification stratdgg ancreasingly being used by
researchers in industry and academia. With relatively small collections, fragment screening explores a large portion
of chemical space and achieves higher hit rates than traditionalikieugpllections. Fragments can foroptimal
interactions with particular subpockets and attain better ligand efficiencies than the bigger HTS hits

However, due to their size, the binding potency is usually weak, leading to the challenge of evolving it to a more
potent drugike compound.The pool of synthetically accessible and dlikg compounds that the medicinal
chemists have to explore is vast. Here we present an automatic protocol to facilitate and direct this process.

Given an initial fragment, which binding mode is known (e.gXbsay crystallography) the protocol searches in a
database for molecules that are chemically related and slightly bigger in size. These are then tethered docked to the
target protein to identify those that are complementary. Dynamic Unddcisirthen appéd to filter out false

positives and the top candidates are selected. The process is repeated usitfledrugplecules are attained.

We applied the protocol prospectively to the bromodomain BRD4(1). Starting from a published fragment, we
identify activemolecules that are different from existing BRD4 inhibitors, even those that were evolved from the
same fragment Active molecules are being tested with complementary biophysical methods and characterized by
X-ray crystallography.

1. Scott, D. E.;; Coyne A.G +XGVRQ 6 $ $EHBa&sed Apprahbhe® i Qg Discovery and
&KHPLFDO BidchemiBiy2012 51 (25), 49905003

2. Ruiz-Carmona, S.;Schmidtke P.; Luque F. J.; Baker L.; Matassova N.; Davis B.; Roughley S.; Murray J.;
Hubbard R. & Barril X.3'\QDPLF XQGRFNLQ-ERRGGWKWMDMWXHD DIV W R Ratvtel RU G U .
Chemistry 2017, 9, 201206

3. Gehling V. S.; Hewitt M. C.; Vaswani R. G.; Leblanc Y.; C6té A.; Nasveschuk C. G.; Taylor A. M,;
Harmange J.; Audia J. E.; Pardo E.; Joshi S.dg&h; Mertz J. A.; Sims R. J., lll; Bergeron L.; Bryant B.
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M.; Bellon S.; Poy F.; Jayaram H.; Sankaranarayanan R.; Yellapantula S.; Bangalore Srinivasamurthy N.;
%LUXGXNRWD 6 DQG $OEUHFKW% . 3 LVFRYHU\ 'HVLJQT DQG 2SW
,QKLELWRUV™ $&6 OHGLFL Q¥4 @K8BBAAY WU\ /HWWHUYV

P-71:NAOMInextReactiorDriven Probing of Protein Binding Sites

Kai Sommet, Florian FlachsenbetgMatthias Rarey
1 ZBH-Center for Bioinformatics University of Hamburg, Hamburgr@any

After identification of initial active compounds for a target of interest, medicinal chemists usually explore the
surrounding chemical space for interesting lead compounds. To support this process in a-basetumesign
scenario, we developddAOMInext a program combining organic synthesis rules, structural sampling (growing),
and primary targetand useiconstraints in an eadg-use graphical user interface (GUI) to design the next
generation of lead compounds.

Our powerful and efficient SKMRTS processing library allows the integration of vdefined reactions encoded in
'D\OLJKWITV 5HDFWL R ob 0éBand, Whidh Riates individual reaction steps for a desired target.
Even complex SMARTS expressionausing recursion to clearlyefine the surrounding or special properties of a
reacting atomz=are supported. As a beginning, we integrated 58 published robust organic synthesis teactions
HQFRGHG LQ WKH 'D\OLJKW TV 3intbINAR@IMLITRXD (526 Bigure 1 @oRaw &Evhnple)Q

The success of performing synthetic reactions for the generatide nbvomolecules has already been shown in
several other studié$.In our work we apprehend the process described in SCUBI@®Gich showed good results

of synthetic tractability irde novodrug design studies. Herein, moving the described workflow into 3D space using

a straightforward condensed algorithm for fragment growing, further increases the significance of the produced
results and minimizes false positives. Based on our NA@&héworK we are able to generate structurally flawless
synthesis results, considering both, stegeal regioisomers, covering all relevant reaction results simultaneously. A
structural sampling of the grown reaction product is performed under considesathe primary target and anchor
constraints (see Figure 1). Furthermore, user defined constedmtguide the sampling procedusgan be defined.
Generating synthetic feasibtiee novomolecules, starting with a single building block (anchor) at @inthe key
interaction sites of the target protein, enables medicinal chemists to explore the chemical space of a screened
fragment.

The combinatorial explosion of the structural sampling is solved using a heuristic and knowledgebased approach. To
cope wth large and highly flexible molecules we implemented a combination of a BreaditDepthFirst-Search
algorithm, which only proceeds with the begtartial solutions. We start with the statistically most relevant torsion
angles and at each atom allspible solutions are examined. If no solution is possible, the algorithm dynamically
extends the relevant torsion an§lbg using tolerance values. This reduces the search space significantly but ensures
a good solution in an acceptable time frame. Trauation of our sampling approach was performed on a dataset of
297 cocrystallized ligands with their putative precur8arhe results were then compared with docking results to
demonstrate the benefit of the spatial information of the initial anchanfag

Our approach provides the user with an easy and at the same time powerful instrument to rapidly generate new ideas
in early stage fragmeititased drug discovery projects. Our tool implicitly combines several constraints at a time
without the need buthe possibility for the user to take action. First, available synthetic reactions are filtered,
retaining only those that match the anchor fragment. Second, only building blocks that are compatible with the
anchor fragment in terms of further synthesis ased. And third, only results which fit the target binding site and
perform favorable proteitigand interactions are retained. Thus, fragment chemical space and structural space are
pruned at an early stage, which tremendously reduces the number eofptatives and speeds up further
investigation of the results.
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Figure 1: Exemplary Picte3pengler reaction within a schematically drawn binding site. The possible reaction center
in the phenyl ring next to the methyl group is blocked due to spasdiigtions of the binding site. The reaction
center next to the fluorine is not blocked. Only one possible stereoisomer of the product is shown here.

1. Hartenfeller, M.; Eberle, M.; Meier, P.; Niet@berhuber, C.; Altmann, K. H.; Schneider, G.; Jacoby, E.;
Renner, S. A Collection of Robust Organic Synthesis Reactions for in Silico Molecule Desigrem. Inf.
Model.2011, 51 (12), 309383098.

Daylight Chemical Information Systems, Inc., Laguna Niguel, CA, USA.

Daylight SMARTS Documentation, http://wwwyaht.com/ dayhtml/doc/theory/theory.smarts.html

(accessed February 1th, 2018)
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Kolb, P. BindingSite Compatible Fragment Growing Applied to thel VL J Q RAdrenergic Receptor
Ligands.J. Med. Chen2018 61(3), 11181129
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Tractability.J. Chem. Inf. ModeR015 55 (9), 18244835.

7. Urbaczek, S.; Kolodzik, A.; Rarey, M. The Valence State Combination Model: A Generic Framework for
Handling Tautomers and Protonation Stafe€hem. Inf. ModeR014 54 (3), 7564766.

8. Scharfer, C.; Schuktasch, T.; Ehrlich, H. C.; Guba, W.; Rarey, M.; Stahl, M. Torsion Angle Preferences
in Druglike Chemical Space: A Comprehensive Guidé/led. Chem2013 56 (5), 20162028.

9. Malhotra, S.; Karanicolas, J. When Does Chemical Elabor#étiduce a Ligand To Change Its Binding
Mode?J. Med. Chen017, 60 (1), 128H45.
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P-73: Effects of MBIM/GBSA Parameters on the Ranmdlering of Ligands in Drug
Design

N. Stiefl!, P. Pacak S. Rinike?, R. Wolf!

1Global Discovery Chemistry, Novariisstitutes for Biomedical Research, Novartis Pharma AG, Basel,
Switzerland?Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry,
Computational Chemistry, ETH Zurich, Switzerland

In the course of early stage medicinal chemiprojects, often large collections of compounds need to be evaluated
(e.g., in rescoring of virtual screening docking results). For medium sized result sets, MM/(GB)(PB)SA approaches
are applicable due to their simplicity and computational speed.

Howewer, when working with large data sets, the choice of parameters like simulation protocols, force fields,
protonation and tautomeric states, various implementations of Pdsdtmmann (PB) or Generalizégiorn (GB)

can be a major challenge. When rankingnre relevant than the closest fit to experimental free energies of binding,
some of these choices become less important. Still, a systematic evaluation can be computationally very expensive
especially when MM/(GB)(PB)SA is combined with molecular dynaniMD) simulations.
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In this work, we highlight the impact of specific parameters on the protocols to be followed to take into account the
variability of MD-based results, also considering multiple short MD trajectories versus single longer ones. In
addition, we check the possible influence of keeping a small humber of selected water molecules as part of the
MM/GBSA scheme. Comparisons to singleint, energyrefined starting structures also reveal that for "correct"
initial poses as in most examples repdrtere, a simple minimization followed by an MM/GBSA evaluation can be
sufficient (or even superior) to a lengthy MD treatment.

P-75: Can | make this into a macrocycle?
Effective methods for fragment growing, joining and cyclisation.

P. Toscd, M. Mackey
! Cresset, Litlington, UK

An increasingly common medicinal chemistry technique is conformational restriction through macrocyclization, in
order to attain higher affinity and selectivity for the target coupled to improved oral bioavailaiilttyough tre

concept is simple, the execution is difficult: the proposed linker must have enough flexibility that it can join the
proposed cyclisation sites without introducing too much steric strain, but not so much that the entropic benefits of
cyclisation are lostlt must be synthetically feasible, must fit into the available space in the active site, and ideally
should make favourable (or at least not unfavourable) interactions with the protein.

Macrocyclisation can be seen as a special case of fragment limkirgh in turn is a constrained form of fragment
growing. Fragment linking strategies have been recently reported as a highly successful route to lead optitnization.
In both linking and macrocyclisation the design problem is to find a moiety which esfdveeequired geometry
between the two link sites. If available, a template ligand with known affinity can be used to help choosing the best
linker and achieve the desired binding properties in the final product.

‘H SUHVHQW WKH DSSO hrk bivishdete Rearch thethowdibgy fo/this Problem. Spark has the ability

to search for bioisosteric replacements in a molecule while scoring the results against a separate reference molecule.
In a fragment growth experiment, the goal is to decorate tistemagment known to bind the target with functional

groups that allow to further enhance its affinity. Very often, one or morelitkeignolecules with good affinity for

the target which may act as templates are already known in the literature, bubthbgve been already patented or

have other drawbacks (e.g., unfavourable pharmacokinetic properties). The fragment growing workflow allows to
grow the starter fragment in a uskefined direction with moieties that allows to retain as much as posséle th
interaction and shape properties of the template but using a different chemistry to escape IP and PK issues (Fig 1).

Fig 1. Fragment growing, joining and macrocyclization experiments through the Spark wizards.
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In the context of a fragment linking exdePHQW WKH 6SDUN PHWKRG FDQ ORRN IRU D 3E
the gap between the two fragments, with the bioisosteric similarity computed against a reference molecule known to
interact favourably with the protein in the region of the propdisg@r. The results can be guided with additional
constraints, such as the shape of the active site cavity, the known pharmacophores for activity, and regions of
electrostatic potential that are known to be crucial for binding.

In this talk we apply thisechnique to several data sets, including a set of reeexgyrted pyridinedbased BRD4
inhibitors. Known highlyactive macrocyclic inhibitors were reliably obtained, especially if template molecules
binding in the cyclisation region could be used to guite experiment. However, even without this the application

of both excludedrolume and pharmacophoric constraints from the protein structure provided excellent results (Fig
2). Results were obtained that matched known cyclisation strategies even veeeimtiodve a conformation change

to the conserved part of the molecule. Analysis of the torsions of the-oesdied bonds against torsional statistics
from the CSD provided confirmation that the macrocycle linker sizes suggested by the algorithms s@éhimi
conformation strain.

Fig 2. Spark macrocyclization results. Among the top 10 results Spark designed compounds with linker sizes
between 3 to 6 atoms. The top ranking result for each linker size is shown

1. Marsault, E.; Peterson, M. L. Macrocycles Abeeat Cycles: Applications, Opportunities, and Challenges
of Synthetic Macrocycles in Drug Discovetly.Med. Chem2011, 54, 19612004.

2. Murray, C. W.; Rees, D. C. The rise of fragmbased drug discoveriature Chemistr009 1, 187192.

3. Mondal, M.; Radeva, N.; Fank¥irgds, H.; Otto, S.; Klebe, G.; Hirsch, A. K. H. Fragment Linking and
Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: FragBametd Drug Design
Facilitated by Dynamic Combinatorial ChemistAngew. Chem. Int. EQ016, 55, 94229426.

4. Wang, L.; McDaniel, K. F.; Kati, W. M. FragmeBlased, Structur&nabled Discovery of Novel Pyridones
and Pyridone Macrocycles as Potent Bromodomain and -Eeimainal Domain (BET) Family
Bromodomain Inhibitors]. Med. Chem2017, 60, 3&28-3850.

5. Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion Library Reloaded: A New Version of ERpaxed
SMARTS Rules for Assessing Conformations of Small Molecule€hem. Inf. ModeR01§ 56, 15.
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P-77: Truly Targétocused Pharmacophore Modgli\ Novel Tool for Mapping
Intermolecular Surfaces

Jérémie Mortiet, Pratik Dhakat, Andrea Volkamet
!In silico Toxicology Group, Institute of Physiology, Charité Universitatsmedizin Berlin, Germany

Various computational tools and molecular matglplatforms are known to support medicinal chemists in
understanding bioactivities, predicting binding events and rationally designing drug molecules. Among them, the
pharmacophore approach is an accurate and minimal tridimensional abstraction of Icletragtares and
intermolecular interactions.

Pharmacophore models are usually derived from a group of molecules in absence of structural information on their
biological targets (liganthased approach) or from a ligataiget complex (structuseased apmach). However,

only a limited amount of solutions exists to model comprehensive pharmacophores using the information of a
particular target structure without knowledge of any binding ligaimdthe presented work, T2Fharm, a fully
automated and custoimla tool for Truly TargetFocusedPharmacophore modeling will be introduced. Using a
grid-based approachthis method samples the protein cavity, filters the grid points by energy level and clusters them
into low energy hot spots. Subsequently, key festun the pocket required for optimal interaction in a 3D
pharmacophore model are derived. Using a variety of protein classes, the ability of this method to identify essential
features was compared to structbesed pharmacophores derived from ligtarget interactions. Currently, we are
extending our method to generate merged pharmacophores from molecular dynamics snapshots to capture protein
flexibility.

The novel method represents a valuable instrument for drug discovery to investigate prote@s surddsence of
known binding partners, e.g. in cases of rather unexplored binding sites, protein allosteric pockets gurptetein
interactions.

1. Sanders MPA, et al. From the protein's perspective: the benefits and challenges of protein-bagcture
pharmacophore modelinyled.Chem.Comni2012 3:2838

2. Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreadinhComput.Chen201Q 31:45561
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P-02:Characterization of the Chemical Space of Known and of Readily Purchasable
Natural Products

Y. Chent, M. Garcia de Lomang N.-O. Friedrich!, J. Kirchmairtt

! Universitat Hamburg, MIN Faculty, Department of Infatios, Center for Bioinformatics, Hamburg,
Germany

Natural products are structurally diverse and exhibit a wide range of bioactivities, making them an important
resource for drug discovety. We have recently reviewed 25 virtual and 31 physical napraduct libraries that

are useful for applications in cheminformaticEhey cover a total of 250,000 natural products, at least 10% of
which are readily purchasable.

In this follow-up study, we present a detailed analysis of the physicochemical prepacty of natural products that
FOHDUO\ JRHVY EH\RQG WKH UHDFK Rl HDUOLHU UHSRUWY :H LPSOHP
identifies and removes generally undesirable sugars and sugarlike moieties from natural products. This gives a more
realistic view of the physicochemical properties of aglycons that may serve as templates for drug design. We also
compare, for the first time, the physicochemical properties and scaffold diversity of purchasable natural products to
those of all known naturgbroducts. This analysis provides valuable insights into the relevance of purchasable
natural products for drug discovery and points out areas in the chemical space that are only covered by natural
products that require eslemand sourcing, extraction ornglgesis. Furthermore, a rdi@msed approach for the
automated recognition of the structural classes of natural products (e.g. alkaloids or flavonoids) was implemented,
which allowed us to quantify their abundance among various data sources.

1. Newman, D. J.Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2044t. Prod.
2016 79, 629661.

2. Harvey, A. L.; Edradd&bel, R.; Quinn, R. J. The Remergence of Natural Products for Drug Discovery in
the Genomics ErdNat. Rev. Drug Disco2015, 14, 111429.

3. Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on Natural Products for DrugNDasign.
Chem.2018 8, 531541.

4. Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data Resources for the Confpuided Discovery of
Bioactive Naural Products]. Chem. Inf. ModeR017, 57, 20992111.

P-04.Effects of missing data on multitask prediction performance

A de la Vega de LednV J Gillet
" University of Sheffield, Regent Court, 211 Portobello, S1 4DP Sheffield, United Kingdom

Deeplearning has become increasingly popular in chemoinformatics. Deep neural networks have been successfully
applied to predict activity in large chemical data Sets well as other chemical endpoints of intéedne of the
advantages of these technigus their multitask nature; they are able to predict several outputs with a single model.
This makes them interesting to support drug discovery projects, where molecules need to be optimized against a
battery of different properties and activities. They @lso be used to model multitarget data sets, such as those from
kinase profiling exercises.

These types of data sets can be assembled using publicly available data sources. However, this leads to data sets the
are sparse; where not all compounds haenltested against all targets. It is expected that when these data sets are
used to train predictive models, their performance would be worse than if the data sets were complete. However,
there has been little research into how much performance is lesttwdining data is removed. The aim of this work

is to gain an understanding of how complete a data matrix should be in order to obtain models with acceptable levels
of performance.

We have used two complete data sets to measure the effect of missiimgtdatperformance of multitask methods.

One data set is PK1Sa kinase profiling data set donated by GSK to ChEMBL, and the other is a PubChem based
data set using a subset of assays from a previous publicdtion different multitask methods were cpaned: deep

neural networks and Mac3ua technique based on probabilistic matrix factorization. A large set of models was
trained for each data set and technique, where increasing amounts of training data were removed. Macau and deep
neural networks showevery similar performance progression as increasing amounts of training data were removed.
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In both cases, the decrease in performance was at first slow and it did not increase until almost three quarters of the
training data were removed. Our results sagjggthe multitask nature of these techniques is the origin of their
beneficial performance progression.

The research leading to these results has received funding from the European Union's Seventh Framework
Programme (FP7/2002013) under grant agreemeribmn2347.

1. Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V., Deep Neural Nets as a Method for Quantitative
StructurefActivity RelationshipsJ. Chem. Inf. ModeR015 55, 263274.

2. Lusci, A.; Pollastri,G.; Baldi, P. Deep Architectures and Deep liegrin Chemoinformatics: The
Prediction of Aqueous Solubility for Drulgike Molecules.J. Chem. Inf. ModeR013 53, 15631575.

3. Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pai, J.; Lai, L. Deep Learning for {Dmdgced Liver Injury.J. Chem.

Inf. Model.2015 55, 20852093

4. https://www.ebi.ac.uk/chembldb/extra/PKIS/ (accessétiJaBuary 2018)

5. Helal, K. Y.; Maciejewski, M.; GregoiPuigjané, E.; Glick, M.; Wassermann, A. M. Public Domain HTS
Fingerprints: Design and Evaluation of Compound Bioactivity ProfilesPfro3XE&KHPIV %LRDVVD
RepositoryJ. Chem. Inf. ModeR016 56, 390398.

6. Simm, J.; Arany, A.; Zakeri, P.; Haber, T.; Wegner, J. K.; Chupakhin, V.; Ceulemans, H.; Moreau, Y.
Macau: Scalable Bayesian MuRielational Factorization with Side Information UsiMg@CMC. arXiv 2015
1509.04610.

P-06: Compound enumeration using Reaction Workflows

J HussainG Bravi& M Hartshorn
'RWPDWLFVY %LVKRSTVY 6WRUWIRUG 8.

The ability to enumerate virtual chemical structures is vital in the design and synthesis of cheaysallt is now
straightforward to enumerate many compounds for a given chemical reaction. However, the synthesis of
compounds typically involves several steps. In addition, the drive to improve the efficiency of multistep synthesis,
convergent synthesiis increasingly common. These more complex workflows can present a challenge for
compound enumeration systems.

In this poster, a new chemical enumeration application called Reaction Workflows (RW) will be presented. The
application uses a graph to remesa reaction workflow with nodes to represent the reagents and reactions. The
products of a reaction can also be passed to another reaction. These reaction workflows are akin to the reaction
schemes we are familiar with in compound synthesis. This niesnstraightforward and intuitive for a chemist to

drag and drop reagents and reactions nodes to represent a complex convergstepraytithesis within RW. The
application also contains nodes to perform other functions such chemical property ticalcusdructure
normalization and substructure filtering. The graphical nature of the application and the functionality available
means it becomes possible for chemists to build complex workflows needed for their compound filtering and
enumeration needs.

P-08: chem2vec : vector embedding of atoms and molecules

N. Jeliazkova, V. Chupakhirf, Hugo CeulemarisJoseFelipe GolibDzib3, V. JeliazkoV

!I|deaconsult Ltd., 4 Angel Kanchev Str. Sofia, Bulg&@gpmputational Biology, Discovery Sciences,
Jans&n Pharmaceutica NV, Beerse, Belgiﬁmomputational Biology, Discovery Sciences, Janssen
Cilag SA, Toledo, Spain

We present chem2vec, a method to generate a novel type oialeatl chemical structure descriptors with user
specified dimension, based time word2vec algorithm. The word2vec method, a neural network with one hidden
layert, takes on input spiences of words (sentences) and uses the information of the environment a given word is
found in to derive a vector representation of the word in a user specified dimBnsanilarly, chem2vec takes on
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input linear sequences of objects, which repreparts of the molecule, namely paths of atoms, or more precisely,
paths of atom types (as implemented in The CDK ligary

Chem2vec consists of two steps 1) generating a dictionary of vectorized atom types, preferably from a large dataset
of chemical structure8) generating molecular descriptors using the dictionary. The dictionary is transferable, i.e. it
could be generated once from a large set of chemical structures and reused subsequently for generating descriptors of
arbitrary sets of chemical structuresot necessary the same as the ones used for generating the dictionary.
Dictionaries of vectorized atom types have been generated using several datasets (e.g. ChEMBL, ExXCAPEDB and
industry data) and approaches for comparison are presented. The moleatrigtatesare compositional, built by
combining the atom type vectors. The result is a vector representation of the molecule, encompassing low
dimensional space. We show that while associating a single vector dimension to a molecular moiety is not possible,
the vectors can be decoded into the familiar count of atom types and tuples of atom types.

The new chem2vec descriptors can be used for similarity assessment, and as input for unsupervised (clustering) and
supervised (regression, classification) machH@sning methods. Experiments with several datasets are performed

on large scale public datasets (e.g. chemogenomics dataset ExCAPEMSB industry data. The predictive
performance of supervised models using the low dimensional real valued chem2vec descriptor space is comparable
or exceeds the performance of models using traditional high dimensional sparse fintpagethtescriptors.

Acknowledgment: This project has receivd KQGLQJ IURP WKH (XURSHDQ 8QLRQTV +RUI
Innovation programme under Grant Agreement No. 671555.

1. Mikolov, T.; Corrado, G.; Chen, K.; Dean, J. In Proceedings of the International Conferehearaing
Representations (ICLR 2013); 2013; pgl.2.

2. Willighagen, E. L.; Mayfield, J. W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal,
T.; RojasChert?, M.; Spjuth, O.; Torrance, G.; Evelo, C. T.; Guha, R.; Steinbeck, Cetittthrm.2017,
9 (1), 33.

3. Sun, J.; Jeliazkova, N.; Chupakin, V.; Geblzib, J-F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans,
H.; Georgiev, |.; Jeliazkov, V.; Kochev, N.; Ashby, T. J.; Chen, H. J. Chemin&®fy, 9 (1), 17.

P-10: Building ash searching large chemistry spaces

U. Lessel, C. Lemmenrt

!Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germa&mysolvelT, St.
Augustin, Germany

Virtual screening in large chemistry spaces was first popular with the rise bf Higoughput Screening and
Combinatorial Chemistry. It then lost its attraction for various reasons and gains now another wave of interest
through technologies like DNA encoded libraries as well as the recognition that traditional compound libraries are a
quite limited resource, while the know how is there to break current size limits.

Feature Trees Fragment Spaces came up about 10 years adas a software to search chemistry spaces. While
the searching with this technology is quite simple andcéffe, building a Fragment Space used to be a significant
effort. Last year a new version of the software tool Cobitmime out, which turned building Fragment Spaces into a
reasonably straight forward process.

With the new Colibri as a tool to easilyilsichemistry spaces the question arises, how to compare different spaces.
To the best of our knowledge so far no technique fulfilling this task has been published. Here we compare two
different chemistry spaces, namely the Knowledge Spadéeraturebased resource, and the BICLAIM space from
Boehringer Ingelheim, by means of different application scenarios. Additionally we look at thedathlitaseas a
traditional compound resource.

We assessed similarity and diversity within hit sets, number of Rducores, as well as chemical feasibility. This
way we detected interesting differences, partially caused by the diverging design principles behind these resources.

In this presentation we present the study and its results. We discuss the value &fritret giérameters analysed for
characterizing chemistry spaces and for their comparison.

1. Rarey, M.; Dixon, J.S. Feature trees: a new molecular similarity measure based on tree matching.
Comput-Aided Mol. Des1998 12, 471-90.
2. FTrees Version 3.3, Bio8eIT. BioSolvelT GmbH http://www.biosolveit.de/
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3. Boehm, M.; Wu, T-Y.; Claussen, H.; Lemmen, C. Similarity Searching and Scaffold Hopping in
Synthetically Accessible Combinatorial Chemistry Spagesled. Chem2008 51, 24682480.

4. Lessel U.; Wellenzohn, B.; Lilienthal, M.; Claussen, H. Searching Fragment Spaces with Featutk Trees
Chem. Inf. Model 2009 50, 1-21.

5. Colibri Version 3.1, BioSolvelT. BioSolvelT GmbHttp://www.biosolveit.de/

6. Knowledge Space Version 2.4, BioSolvelT. BioSolvel T Gmbit://www.biosolveit.de/

7. Sterling, T.; Irwin, J.J. ZINC 15tLigand Discovery for Everyond. Chem. Inf. Model2015 55, 2324
2337.

P-12: Learning from Extant Medicinal Chemistry to Accelerate Hit Identification and
Optimisation in Drug Discovery

N Y Mok?!, J Meyerg, M Cartert, T Kaseret, N Brown?

! Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapdiitesnstitute of
Cancer Research, 15 Cotswold Road, London SM2 5NG, United KingBenevolentAl, 40
Churchway, London NW1 1LW, United Kingdom.

Data mining of publicly available chemical structure databases can enable us to understand the hist@tioexpl

for medicinal chemistry relevant structures. This presentation will discuss recent analyses of extant medicinal
chemistry and learning from these studies that can be applied to inform and accelerate hit identification and
optimisation in drug disocery.

Hit identification strategies in drug discovery often rely on the screening of-smbdtule compound libraries to
discover hit matter as starting points for development into lead molecular series. A major source of compounds
constituting such screéng libraries originates from commercial compound vendor collections of small molecules
and targefocussed screening sets. Using ChEMBInd eMolecules as exemplar repositories of extant medicinal
chemistry and commercially available compounds respégtigeer 9 million medicinal chemistry compounds were
analysed to understand the coverage of biologically relevant medicinal chemistry space using commercial compound
screening libraries. Applying various complementary molecular comparison methods, regthicinal chemistry

space with enrichment in bioactive molecules is identified, and the corresponding molecular and physicochemical
properties are characterised. Results from this analysis can inform on the design of effective screening collections
that wauld provide us with greater confidence in identifying highality medicinal chemistry starting points in drug
discovery projects.

In addition, mining of the ChEMBL database can also provide valuable insights in the exploration and exploitation
of chemicalspace during compound optimisation, as highlighted in recent publications analysing the molecular
shape diversity and molecular scaffolds of medicinal chemistry relevant Spabe. appropriate stage at which
molecular shape diversity should be introgdidn molecular design and the systematic exploration of molecular
scaffolds during medicinal chemistry optimisation will be presented. Based upon these results, emerging strategies
that can modulate relevant drlige properties of molecular scaffolds asdbstituent spaces to accelerate hit
optimisation will be discussed.

1. Gaulton, A,; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.;
Michalovich, D.; AlLazikani, B.; Overington, J. P. ChEMBL: A largeale bioativity database for drug
discovery. Nucleic Acids Res. 2012 ' i

2. Meyers, J.; Carter, M.; Mok, N. Y.; Brown, N. On the origins of three dimensionality in-likeig
molecules. Future Med. Chem. 2016, 8, +1587.

3. Mok, N. Y.; Brown, N. Applications of systematic molecular scaffold enumeration to estricbture
activity relationship information. J. Chem. Inf. Model. 2017, 57387
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P-14: HTS workup at &A&tate of the art

J.W.M. Nissink
! Oncology, IMED Biotech Unit, Astrazeneca, Cambridge, United Kingdom

Large scale highhroughput screening (HTS3 a key leadinding approach that underpins project starts both in
industry and academia. HTS, alongside alternative-fieaihg techniques like fragment screening, subset screening,
and virtual screening can provide projects with a set of targetrsinaigt it is by no means a trivial exercise.

Here we will discuss the statd-the-art of HTS at AstraZeneca, with both successful examples and examples of
problems that have been encountered. We will touch on design of the screening collection; dmtetdpend
stresstesting hitfinding cascades with validation sets; analysis of emerging actives, and identification of false hits.

P-16: A Comprehensive Evaluation of ACD/LogD on a Pharmaceutical Compound S

A. Sazonova$? K. Lanevskij-? R. Did4apetrist-?

19582 A$XNAWLHML DOJRULW PD8117 $ilrius AKndaniaNCD/Kabs, Inc., 8 King
Street East, Toronto, Ontario, M5C 1B5, Canada

Lipophilicity, which is often expressed in terms ofodtanol/water partitioning coefficientogP, or the
corresponding pHiependent distribution coefficient IDg is one of the key physicochemical characteristics of any
QHZ GUXJ FDQGLGDWHY DV LW KDV D PDMRU LQIOXHQFH RQ D YDULHW)
pharmacokietic, and drug safety profiles. Widely availaiesilico tools for predicting these properties are mostly

based on experimental data for simple organic chemicals and marketed drugs. Consequently, as drug discovery
projects are moving to increasingly nbvegions of chemical space, utility of existing methods becomes more and
more questionable. In several previously published evaluation stgdies mean log prediction error foiin house
compound libraries of pharmaceutical companies was shown tedfckg unit by almost all methods. Prediction

of logD is even more challenging, as it requires accurate knowledge of b&tlofogeutral form and distribution of

ionic forms of the compound in the relevant pH ranyyéh these considerations in mindgtfollowing objectives

were set for the current study:

(1) Collecting a data set of experimental Ibgalues from recent publications dealing with novel congeneric
compound series from drug discovery projects;

(2) Evaluating the performance of ACD/LogD prediétdor the newly collected molecules using different
combinations of available I&gand [<, calculation algorithms;

(3) Investigating the potential for improving prediction accuracy for unknown compound classes by application
of automated model training.

The comjled data set consisted of ~1200 bgalues measured at physiological pH conditions. According to the

initial validation results, the highest accuracy of predictions based on the models employing oiiydaumipound

libraries can be achieved using ardwnation of ACD/LogP Consensus and ACD/pKa Classic algorithms, yelding
RMSE slightly under 1 log unit. However, utilizing the automatic training feature of ACD/LogP GALAS algorithm

by the means of stepwise addition of collected data to the modeiaseifg library allowed decreasing the RMSE

of predictions for the reserved validation set to as low as 0.6 log units. Moreover, a significant improvement (RMSE

§ ZDV DOUHDG\ HYLGHQW DIWHU DGGLQJ WKH |LR0v%Wf tBeRedtiéldR® R1 W
set. These results demonstrate that performing experimental measurements for a relatively small number of
molecules belonging to a novel chemical series is often sufficient to adapt ACD/LogP and ACD/LogD predictors to
provide reliabé property estimates for the entire class of compounds.

1. Mannhold R., Poda G. I., Ostermann C., Tetko I. V. Calculation of molecular lipophilicity-@ttie-art
and comparison of log P methods on more than 96,000 compauiisgarm. Sci2009 98, 861893.

2. Tetko I. V., Poda G. I., Ostermann C., Mannhold R. Lacge evaluation of log P predictors: local
corrections may compensate insufficient accuracy and need of experimentally testing every other
compound. BChem. Biodivers2009 6, 18371844.

3. ACD/LogD (part of Percepta® platform), v. 2017, ACD/Labs, Inc.
(http://www.acdlabs.com/products/percepta/
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P-18: Halogens in proteligand binding mechanism: a structural perspective

N.K. ShinadaA.G. de Brevern, M. Oberlin, D. Alvarez Garcia, P. Schmidtke
Discngine S.A.S, 79 Avenue LedRallin, 75012 Paris, France

During the last decade, halogen atoms have become increasingly important in rational drug design. Fluorine is often
used to enhancphysicachemical properties. Chlorine, bromine and iodine can influence interaction strength via
directed halogen bontisQuantum mechanics studies and small molecule X ray data shed light onto the precise
geometry necessary to favorable halogen interagti®everal computational tools and models start to integrate data
from such calculations and studies

However, adding halogen to a ligand can have often overlooked effects. For example an aromatic quadrupole
moment can shift from negative to positivelHIHUUH G WRAIhaugh maGskKdR Qudies focus on halogen
ERQGLQJ WK UhBI& Jiécew IKstiddies suggest hydrogen bonding involving halogens may also have a
significant impact with on intermolecular interactiéns

8VLQJ WKH 'I[38EiSoh®rdcfuval knowledge base derived from the RCSB PDB, a refined analysis of
halogen interactions reassesses the occurrence of multiple types of interactions made by halogen atoms. We
furthermore underline various biases observed in previously dstadets to analyze halogen bonding. We further
exemplify preferential interactions of halogenated fragments in small molecules and their implications for rational
drug design.

Results shown here aim to complete the current understanding of halogemddtebide interaction preferences and
can be used by medicinal chemists and molecular modelers to rationally place halogens on small molecules.

1. Hernandes, Marcelo Z., et al. "Halogen atoms in the modern medicinal chemistry: hints for the drug
design."Current drug targetd4.1.3 (2010): 303814.

2. Wilcken, Rainer, et al. "Addressing methionine in molecular design through directed dsaldgen
bonds."Journal of chemical theory and computatioi (2011): 23072315.

3. Ford, Melissa Coates, and P. Shing Ho. "@atational tools to model halogen bonds in medicinal
chemistry."Journal of medicinal chemist9.5 (2015): 1659.670.

4, :DQJ +XL :HL]JKRX :DQJ DQIGROH ERIQI&hoDd: &FEomparison based on halogen
bond."Chemical review416.9 (2086): 50725104.

5. Wilcken, Rainer, et al. "Principles and applications of halogen bonding in medicinal chemistry and
chemical biology.'Journal of medicinal chemist§6.4 (2013): 13631388.

6. Lin, FangYu, and Alexander D. MacKerell Jr. "Do Halogg#tydrogen Bond Donor Interactions Dominate
the Favorable Contribution of Halogens to LigaRdbtein Binding?."The Journal of Physical Chemistry B
121.28 (2017): 681:8821.

P-20:Interoperable and scalable data analysis in metabolomics

C Steinbeck P Emami Khoorai?, K Kultima?, O Spjut on behalf of the PhenoMeNal
consortium

YFriedrich-SchillerUniversity, Jena, German$tniversity of Uppsala, Uppsala, Sweden

Metabolomics aims to characterise the biochemical stage of an organism or biological sampiesithatigneous,

(semi) quantitative measurement of as many metabolites as possible. To this end, it uniquely employs
cheminformatics and analytical chemistry methods to address questions in biology. Depending on the analytical
methods and sample sizes e PHWDERORPLFYV JHQHUDWHY 3ELJ GDWD"~ ZKLFK FDQ |
often exceeds the data processing capabilities of an individual laboratory.

As part of PhenoMeNal project (http://phenomen2020.eu), funded by the European Commission, haee
addressed this problem by developing a robust and performant data analysis workflow that integrates all necessary
components whilst still being able to scale over multiple compute nodes.

The aim was to support flexible metabolomics data analysie. §ystem is designed as a virtual research
environment which can be launcheddemand on cloud resources and desktop computers.
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PhenoMenal is based on a microservice architecture, where software tools are encapsulated as Docker containers
that can be carected into scientific workflows and executed in parallel using the Kubernetes container orchestrator.
IT-expertise requirements on the user side are kept to a minimum, and established workflows casebe re
effortlessly by any novice user. We validammar method on two mass spectrometry studies, one nuclear magnetic
resonance spectroscopy study and one fluxomics study, showing that the method scales dynamically with increasing
availability of computational resources.

It is also noteworthy, that micresvices are a generic methodology that can serve any scientific discipline and opens
up for new types of largscale integrative data analysis. Apart from offering a turnkey solution for metabolomics,
PhenoMeNal therefore also presents an architectunetegrate individual tools into scalable workflows in public

and private clouds.

1. Khoonsari, P. E., Moreno, P., Bergmann, S., Burman, J., Capuccini, M., Carone, M., Cascante, M., de
Atauri, P., Foguet, C., Gonzal&eltran, A., Hankemeier, T., Haug, K., H8., Herman, S., Johnson, D.,
Kale, N., Larsson, A., Neumann, S., Peters, K., Pireddu, L., Reerma, P., Roger, P., Rueedi, R,
Ruttkies, C., Sadawi, N., Salek, R. M., SansonéA.SSchober, D., Selivanov, V., Thévenot, E. A., van
Vliet, M., Zanetti, G., Steinbeck, C., Kultima, K., and Spjuth, O. (2017) Interoperable and scalable
metabolomics data analysis with microservices. bioRxiv 213603.

P-22: Supporting the assessment of the purging potential mutagenic impurities via
analysis of patent literatu

S Webb', M Burns!, E Rosset
!Lhasa Limited, Leeds, United Kingdom

Compounds introduced during synthesis including starting materials, intermediatesadlligts may be carried
through the synthesis to become impurities in the final produdtes$iet are predicted or known to be mutagenic then
they are subject to regulation under the ICH M7 guidefiheShese guidelines allow for a chemisbgsed
argument that the impurity will not survive the synthetic route and evidence of its absence maptthee
necessary.

Textmined reactions from the United States Patent Office patent applications and grants provided by NextMove
softwaré”l have been used to support the development of a prototype tool which provides suggestions for potential
reactivity-based purging of these impurities.

Reactions are automatically categorised via mapping and generation of a reaction core representing the atom and
bond changes occurring within a singlep reaction. These reaction cores can be used generate clustaxgions
sharing common mechanisms without the need for a named reaction.

Reaction networks can be generated as tree structures, organising reaction cores into greater specification. The
networks then provide an easy mechanism for identifying feasib&tioramechanisms and identifying the most
relevant examples for a given set of reactants. Visualisation of reaction conditions such as yield, solvent,
temperature, time, presence of acid/base etc. allow for the assessment of the suitability of a Sugggsted
mechanism.

1. Guideline, ICH Harmonised Tripartite. "Assessment and Control of DNA Reactive (Mutagenic) Impurities
in Pharmaceuticals to Limit Potential Carcinogenic Risk, M7; 2017." (2017).
2. NextMove Softwarehttps://www.nextmovesoftware.corf@8/02/2017)
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P-24. Metabolite Structure Prediction Benefits from Cytochrome P450
Regioselectivity Prediction

C. de Bruyn Kop$, C. Stork, N. Jeliazkova, N. KocheV?3, J. Kirchmait

! Universitat Hamburg, Beculty of Mathematics, Informatics and Natural Sciences, Department of
Computer Science, Center for Bioinformatics, Hamburg, Gernfddgaconsult Ltd, Sofia, Bulgari,
University of Plovdiv, Department of Analytical Chemistry and Computer Cheniéimdiv, Bulgaria

Knowledge of the metabolic fate of xenobiotics in humans is invaluable for the development of safe and effective
drugs and other chemical substances, because biotransformation of small organic molecules can produce metabolites
with biological and physicochemical properties that differ substantially from those of the parent corhpound.
Prediction of the atom positions in a molecule where metabolic reactions are initiated (i.e. sites of metabolism) is a
popular aspect of metabolism predictiomdacan be used as a stepping stone for the prediction of the chemical
structures of metabolites.

We have developed a strategy for metabolite structure prediction that is based on FAMEr@cently developed

and highly effective machine learning methfmt human cytochrome P450 (CYP) regioselectivity prediction.
Through the application of known C¥iRediated reactions to the sites of metabolism predicted by FAME 2, we are
able to correctly predict the vast majority of known metabolites while keepirgpatstive prediction rates low.
Compared to CYfnediated reactions applied to all atom positions in parent compounds, applying the site of
metabolism predictions as a preceding filter results in an approximatefgldereduction in the number of false
positive metabolite predictions on average.

1. Kirchmair J.; Goéller A. H.; Lang D.; Kunze J.; Testa B.; Wilson I. D.; Glen R. C.; Schneider G. Predicting
drug metabolism: Experiment and/or computatibia®ure Rev. Drug Disco015 14, 387404.

2. 4tFKR 0Bruyd Kops, C.; Stork, C.; Svozil, D.; Kirchmair, J. FAME 2: Simple and Effective Machine
Learning Model of Cytochrome P450 RegioselectivityChem. Inf. ModeR017, 57, 18321846.

P-26: Small Molecule Binding Site Predictiénow Your Needs

C. Ehrt? T. Brinkjost?, O. Koch

! Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany,
2Department of Computer Science, TU Dortmund University, Dortmund, Germany

The automated prediction and visualization of potential prdiending sites is of interest for function annotation,

WKH HOXFLGDWLRQ RI 3GUXJJDEOH’ ELQ@GihgXde pdstivdecsdes) Qplethnrd of dddlyy LG H Q'
have been developed to cope with various challenges of binding site ider8f@atD QG WR FRQVLGHU WKH EI
nature (proteirprotein, proteirDNA, etc.)?

Together with those tools, a high and still increasing number of small molecule cavity detection methods is
nowadays available. Therefore, the question arises whetherathibe attributed to major limitations of published
methods or whether they evolve due to tsmecific requisites. Although various methods were evaluated for
publication purposes and were also quite recently revigvike choice for the most convenianethods is still a
challenging task. A correlation of the results with various pocket properties seems indispensable to choose a suitable
tool. Various comparisons of subsets of tools show contradictory results which can be attributed to the varying types
of datasets and quality criteria which often highly depend on the output of the methods under investigation.

We applied two representative datasets of {ujghlity structures to gain a better understanding of the current
limitations of binding site predion. They cover a large spectrum of proteins and include binding sites, which are
prone to conformational changes upon ligand binding, as well as comparative protein models. Subsequently, we
investigated almost fifty available standalone tools with resgpeun time and particularly performance by means

of different quality criteria.

For the prediction of ligand binding sites of one single protein structure, the automated prediction should be
supplemented by further analyses to obtain reliable reshiésertheless, one need which cannot be fulfilled by an
elaborate pocket characterization workflow is the automated detection of cavities for huge databases of experimental
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or theoretical protein structures. To this aim, we strived to identify the mogil@exethods whose results do not
highly depend on geometric or physicochemical pocket characteristics, or the applied parameter set.

Ultimately, we tested and evaluated various standalone small molecule binding site prediction methods to find
answers tohte aforementioned questions. This will be outlined by an exhaustive analysis and discussion of our final
outcomes which will also include the analysis of ranking methodologies. The obtained results point towards a quite
obvious trend which is crucial fotldurther developments of novel methodologies.
1. Nisius, B.; Sha, F.; Gohlke, H. Structdvased computational analysis of protein binding sites for function
and druggability predictionl. Biotechnol2012 159 (3), 1231.34.
2. Watson, J. D.; Laskowski, R. AThornton, J. M. Predicting protein function from sequence and structural
data.Curr. Opin. Struct. Biol2005 15 (3), 275284.
3. Krone, M.; Kozlikov4, B.; Lindow, N.; Baaden, M.; Baum, D.; Parulek, J.; Heg&;.HViola, I. Visual
Analysis of BiomoleculaCavities: State of the Ar€Comput. Graph. Forura016 35 (3), 52451.
4. Broomhead, N. K.; Soliman, M. E. Can We Rely on Computational Predictions To Correctly Identify
Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site iBreilethods and
a Protocol for Validation of Predicted Binding Sit€=ll Biochem. Biophy2017, 75 (1), 1523.

P- OROHFXODU QDWXUH RI WKH L-QpghtspidaVHG D F\
glucuronosyltransferase nif@d mutant 1A5*8 (UGT1A5*8)

D. MadhalZ, F. Yand, M. Bureik, G. Wolbet

! Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universitat Berlin, Kénigin
Luise Str. 2+4, 14195 Berlin, German§School of Pharmaceutical Science and Technology, Health
Sciences Platform,idnjin University, Tianjin 30072, China

Uridine 5tdiphospheglucuronosyltransferase (UGT) 1A5 is a member of the UGT family catalyzing
glucoronidation, a crucial mechanism of phase Il metabolism, at low activity levels in different hepatic and
gastrointstinal tissue's Drug-induced increase and high intervariability of UGT1A5 expredgiaake it a phase I
metabolism enzyme of interest. Besides the wildtype UGT1A5*1, wbacurs with a frequency of > 80 % in the
human population, a recent stéddgports a nindold mutant UGT1A5*8 (frequency 11.5 %) and a-fxd mutant
UGT1A5*9 (frequency 5 %). UGT1A5*9 contains six out of thmen variations present in UGT1A5*8. We
expressed the wildtype UGT1A5*1 and the two mutants and incubated them with two Proluciferisub&iates

due to the scarcity of reported substrates.

While the sixfold mutant shows wildtype activity levels, we falithat the nindold mutant of UGT1A5*8 exhibits
significantly increased biotransformation activity. In order to investigate the molecular nature of the increased
catalytic activity in UGT1A5*8 we conducted structural homology modeling for wildtype areffolith mutant. We
identified the Gly259Arg mutation, only present in UGT1A5*8, as the likely cause for increased activity, since it
introduces additional hydrogen bonding to Asp400 and Asn401 in the helix Q of the structural model of UGT1A5*8.
We carried at molecular dynamics (MD) simulations of UGT1A5*1 and UGT1A5*8 in three replicas using
Desmond and two homology models served as input structures. We payed close attention to the hydrogen bond
QHWZRUN SUR[LPDO WR Wikhdsghegliztrad Reid QIDPGA) @ridl th§ Gly259Arg mutation.
Simulation analysis showed that the postulated Arg259 hydrogen bonding is stable and thus rigidizes the helix Q
observable in reduced root mean square fluctuation (RMSF) values. As a consequence, Asp397 ansitGiicd

in the helix Q, show hydrogen bonding to the cofactor UDPGA with higher occupancy in UGT1A5*8 than in the
wildtype. In this study, we identify Arg259 mutation as the indirect cause for tighter UDPGA cofactor binding. This
cofactor stabilizatiomxplains the increased the activity of UGT1A5*8 compared to the wildtype UGT1A5*1. These
results provide new insights into the structtuaction relationship of UGT1A5 and lead to the identification of two

new substrates of this new potential targetxtmobiotic metabolism.

1. Finel, M.; Li, X.; GardneiStephen, D.; Bratton, S.; Mackenzie, P. |.; Radomifiziadya, A., Human
UDP-glucuronosyltransferase 1A5: identification, expression, and actiVi®harmacol Exp The2005
315 (3), 1140.

2. Lek, M.; Karcawski, K. J.; Minikel, E. V.; Samocha, K. E.; Banks, E.; Fennell, T.; O'Dotnelh, A. H.;
Ware, J. S.; Hill, A. J.; Cummings, B. B.; et al., Analysis of preteiding genetic variation in 60,706
humansNature2016 536 (7616), 28®1.
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3. Bowers, K.; Cha, E.; Xu, H.; Dror, R.; Eastwood, M.; Gregersen, B.; Klepeis, J.; Kolossvary, |.; Moraes,
M.; Sacerdoti, F.; Salmon, J.; Shan, Y.; Shaw, D$I&0 ,((( 6& &RQIHUH QW6 p6 & 1
4343.

P-30: Searching within HELM

Eva Bultel*?, Anne Mund, Markus Weisselr
! quattro research GmbH, Planegg, Germafiyniversity of Hamburg. Hamburg, Germany

The Hierarchical Editing Language for Macromolecules (HELM) is an open biomolecular representation standard
created by Pfizérand further developed by thristoia Alliancé. It provides a means to represent multiple types of
complex macromolecules (e.g. nucleotides, proteins, antibodies and ardifagdgonjugates) including those that
contain nomnatural elements such as chemically modified amino acidsv@n abiotic components such as gold
particles.

With many current biological entities being significantly more complex than those found in nature, HELM has
proven its worth in handling the arising challenges. There are now toolkits for the easy depatigersion and

storage of biomolecules using the HELM notation. Yet, we still lack the ability to search within HELM strings,
which becomes increasingly important as databases grow in size. This searching capability has also been outlined as
important bythe Pistoia Alliance itself, with a proof of concept done by a student from Cambridge University.

guattro research has developed a new algorithm that allows users to not only query databases for exact matches or
substructures, but also establishes a anityl measure between arbitrarily complex biomolecules. Using this
similarity measure, biologists can infer behaviour of new substances based on the behaviour of known structures.
The algorithm is also capable of taking natural analogues into accounttetmaring HELM notations. Our work

closes an important gap researchers working with HELM have been facing. The extensive search and comparison
capabilities demonstrated here will have a significant impact on the acceptance of HELM in the pharmaceutical
community.

1. Zhang, T.; Li, H.; Xi, H.; Stanton, R. V.; Rotstein, S. HELM: a hierarchical notation language for
complex biomolecule structure representatidournal of Chemical Information and Modelirgp12 52
(10), 27962806.

2. Milton, J.; Zhang, T.; BellamyC.; Swayze, E. E.; Hart, C. E.; Weisser, M.; Hecht, S.; Rotstein, S. HELM
Software for Biopolymerslournal of Chemical Information and Modeli2@1757 (6), 12331239.

P-32: HELMIriven Integration of Peptides into StrucBased Drug Design and
Chemmformatics

Conor C. G. ScullyRobert T. Smith, Benjamin G. Tehan
! Heptares Therapeutics, Welwyn Garden City, United Kingdom

Peptidebased therapeutics are undergoing a resurgence in popularity, currently making up more than 10% of
marketed drugs and numating over 140 in clinical trials. Research teams are incorporating peptides into ever
increasing numbers of discovery programs. This boom in biologics has given us the impetus to develop tools aiding
the inclusion of peptides into the operational envirentrof traditional small molecule drug discovery paradigms.

The HELM (Hierarchical Editing Language for Macromolecules) standard is rapidly gaining wide acceptance in
industry and academia as an enabling tool for the sequmersesl description of complexological molecules,
including peptides.

The implementation of HELMbased tools will be described for a variety of computational tasks including:

x alignment of peptide sequences containing complex networks of unnatural residuesheamdalc
modifications;

X automated generation of templated 3D coordinates for complex peptides from HELM strings;
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X generation of normalized 2D representations of complex peptide structures such as branched and cyclic
peptides.

Finally, it will be shown how these tools can aid iragting and parsing information for biologics from databases,

in addition to facilitating the organization of this data in a manner that enables the application of differing learning
techniques, in this way ensuring that we continue to extract knowledgetfie eveincreasing amounts of data

now available to everyday researchers.

P-34: Machine Learning Models of Hydrogen Bond Basicity Based on Anisotropy
Atomic Reactivity Descriptors

Christoph Bauet, Andreas H. Gollet, Gisbert Schneidér

YETH Zuiich, Department of Chemistry and Applied Biosciences, Zurich, SwitzefBayker AG,
Computational Chemistry, Wuppertal, Germany

The quantification of the hydrogen bond strength to a target relative to solvent facilitates the determination of
substituenieffect and heteratom replacement in a compound. ThespKdatabaskeprovides experimental values

for approximately 1200 compounds, including polyfunctional molecukesnolecules with at least two different H

bond acceptors (HBA). The pKx data is ofatomic resolution for the HBA atoms.

We report on the establishment of general,atomtype independent, machine learning models for thespidata.
Our recently developed sets of atomic descriptors that encode the anisotropic electron densittiotisiising
conformatiorindependent quantuimechanical atomic charge schemes (Figufesdived as the feature space for
machine learning.

Figure 5. Anisotropic circular descriptors are created be eithpoltaical or 3D reabpace binning of atomic
properties like e.g. atomic charges (left) and mapping to a linear vector (right).

We present the model performances for several types of atomic descriptor vemtapsited for the HBA atoms

using internal arssvalidation. As the first result, we report a Gaussian Process Regression model performance on
the pKenx monofunctional molecules subset, using a charge radial distribution function descriptor vector. The
RMSE score for this preliminary test, obtaingdlif>-fold internal crossvalidation, is equivalent to 0.600.27 kcal

mol ™.,

We further report on the quantumechanical calculation of donacceptor interaction energies with the aim to
extend the dataset to larger, more complex and functionalizedufede

1. Laurence, C.; Brameld, K. A.; Graton, J.; Le Questek.;JRenault, E. The pkix database: Toward a
better understanding of hydrogbond basicity for medicinal chemist$, Med. Chem2009 52, 4073
4086.

2. Finkelmann, A. R.; Gdller, A. H.; Schrir, G.Robust molecular representations for modelling and design
derived from atomic partial charggshem. Commur2016 52, 681-684.

3. Finkelmann, A.R.; Goller, A.H.; Schneider, Gite of metabolism prediction based on ab initio derived
atom representaths ChemMedChen2017, 12, 606612.
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P-36: International Chemical Identifier for Reactions (RInChl)
The key to effectively managing reaction databases

Gerd Blanké, Jonathan GoodmA&rGunter Gretht Hans Kraut

! StructurePendium Technologies GmbH, Es§&armany? University of Cambridge, Department of
Chemistry, Cambridge, URDr. Guenter Grethe, Poway, CA 92064, UBfoChem Gesellschaft fur
chemische Information mbH, Munich, Germany

The ReactiofinChl (RInChl) extends the idea of the InChl, whiptovides a unique descriptor of molecular
structures, towards reactions. Prototype versions of the RInChl supported by the IUPAC &hdvérsity of
Cambridgehave been available since 2011. The first official release (RINCTHIO), funded by the InChrrust is

now available for downloadh{tp://www.inchitrust.org/download¥/ This release defines the format and generates
hashed representations (RInChiKeys) suitable for database and web opefdti®mnalk will introduce the various

RInChl representations and reports results of our work with reaction databases indexed by RInChl to demonstrate
how RInChl may facilitate the manipulation and analysis of reaction data and will provide informatiomédow t
RINChlI will be further developed.

P-38: Characterizing Somatic Cancer Mutations in GPCRs

B.J. Bonger§ X. Wand, X. Liu!, HW.T van Vlijmert? K. Y&, L.H. Heitmar, A.P. 1Jzermah
G.J.P van Westén

! Division of Drug Discovery and Safety, Leidd@ime Netherland$Janssen Pharmaceutica NV, Beerse,
Belgium,3 Xi'an Jiaotong University, Xi'an, China

G ProteinCoupled Receptors (GPCRs) have recently gained interest as the second most mutated class of proteins in
the context of canckérOne of the key problems in canaesearch remains the distinction between passenger and
efficacious driver mutations. In the case of GPCRs, two decades of extensive research and the availability of crystal
structures have led to insights into protein function and pritgand recognitbn which we aim to exploit.

Combining data from ChEMBlLand the BROAD institufewe constructed a dataset containing 9,144 patient
samples data of 38 different cancer types. Subsequently, entropy analysis was performed to observe mutation
prevalence in GPCRs, specdlty missense mutations, and compare these to a control set based on the 1000
genomes dataset, which contained 2,504 sarffiles

First and foremost our analysis was able to retrieve and prioritize previously identified relevant GPCRs in a cancer
context such as the Frizzled receptors and metabotropic glutaecaietors However, we were also able to gain

new insights. More functional mutations were found in the TCGA data: Intracellular loops and transmembrane
domains 3 and 6 (TMs) are most intensively mutated across GPBRserved residues in wédhown motifs (such

as the 'DRY' motif) are enriched for mutations. More specifically, residues flanking the -bayidgrved and
essential residues have a higher chance of mutation.

Secondly, we observe mutations to have a ikt low prevalence in the Class A GPCR ligand recognition site,
opening the door for target modulation with small molecules. Small peptide receptors from both Class A and B
GPCRs, such as neuropeptide receptors and angiotensin receptors show a ldige rawgtaompared to receptors
recognizing small(er) molecules.

Thirdly, physicochemical changes resulting from these somatic mutations are on average neutral in the 1000
genomes set, whereas a difference is observed in the BROAD set.

Finally, several ®CRs are selected for folleup experimental research to determine both the effect of mutations on
GPCR function and the effect of different function on cell growth.

1. 27+D\U Het ab The emerging mutationddndscape of G proteins andpBoteincoupled receptors in
cancerNat. Rev. Cancet3,412#424 (2013).

2. Bento, a. Pet al. The ChEMBL bioactivity database: An updataicleic Acids Re<l2,D108390 (2014).

3. Broad Institute of MIT and Harvard. Firehos213_11 01 run. (2015). doi:10.7908/C1571BB1

4. Auton, A.et al. A global reference for human genetic variatibiature526,68 74 (2015).
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5. Ye, K., Lameijer, EW. M., Beukers, M. W. & ljzerman, A. P. A Twlntropies Analysis to Identify
Functional Positions inthe Transmembrane Region of Class A G Pre@oiuopled Receptors.
doi:10.1002/prot.20899

6. Bar-Shavit, Ret al. G ProteinCoupled Receptors in Cancénmt. J. Mol. Scil7,1320 (2016).

P-40: A Novel Approach to Assign Absolute Configuration UsingpWddr@trcular
Dichroism

Lennard Béseft, Dominik Sidlet, Tobias Kittelmanr, Jirgen Stohnet Sereina Riniket

! Laboratory of Physical Chemistry, ETH Zurich, VladifRirelog:Weg 2, 8093 Zurich, Switzerland,
2 Institute of Chemistry and Biotechnolo@urich University of Applied Sciences, Einsiedlerstrasse 31,
8820 Wadenswil, Switzerland

Vibrational circular dichroism (VCD) spectroscopy is a technigue sensitive to the chirality of a mélasWeCD

requires only a solution of the compound in quesfor measurement, it is an attractive alternative to single crystal
X-ray diffraction. The interpretation of measured VCD spectra and thus the assignment of the absolute configuration
rely onab initio quantummechanical (QM) calculatiorig: For confornationally rigid molecules, the gashase QM
calculations are straightforward and the calculated spectra agree well with the measured ones. However, for flexible
molecules it becomes challenging to estimate the correct conformational ensemble. In d@bditemge number of
conformers, which may need to be considered, increases the computational cost.

In this work, we developed and evaluated a VCD sequence alignment (VSA) algorithm to match calculated and
measured VCD spectra and assign the absolute coafign. The VSA algorithm has been parametrized on a set of
rigid molecules, and tested on a set of flexible drug molecules taken from Ref. [3]. Using the VSA algorithm we
obtained a success rate of 100% for predicting the correct absolute configuFatitrermore, the number of
relevant conformers for which a VCD spectrum has to be calculated can be reduced, lowering the computational cost
of the approach substantially. A simple conformational search was found sufficient to obtain the relevant
conformes. We anticipate that our approach will help research groups to determine the absolute configuration of
chiral molecules in a robust and efficient manner.

1. Stephens, P. J.; Lowe, M. A. Vibrational Circular Dichroigmn. Rev. Phys. Cheit985 36, 213241.

2. Magyarfalvi, G.; Tarczay, G.; Vass, E. Vibrational Circular DichroiSsffiLEY Comp. Mol. ScP011], 1,
403-425.

3. Sherer, E. C.; Lee, C. H.; Shpungin, J.; Cuff, J. F.; Da, C.; Ball, R.; Bach, R.; Crespo, A.; Gong, X.; Welch,
C. J. Systematic Approach to Confhational Sampling for Assigning Absolute Configuration Using
Vibrational Circular DichroismJ. Med. Chem2014 57, 477494.

P-42: A Novel Search Engine and Application folL¥eyg Chemistry Database
Mining
R Brown J Hussain, G Braé M Hartshorn

'RWPDWLFV %LVKRSYfY 6WRUWIRUG 8.
Chemical structure searching is an important technique within small molecule drug discovery. It is used to find
available analogues to expand the SAR around a biological active as well as to identify appropriate feagen

compound synthesis. Modern search systems typically provide a few search types including exact structure,
substructure and similarity searching and almost all provide these search services through an Oracle cartridge.

There are two challenges inket in providing these types of workflows to chemistry teams

1. Building, maintaining and distributing very large (10M+) databases of compounds such as screening
collections (e.g eMolecules) or public data (e.g. SureChEMBL), with up to date data.

2. Providing arange of search types to allow important tasks such as lead hopping or SAR expansion in a user
interface appropriate for end user chemists rather than power users such as cheminformaticians and
modellers.
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In this talk we will show how we have addressethiproblems: the first with a novel search engine (Minpoint) and
the second with an application (Chemselector) that exploits that technology

Following early innovation in cheminformatics research, cartridges became the norm for database searching in the
1990s and since then the pace of innovation in this field has slowed dramatically. However, cartridges have definite
limitations especially when needing to build and distribute very large databases on a regular basis

Minpoint is a novel search technologgsigned for very fast search performanige substructure search again 10+

million structures can be run on a standard laptop. The search performance means almost all searches can be
performed interactively as a structure is being drawn. The high perfoemzan be utilized to help deal with
tautomers when searching. Additionally, searching for matched molecular pairs of a query molecule in a large
database becomes possible. The talk will also show different search modes that make it easier for chemists to
formulate complex substructure queries and to select appropriate search techniques for a range of tasks including
SAR expansion or lead hopping.

Minpoint does not rely on an Oracle cartridge for searching, instead holding structures and indexesmasfiles
application server. The scalability of this approach to very large databases is important since many tasks such as
compound or reagent searching, or searching public datasets of patents, require the datasets that would be
prohibitively expensive to uild, maintain and distribute as Oracle databases. In the talk we will discuss the
implementation of the Minpoint technology and its advantages for these type of applications

The powerful and often complex techniques employed when performing a chemicalrst search mean designing

an appropriate interface is paramount if the system is to be used byomputational experts such as bench
chemists. ChemSelector pulls together several powerful search methods in an interface appropriate for most bench
chenists to use and the talk will discuss aspects of interface design and user experience that make it appropriate for
that user community

P-44: Designing of a "drdige" natural compound library for secondary metabolites
collectedrom the African flora.

Conrad V. Simobeh Fidele NtieKang"?, Wolfgang Sipp!

Ynstitut fur Pharmazie, Martiiuther University of HalleWittenberg, Halle, Germarfepartment of
Chemistry, University of Buea, Buea, Cameroon.

With the continuous search for new drugs to condisgases, a topic of interest to medicinal chemist researchers is
the search for new active compounds containing different core structures. Medicinal plants represent a potential
source for the search of these new scaffolds. The criteria for choosintjcalpanatural product for studies were

either based on the pexisting traditional use of the plant in therapy (ethnobotanical knowledge) or the search for
structurally related molecules using known pharmacologically active ag€hes African continat is very rich in
biodiversity and some of the medicinal plants growing on the continent have been used by its local populations in
traditional preparations for the treatment of several ailments. One of our research aims is to make available (freely
online) the current knowledge on ethnobotanical uses of the medicinal plants as well as the three dimensional (3D)
structures, physicohemical properties and measured activities of the compounds isolated from medicinal plants
collected from the African contimg with the view of assisting in the drug discovery procgdtp://african
compounds.org/ Previous surveys of the African flora, show that this part of the world could be a huge repository
of bioactive natural products with diverse scaffolds and actiVAtids. a continuationof our ongoing database
projects, we herein present a collection of ~2000 compounds isolated from East Africa (EA). Information about the
said compounds was assembled from natural product journals and local African journals, as well as from M.Sc. and
Ph.D.theses in African university libraries. These compounds were isolated mainly from about 300 medicinal plant
species belonging to 60 families, harvested from EA and commonly used in the treatment of a variety of ailments. A
majority of compounds reported ene alkaloids, flavonoids, quinones, steroids and terpenoids. Computed
physicochemical properties which are often relevant to predict pharmacokinetic and pharmacodynamic activities for
compounds in this collection have been included.

1. Harvey, A. L.;Edradé&bel. R.; Quinn, R. J. The-4amergence of natural products for drug discovery in the
genomics eralNat. Rev. Drug Di2015 14(2), 1114 29.
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2. Ntie-Kang,F.;Telukunta, K. K.;Déring, K.;Simoben,C. V.;Moumbock,A. F. A.;Malange,Y. I.;Njume, L.
E.;Yong,J. N.;Sipl,W.;Giunther,S.; NANPDB: A Resource for Natural Products from Northern African
SourcesJ. Nat. Prod 2017, 80(7). 20672076.

3. Onguéné, P. A,;Simoben,C. V.;Fotso,G. W.; Anelééarobela, K.;Khalid, S. A.;Ngadgui, B. T.;Mbaze, L.
M.;Ntie-Kang,FIn silico toxicity profiling of natural product compound libraries from African flora with
anti-malarial and antHIV properties. Comput. Biol. Chem 2017,
https://doi.org/10.1016/j.compbiolchem.2017.12.002

4. Ntie-Kang,F.;Nwodo, J. N.; Ibezim, A.; Simoben,C. V.;KaraimB.; Ngwa, V. N.; Sippl, W.; Adikwu, M.

U.; Mbaze, L. M. Molecular Modeling of Potential Anticancer Agents from African Medicinal Plants.
Chem. Inf. Model2014 54(9), 24332450.

P-46: mmpdb: A Matched Molecular Pair Platform for Largerbhdty Datasets

A. Dalke?!, C. Krame?, J. Hert
! Dalke Scientific, Trollhattan, SwedérRoche Innovation Center, Basel, Switzerland

Matched Molecular Pair (MMP) analysis enables the automated and systematic compilation of medicinal chemistry
rules from ompound/property datasets. MMPDB is a new MMP platform to create, compile, store, retrieve and use
MMP rules. MMPDB is suitable for the large datasets typically found in pharmaceutical and agrochemical
companies, and provides new algorithms for fragmentmigalization and stereochemistry handling. The platform

is implemented in Python using the RDKit toolkitand is available as open source from
https://github.com/rdkit/mmpdb

The core molecular match algdmih is derived from the fragmeandindex approach oHussain and Rea.
Structures are fragmented into a constant part and a variable part. The canonicalized constant is used as an index to
find matching pairs of variable parts. Our new algorithm gener#aenical SMILES for both the constant and
variable parts, resulting in a canonical transformation description and improved analysis performance. It also handles
stereochemistry through a process callegtmpmeration to identify pairs between structuméh partially specified
stereochemistry.

MMP rules are highly dependent on the local environment around transforma®origansformation which
substitutes a hydrogen atom in a carboxylic acid with a methyl group, for example, results in differeatamolec
property changes than the same substitution in an aliphatic chain. For each fragmentation record we include
information about the circular environment around the attachment points, for each radius up to 5 bonds away, stored
as a SHA256 hash. This pides an easy and effective means to stratify the transformation data without directly
revealing its chemical structure, which may make it easier for organizations to share MMP data with others.

MMPDB is a commarudine tool which can fragment and index & eé compounds to identify matched molecular

pairs and store them, along with physical property or activity data, in a SQLite relational database. It implements two
analysis features for ADMET and physicefKHPLFDO 003%$ 7KH 3WUDQVIR liythe M@P O\V LV
transformations which may result in a structure with improved properties. The "predict" analysis estimates the

property change between two molecules, typically an existing compound and a virtual one.

MMPDB is built with large corporate datasdéts mind. The fragmentation step can reuse information from a
previous run, if the structures haven't changed, and the fragmentation and parts of the analysis methods are
parallelized. Using a benchmark dataset with the 20,267 compounds from ChEMBL vRBAZYor hERG data, a
transform analysis of sofosbuvir takes 51 seconds to generate 1620 novel compounds. Most of that time is spent in
startup overhead and randeaocess database seeks on a rotating drive; ess@mire version backed by a RAM

drive takesonly 1.7 seconds. A predict analysis between sofosbuvir &fidgoo-phenylsofosbuvir with hERG as

the query target property completes in 17 seconds, or 1.4 seconds through a web service.

1. Landrum, G. RDKit: Opessource cheminformatic2006http://rdkit.ord

2. Hussain, J.; Rea, C. Computationally Efficient Algorithm to Identify Matched Molecular Pairs (MMPS) in
Large Data Setsl. Chem. Inf. ModeP01Q 50 (3), 339348.

3. Papadatos, G.; Alkarouri, M.; Gillet, V. J.; Willett,; Kadirkamanathan, V.; Luscombe, C. N.; Bravi, G.;
Richmond, N. J.; Pickett, S. D.; Hussain, J.; Pritchard, J. M.; Cooper, A. W. J.; Macdonald, S. J. F. Lead
Optimization Using Matched Molecular Pairs: Inclusion of Contextual Information for Enhancedtiered
of HERG Inhibition, Solubility, and LipophilicityJ. Chem. Inf. ModeR01Q 50 (10), 18721886
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P-48: 3Be-Chem: Structural Cheminformatics Workflows for Corfdéest Drug
Discovery

AJ Kooistrd? M Vasg, R McGuiré?3 | de Esch, G Vriend, L Riddef, S Verhoeveh C de
Graat

'Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, The Netherl&@dsitre for Molecular
and Biomolecular Informatics (CMBI) Radboudumc, Nijmegen, The NetherfBidaxis Research, Oss,
The Netherlands} Netherlands eScience Center, Amsterdam, The Netherlands

eScience technologies are needed to process the information available in many heterogeneous typedigéipdotein
interaction data and to capture these data into models that enable the desiigacibes and safe medicines. The
3D-e-Chem consortium has developed scientific KNIME tools and workffévtsat enable the integration of
chemical, pharmacological, and structural information, including: i) strutiased bioactivity data mapping, ii)
structurebased identification of scaffold replacement strategies for ligand design, iii) sl target prediction,
iv) protein sequenebased binding site identification and ligand repurposing, v) strub@msed pharmacophore
comparison for ligandepurposing across protein families, andimiksilico metabolic profiling. The modular setup
of the workflows and the use of walktablished standards allows theuse of these protocols and facilitates the
design of customized computeided drug discaary workflows.

1. McGuireR, Verhoeven S, Vass M, Vriend G, de Esch IJ, Lusher SJ, Leurs R, Ridder L, Kooistra AJ,
Ritschel T,de GraafC. 3D-e-ChemVM: Structural Cheminformatics Research Infrastructure in a Freely
Available Virtual MachineJ Chem Inf Mode2017, 57, 115121.

2. Kooistra AJ, Vass MMcGuireR, Leurs RdeEsch 13, Vriend G, Verhoeven & GraafC. 3D-e-Chem:
Structural Cheminformatics Workflows for Computsided Drug DiscoveryChemMedCher018. doi:
10.1002/cmdc.201700754

3. https://3de-chem.gthub.io

4. https://www.knime.com/3@-chemnodesfor-knime

P-50: Analysis and inference within the molecular space: A visual approach using
NAMS and multidimensional scaling

Samina Kausar, Andre O. Falcab®

LLASIGE, Department of Informatics, FacultiySciences, University of Lisboa, Lisboa, Portugal,
2BiolSI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa,
Portugal

Molecular similarity quantification is a central task in cheminformatics and has aumepplications in drug
discovery methods. The core concept of molecular similarity is based on Similar Property Principle, which states
that similar compoundshould have similar propertids Irrespective of the specific analysis, molecular similarity
values largely depend upon molecular structural representation and similarity coefficient. However, similarity
guantification must be consistent for reliable application of molecular similarity in all situations.

Representing molecular similarity intorew referencesystem has been used previolisfi. The basic idea is to

capture the measured molecular distances according to any method and try to represent molecules in a reduced
reference space for analysis and visualization. Many dimensionalityti@dwueethods are extant, and some of the

more popular are Principal Coordinates Analysis (PCooA), Kruskal Multidimensguoaing (MDS) or Sammon
mappind?l. These constructs can be used to build a classification model for QSAR problems where molehées ca
separated in two or more classes. The procedure to create such a model then can be described in the following steps.
First, a full similarity matrix of a molecular dataset is computed. Secondly, similarities are transformed into
distances and projectanto a 2Dimensional (2D) space using one of the above mapping functions. Finally, the
probabilities of this reduced space are computed using a 2D kernel density estimation function to produce a
probability map of a projected molecule for all classess PIb map can visually produce information as to where

the more promising regions of the molecular space are located and can as well serve as a classification model. By
projecting new molecules using the same transformation constructed, it is possitlbtiteato any molecule the
probability of it belonging to either class.
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The designed methodology was validated using four human proteins (Table 1), retrieved from ChEMBL. To
compute similarities, the Ne@ontiguous Aom Molecular Similarity (NAMSY! was used as it has shown to be

more precise than fingerprinkgased approaches. The selected datasets were curated and divided into two classes
using a cubff of activity value (Ki) to separate highly active molecules (Ki<=10.0) as positives and lessaactive
nonactive molecules (Ki>10.0) as negatives. All datasets were randomly split into training and test sets. The 2D
maps were generated only with the training sets and the class probability maps calculated for the 3 mapping
functions (PCoo0A, Kruskal anBammon). The 2D coordinates of the test molecules were computed into the new
reference space using a data transformation matrix and the class probabilities were calculated. Each model's
performance was assessed using Area Under Curve (AUC) and the Ma@betficient Correlation (MCC). AUC

testing results range from 0.78 to 0.98 (Table 2), suggesting this methodology can validly capture the complexities
of the molecular activity space. All three mapping functions provided generally good results wightargire

positive outcome for PCooA. Charts were produced for all four problems to make evident the visual nature of these
models, aiding in the identification of the most promising molecular active regions (Figure 1).

Table 1: Dataset description

TARGET FROTEIN UNIPROT TRAINING SET TEST SET
ID. Positives| Negatives| Positives| Negatives
Sigma noropioid intracellular receptor 1 (SigmalR) Q99720 46 135 10 35
Histamine H1 receptor (HRH1) P35367 184 783 46 195
Potassium voltaggated channel subfamily | Q12809 39 1142 12 283
member 2 (HERG)
D(1B) dopamine receptor (DRD5) P21918 41 231 5 62

Table 2: Results on validation set ((*xbest model)

TARGET PROTEIN PCOOA MDS SAMMON
AUC | MCC | AUC | MCC | AUC | MCC
Sigma noropioid intracellular receptor 1 (SigmalR) 0.86(*) | 0.63 0.80 0.60 0.79 0.55
Histamine H1 receptor (HRH1) 0.80 | 043 ]0.83(*)| 042 | 0.80 | 0.35
Potassium voltaggated channel subfamily H member 2 (HER| 0.80 0.18 0.78 0.23 1 0.81(%) | 0.29
D(1B) dopamine receptor (DRD5) 0.98(*) | 0.72 0.85 0.33 0.81 0.42

1. Johnson, M.A.; Maggiora, G.MConcepts and Applications of Molecular Similarityiley, New York,
1990

2. Teixeira, A.L.; Falcao, A.O. Structural similarity based kriging for quantitative structure activity and
property relationship modeling. Chem Inf Mod2014 54, 18331849

3. Mahendra, A. Ricardo, V.; Daniel, P.; Josep, A.; Jeanis, R. Chemical Space: Big Data Challenge for
Molecular Diversity.Chimia 2017 71, 661666

4. Venables, W. N.; Ripley, B. D. Modern Applied Statistics with S. Fourth Edition. @arifNew York,
2002

5. Teixeira, A.L.; Falcao, A.O. Noncontiguous atom matching structural similarity functi@@hem Inf Mod
2013 53, 25112524,
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Figure 1: Test set projection over MAP surface of selected models with highest performancedirelés are
positives, white are negatives).

P-52: Reaction Haification by Reaction Vectors

G. Ghiandont, B. Cher?, M. J. Bodkin®, V. J. Gillet.?
Y Information School, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP,

United Kinglom 2Chemistry Department, University of Sheffield, Dainton Building, Brook Hill,
Sheffield, S3 7HF, United Kingdof‘rEvotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon,
0OX14 4RZ, United Kingdom

De novomolecular design is the branch ofechoinformatics concerned with the rational design of tailored
structures from scratch, combining desired pharmacodynamic and pharmacokinetic properties, in order to boost the
identification of new chemical entities (NCEs).

The size of potential drulike chemical space has been estimated 8 PROHFXOHYV DFFRUGL®J WR /LSLC
Five (RO5), which determines roughly if a certain molecule may possess suitable characteristics to be an orally
active drug® However, the recent introduction dé novodesign tools for the design of synthetically accessible
compounds has resulted in a significant reduction of this number, earning its way among the foaged glesign

methods’ In particular, reaction vectors, which are descriptors that incorporathémges that occur in chemical

reactions, have been implemented in a structure generation tool to produce new molecules by transforming a set of
selected reactants with the use of a database of reaction exafrigte, we propose a machine learning nhdole

reaction classification, entirely based on the concept of reaction vector and specifically trained towards the
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prediction of 336 medicinal chemistry reaction classes, that would offegfaieed selection of products from sets

of specific reactiortlasses. We then investigate how the reaction classification tool can be used to dehzomoe

design through a more effective and direct exploitation of specific classes of reactions. For instance, reaction
classification could be applied in order tcogp reactions into categories, such as bond formations or functional
group conversions, thus enabling the use of specific reaction classes; or facilitating medicinal chemists in the direct
selection of their favourite reactions from ELNs (electronic |lafooyanotebooks).

1. Hartenfeller, M. & Schneider, G., Enabling future drug discovery by de novo de¥ifiey
Interdisciplinary Reviews: Computational Molecular Scierg®¥l1 1, 742759.

2. Bohacek, R.S., McMartin, C. & Guida, W.C., The art and practicetrottsirebased drug design: A
molecular modeling perspectividledicinal Research Reviewid96 16, 350.

3. Hartenfeller, M., Reactioriven De Novo Design: a Keystone for Automated Design of Target Family
Oriented Libraries. IrDe novo Molecular DesignSchneider, G., Ed.; WileyVCH Verlag GmbH & Co.
KGaA, Weinheim, Germany013 245266.

4. Patel, H., Bodkin, M. J., Chen, B. & Gillet, V. J., Knowleeased Approach to De Novo Design Using
Reaction Vectorslournal of Chemical Information and Modelir2p09 49, 11631184.

5. Hristozov, D., Bodkin, M., Chen, B., Patel, H., & Gillet, V. J., Validation of Reaction Vectors for de Novo
Design.Library Design, Search Methods, and Applications of FragrBarsed Drug Desigr2011, 29-43.

P-54: Tautomeric Equilibrislodeling and Visualization.

Marta GlavatskikR-? Timur Madzhido, Igor Baskir?, Dragos Horvath, Ramil Nugmanoy,
Timur GimadieV, Gilles Marcod Alexandre VarneKk’

! University ofStrasbourg, France,Federal University of Kazan, Russtd,omonosov Moscow State
University, Moscow, Russia

The existing tools for the prediction of ratio of tautomers are predominantly based on the calculation of pKa values
of related tautomer. This may significantly affect the accuracy, especially, if the efritrs pKa predictions are
FRPSDUDEOH ZLWK WKH GLIIHUHQFH RI WDXWRPHUVY S.D YDOXHV ORUL
solution and hence not applicable for other media. Here the prediction of tautomeric equilibria is perfceotgd dir

for the equilibrium constant (logK) for the reactions proceeding in aqueous and organic solutions or their mixtures.

The models were built on a data set of 697 reactions of 10 tautomeric classes, for which logK values were measured
in different solents and at different temperatutesSupport Vector MachidgSVM) and Generative Topographic
Mapping (GTM) were used as machihearning methods. The structure of tautomers has been encoded by ISIDA
fragmenté whereas conditions were accounted for physisemical parameters of solvent and inverse temperature.
Both SVM and GTM models perform well in cregalidation (RMSE(5CV)=0.63-0.67, R2(5CV)=0.82-0.84).
Validation of these models on two extalntest sets, either included the transformations under new reaction
conditions (test 1) or new structures (test 2), lead to reasonable statistical parameters (RMSE=0.59 and 1.96,
R2=0.62 and 0.65). Large RMSE value for test 2 is explained by the faoidhathan half of the compounds were

RXW RI WKH PRGHOYYV DSSOLFDELOLW\ GRPDLQ 7KH FRQVHdap®rXV 690
https://cimm.kpfu.ru/development/predictor

As it isillustrated on Figure 1, a GTM map well separates both different tautomeric classes and the same equilibria
proceeding in different solvents.
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Figure 1. GTM map built for 697 tautomeric
equilibria. The color code corresponds to 10
tautomeric classes. Sekted data points correspond
to the same equilibrium studied in CHCI3 (logK=

0.49) and DMSO (logK= 0.62).

1. Palm, V. A., Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions. VINITI: Moscow,
1978.

2. Chang, GC.; Lin, C-J., LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst.
Technol.2011,2 (3), 127.

3. Gaspar, H. A.; Marcou, G.; Horvath, D.; Arault, A.; Lozano, S.; Vayer, P.; Varnek, A., Generative
Topographic Mappin@gased Classification Modelsnd Their Applicability Domain: Application to the
Biopharmaceutics Drug Disposition Classification System (BDDCS). J. Chem Inf. Mfiled,53 (12),
33183325.

4. Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; Vayer, P.; Solov'ev, V.; Koemd.;
Tetko, I. V.; Marcou, G., ISIDA Platform for virtual screening based on fragment and pharmacophoric
descriptors. Curr. Compuided Drug Des2008,4 (3), 191198.

P-56 Atrtificial Intelligence in Medicinal Chemisd@urrent Status at AsZeneca

T. Kogef, H. Chen, C. TyrchaR, O. Engkvist, C. Greed

'Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit,
AstraZeneca R&D Gothenburg, Swed&Respiratory, Inflammation and Autoimmunity, Innovative
Medcines and Early Development Biotech Unit, AstraZeneca R&D, Gothenburg, SW&derpound
Management, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit,
AstraZeneca R&D, Cambridge, UK

Artificial intelligence (Al) is gaining impdaence in our modern society. Among Al algorithms, recurrent neural
networks (RNNs) have emerged as powerful generative models for various applications such as natural language
processing, images, video, music and speech recognition. Inspired by thispdeuatiove started to use RNN
recently for molecular de novo desigfh Our current Al platform consists of not only the molecular de novo design
component but also a set of novel machine learning models to score the de novo generated molecules @ccording t
potency, selectivity and ADME properties.

1. M. H.S. Segler, T. Kogej, C. Tyrchan, M. P. Walle€S Cent. Sgi2018 4,120431.
2. M. Olivecrona, T. Blaschke, O. Engkvist, H. ChdnCheminf2017, 9, 48-62.
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P-58: Compact descriptor sets for autorretinotation of natural products in large
databases by pairwise variable screening

M. Kretzschmat, K. Baumanrt

!Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitat Braunschweig,
BeethovenstralRe 55, 38106 BraunseigwGermany

Natural products (NP), especially the subgroup of secondary metabolites, are of much interest in pharmaceutical
research due to their highly optimized binding mechanisms with their macromolecular targets.

As NPs and NHRike molecules are much more diversedaover a different chemical space than pure synthetics,
different approaches for these molecular classes are needed for applications like target prediction. Unfortunately,
large compound collections like ChEMBL lack an -bfmotation. Previous wotR addessed this issue with a
NaiveBayesian model based on a molecular fingerprint generating an (exhaustive) set of substructures. This study
aims to identify NPs using a small set of essynterpret chemical descriptors via machlearning techniques.

NPs(approx. 220k) and synthetics (approx. 320k) were collected from several databases, carefully curated and split
into training and test sets for validation. Employed descriptor sets to encode the compounds include manually
selected features tailored towafdBs, molecular shape descriptors (WHIM), molecular fragments and other well
established descriptor sets like Dragon descriptors and MACCS keys. A pairwise variable screening was performed
to identify those descriptors which show the largest differencetags means. Model performance was evaluated

for each single descriptor set with varying variable numbers as well as for interesting combinations thereof. Finally,
selected models were used to provide a predictedmti®tation for the whole ChEMBL dataleas

It can be shown that even a very small set of descriptors in combination with a Random Forest Classifier is well
capable of distinguishing between NPs and synthetics. Theteasgrpret approach may help to explore the
chemical space covered by NRstBat more specific cheminformatic applications could be developed for them.

1. Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural Prodilbkeness score and Its Application for Prioritization
of Compound Librariesl. Chem. Inf. ModeR00§ 48 (1), 6874.

2. Jayaeelan, K. V.; Moreno, P.; Truszkowski, A.; Ertl, P.; Steinbeck, C. Natural prtideness score
revisited: an opeource, opetlata implementatiorBMC Bioinf.2012 13, 106.

P-60:De novalrugcandidate molecule generation with generative adversarial
networks

X. Liut, K. Y&, H. W. T. van Vlijmef 3 A. P. 1Jzermah G. J. P. van Westén

! Drug Discovery and Safety, Leiden Academic Center for Drug Research, Einsteinweg 55, Leiden, The
Netherlands? 2PLFV DQG 2PLFV LQIRUPDWLFYWAL D QL BLOORVYPR Q J58&Q L; ¥ HI
3 Janssen Pharmaceutica NV, Beerse, Belgium.

Over the last five years deep learning (DL) has progressed tremendously in both image recognition and natural
language processiil Based on these results DL has also bamslied in cheminformatics to predict bioactility

A specific type of deep neural nets are generative adversarial networks (€.ABKINS were previously used for

image generation and based on this Seq®Ads constructed for sequence generation.

Here, we use SeqGAN to generate novel small molecules based on the SMILES format. This model contains two
separate networks: a discriminator and a generator. Both were implemented with LSTM recurrent neural networks
and trained simultaneously. In the reidement learning framework, the discriminator function is the reward
function to measure whether the generated molecule has desired properties. The generator on the other hand is the
policy function to determine which character to choose to stepwise ctrst8BMILES format string.

The dataset we used here contains two parts, the first one was the whole refined ChEMBL set as we used
previously>® to train the generator to learn the grammar of the SMILES format. The second one contained ligands
that can Ind the adenosine A receptor. This data was used as the training set to train the discriminator.
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Our proof of concept generated compounds that not only have a valid sequence following the SMILES format, but
also possess predicted binding affinity foe thoa receptor. Hence, we can enlarge chemical space for candidate
drugs to search for the optimal molecular structure for further study. Follow up work includes selectivity
optimization towards a single or multiple targets.

1. LeCun, Y., Y. Bengio, and G. Hion,Deep learningNature, 2015521(7553): p. 43&44.

2. Lenselink, E.B., et al.Beyond the hype: deep neural networks outperform established methods using a
ChEMBL bioactivity benchmark sétCheminform, 201R(1): p. 45.

3. Goodfellow, I.J., et alGeneative Adversarial Network#&rXiv e-prints, 20141406

4. Yu, L., et al.SeqGAN: Sequence Generative Adversarial Nets with Policy Gradietiv e-prints, 2016.
1609

5. Gaulton, A., et al.The ChEMBL database in 201Nucleic Acids Res, 20145D1): p. D945D954.

P-62:The Need for Comprehensive Reaction Handling in SA¥yand B

M. Nicklaus®, W. Ihlenfeld, G.Blanke®, P. Judsod, V. Delanre?

NCI, NIH, Frederick, USA Xemistry GmbH, Kénigstein, GermardgtructurePendium Technologies
GmbH, Bsen, Germany Consultant, HarrogateUK

With everincreasing amounts of chemical data, fast and lossless chemical information processing is more important
than ever. While small molecule representations have been an area of active research andtsigndiceestboth
public/opensource and commerciatduring the past two decades, chemical reaction data have not received the
same degree of attention. Reactions, while encompassing all the complexities of the chemical structures of the
starting materils and products (plus possibly catalysts, solvents etc.), are yetcommy@icated data structures.

Laboratory records registered in ELNs, reactions collected in large databases such as Reaxys and CASREACT,
synthesis data submitted to FDA for drug ingretheetc. typically handle this wealth of information in a way that is
targeted at the local needs of the software or organization, thus are neither comprehensive for all possible needs nor
designed for data exchange.

We discuss the shortcomings of curreeaction representations in the context of our Synthetically Accessible
Virtual Inventory (SAVI) project (aimed at the creation in silico of 1 billion easily synthesizable molecules) as well

as for general needs. The widely used RXN and RD file formatsaarteuly suited for comprehensive and semantic
exchange of reaction data and cannot be used for searches and reaction comparison out of the box. The format of an
RD file depends on the database it is exported from and varies accordingly. We brieftg ditice formats such as

RInChl and reaction SMILES in this context. To push for the development of a standardized, comprehensive,
semantic reaction handling/representing format, we suggest criteria to be considered such as inclusion of reaction
conditiors and metadata, participating atoms/bonds information, representation of failed reactions, comprehensive
and finegrained handling of tautomerism. We discuss possible avenues to address these challenges.

P-64:Flavours in Aromaticity

M. Ott, D. Pontingd, R. van Deurseh
! hasa Limited, Leeds, UK

In organic chemistry, the term aromaticity is used to describe a cyclic unsaturated structure that exhibits more
stability and a different reactivity profile than a similar remomatic one. For the ring to laeomatic, its atoms must

all be sp-hybridised to allow full delocalisation and the system shoul@& DL Q -€ectrons®n =0, 1, 2, 3;
+*FNHOfVY UXOH +RZHYHU FRXQWLQJ WKHVH HOHFWURQV LV OHVV VWUD
beyond the familiar group of benzene, pyrimidine, thiazole etc. For examplpyridihone aromtc, counting the

carbonyl group for 0 electrons? While many compounds exhibit aromatic character to some extent, not all are as
perfectly aromatic as benzene.

142



Poster Session Abstracts BLUE

In order to adopt a flexible and useable approach to aromaticity, we chose to introduce tHe&SadhcR1 D 3GHJUH
DURPDWLFLW\" EDVHG RQ! W blasic 2dea’' isiiiat déRdals#tion causes double bonds to be
S3VPHDUHG”™ RXW OHDGLQJ WR VKRUWHU VLQJOH ERQGYVY DQG ORQJHU
calculated. Brieflythe calculations were performed as follows. A set of reference compounds for single, double and
aromatic bond lengths for each of 29 potential pairs of atom typgddr C-C the references were ethane, ethene

and benzene respectively) were generatedagutichised using DFT at the B3LYR&L1G** level 26 of theory in

NWChem? and the bond lengths extracted. The structures from the PubChemQC pr@ebthemqc.riken.jp)

were then downloaded, initially as a diverse test set of 36,000 and subsequeethjirthelatabase of around 4

million structures, and HOMED indices calculated by comparing the bond lengths in every ring system (using the
6PDOOHVW 6HW RI 6PDOOHVW 5LQJV 6665 ZLWK WKH UHIHUHQFH FRPS
TKH UHVXOWY LQGLFDWHG JRRG SHUIRUPDQFH LQ VHSDUDWLQJ WKH 3V\
is both rapid and scaleable, however it does require eithepfivhised or crystal structures, since it is dependent

on measuring the actual lfengths in the ring.

2XU XOWLPDWH DLP LV WR EH DEOH WR GeyWLRLIXLYK EHAHDHHDOQ 3D WRIA
uracil), and noraromatic €.g. isocyanuric acid) structures. This categorisation allows us to describe chemical
knowledge more accurately whilst not overstating the extent to which we can assess a degree of aromaticity.

1. Raczynska, E. D.; Hallman, M.; Kolczynska, K.; Stepniewski, T. M. On the harmonic oscillator model of
electron delocalization (HOMED) index and its agpD WLR Q W R K-eléttidiu sysdenmBypintetryE
201Q 2, 148515009.

2. Becke, A. D. Densitffunctional thermochemistry. Ill. The role of exact exchadg€hem. Phys.993 98,
6485652.

3. Lee, C,; Yang, W.; Parr, R. G. Development of the G8Hdvetti corelationenergy formula into a
functional of the electron densitiyhys. Rev. B988 37, 785789.

4. Vosko, S. H.; Wilk, L; Nusair, M. Accurate spiependent electron liquid correlation energies for local
spin density calculations: A critical analyszgan J. Phys198(Q 58, 12001211.

5. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational
absorption and circular dichroism spectra using density functional force fleléhys. Cheml994 98,
1162311627.

6. Krishan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A-S8mikistent molecular orbital methods. XX. A basis
set for correlated wave functiornk.Chem. Physl98Q 72, 650654.

7. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; van D4m]. J.; Wang, D.;
Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A. NWChem: A comprehensive and scalable open
source solution for large scale molecular simulati@mnput. Phys. Commu201Q 181, 14771489.

8. Nakata, M.; Shimazaki, T. PubChemQC jeod: A largescale firstprinciples electronic structure database
for datadriven chemistryJ. Chem. Inf. ModeR017, 57, 13001308.

P-66: Smooth Molecular Surfaces with Joined Marching Cubes

Thomas L. Sander
Idorsia Pharmaceutical Ltd.

The swift geneation and visualisation of molecular surfaces is a crucial element of many cheminformatics and
modelling applications.

One of the fastest algorithms to triangulate surface meshes from voxel data is the 'Marching Cubes' algorithm. In its
original version eme of the generated triangles are very tiny or skinny. Since these lead to rendering artefacts, there
were some attempts to modify this algorithm such to avoid tiny and skinny triangles. These, however, increased
complexity and caused significant performa losses.

We present a simple modification of the original algorithm that results in smoother surfaces without small and
skinny triangles. This is achieved by buffering and merging triangle nodes of any previously processed voxel layer.
This modificationhas little overhead, reduces the number of triangles by about 20 percent and results in much
smoother surface renderings. To prove that the algorithm is robust and generalisable it was not only applied to
molecules, but also to noisy MRI data. The sowmde is available as part of the DataWarrior epeuarce project.

It contains classes to create a voxel density grid fredim@nsional atom coordinates and classes to triangulate iso
value layers from voxel intensity data of any source.
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P-68: Chemistrnydéntifier Mapping to Pathway Databases using Ontologies:
Expanding metabolomics analysis in WikiPathways with ChEBI

D. Slentet, C. Eveld?, E. Willighagen

! Department if BioinformaticsBiGCaT, Maastricht, Netherland$Maastricht Centre for Systems
Biology- MaCSBio, Maastricht, Netherlands

Health research uses large scale (omics) methods to study the state of an individual, organs, and increasingly tissues
and single cells. These methods can measure gene expression, epigenetic modificationgimndbpiradances.
Metabolomics complement the aforementioned methods by studying the abundances of small molecular compounds
in e.g. bodily fluids, tissue samples and breath.

Changes in metabolism are relevant for many diseases, such as metabolic diszadéary diseases, various

forms of cancers, and the symbiotic interaction of the gut microbiome and the (human) body. Pathway and network
approaches are extensively used to integrate various data types and other information sources, in orderrid understa
measurements and results in their biological context. Unfortunately, not all measured metabolites can be linked to
metabolite identities present in biological pathway models, which make it more complicated to use metabolomics
data in pathway and netwodalysis.

In order to overcome this intrinsic mismatch between metabolomics experiments and knowledge bases, we use the
ontological information from ChEBI With this, we create additional mappings to metabolites in the pathway
database WikiPathwagswith this approach, we can connect compounds classes (e.g. fatty acid, lipids), tautomers
and/or charge states (e.g. ionisation into acid or base) to individual molecules in a data set. By applying this method
on various publicly available datasets in thetdb®Lights repository, we want to estimate the increased mapping

that chemical ontologies can provide.

1. Hastings J.; Owen G.; Dekker A.; Ennis M.; Kale N.; Muthukrishnan V.; Turner S.; Swainston N.; Mendes
P.; Steinbeck C. ChEBI in 2016: Improved servieesl an expanding collection of metabolites. Nucl.
Acids Res.2016 44: D12146€1219.

2. Slenter D.; Kutmon M.; Hanspers K.; Riutta A.; Windsor J.; Nunes N.; Mélius J.; Cirillo E.; Coort S.;
Digles D.; Ehrhart F.; Giesbertz P.; Kalafati M.; Martens M.; Milker, Nishida K.; Rieswijk L.;
Waagmeester A.; Eijssen L.; Evelo C.; Pico A.; Willighagen E. WikiPathways: a multifaceted pathway
database bridging metabolomics to other omics research, Nucl. Acid3(R&s46, D6614667.

3. Haug K.; Salek R.; Conesa P.; Hags J.; Matos P.; Rijnbeek M.; Mahendrakar T.; Williams M.;
Neumann S.; Roce@erra P.; Maguire E.; Gonzal8eltran A.; Sansone S.; Griffin J.; Steinbeck C.
MetabolLights- an operaccess generglurpose repository for metabolomics studies and assodiaéal
data. Nucl. Acids Re201341, D7814€786.

P-70: Finding answers from chemical space extremely fast

A. Tarcsay, G. Imre!, A. Volford?
! ChemAxon, Budapest, Hungary

The complex nature of chemical graphs offers an immense source of variabilityufprddsigners to tackle
optimization challenges along the project pathway towards candidates. The difficulty lies within the exploration of
the chemical space either by chemical intuition of medicinal chemists or by using enabling technologies, like
chemirformatics tools.

Real and virtual chemical spaces encompass broad scale of compound numbers and a vast potential to be exploited.
An especially valuable subroup is where measured data exists and stored, most commonly in relational databases.

In our stug both types, a very large compound collection and a medium size with extensive assay data were
evaluated. As a reanuit we used the cost associated with finding an answer for chemical questions, the search time.

In the first usecase, the aim was to suggienovel analogues of known drugs using the largest publicly available
enumerated compound collection, the GDB counting 977M unique entries. This collection was screened with
ultra-fast similarity search technique, using a subset of marketed drugs whesec elapsed search time was
measured constantly on a commercially available server (EC2, r3.8xlarge) using standard 1k fingerprint. Top 100
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most similar compounds were cross filtered with the database of exemplified structures from patents (SureChEMBL
DB) to fetch novel moieties with higher tendency to be in freedom to operate space (Fig. 1.).

In the second part search performance on the entire data from ChEMBL DB was measured with three search types
(duplicate, similarity and substructure) and joirpgbries. These joined queries represent complex questions asked
from data warehouses in pharmaceutical industry, where performance is a key indicator due to massive load. The
aim is to provide realistic speed statistics measured with chemical cartriggelieg Oracle and the new generation

engine running on PostgreSQL. Significant speed up was measured using the new search engine, especially on
combined queries, where 100x speed up was achieved and median search time was in a range on ~100 milliseconds
falling below the recognition time limit.

Figure 1.Example drug and its novel
analogues identified from GDBL3. Tversky
dissimilarity >0 rules out substructure match
in SureChEMBL.

P-72: Structural Analysis of Protein Homoniéne Quest for Perfect Symmetry

Inbal TuviArad
Department of Naturabciences, The Open University of Israel, Raanana, Israel

Symmetry has several advantages in the synthesis and function of protein homomers. It reduces synthetic errors,
gives rise to faster oligomerization processes, increases the effectiveness oficallegglation, maximizes
interaction between subunits and thus decreases the total energy, and in general contributes to the protein's stability.
Yet, thermodynamic considerations and experimental conditions prevent proteins from achieving perfectly
symmadric geometry. Here we present improved algorithms for estimating the level of symmetry of proteins by
means of continuous symmetry measures. These are based on the Hungarian algorithm that solves the assignment
problem in polynomial time. The amino acisisguence and the division into peptides is used to significantly reduce

the size of the equivalent atoms groups and thus increase the speed and accuracy of the code. Analysis of the
distortion levels of several sets of protein homomers extracted from eékeaRRh Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB PDB), with various degrees of rotational symmetry will be presented. The
new methodology launches the foundations for accurate, efficient and reliable large scale symmetrycdnalysis
protein structure and oligomerization mechanisms.
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P-74: Wikidata and Scholia as a hub linking chemical knowledge

E. Willighagent, D. Slentet, D. Mietcher?, C. Eveld-3, F.A. Nielsert

! Department if BioinformaticsBiGCaT, Maastricht University, Netherland€)ata Science Institute,
University of Virginia, Charlottesville, Virginia, USAMaastricht Cente for Systems Biology
MaCSBio, Maastricht University, Netherland€§ognitive Systems, DTU Compute, Technical University
of Denmark, Denmark

Making chemical databases more FAIR (findable, accessible, interoperable, and reusable) benefits computationa
chemistry and cheminformatics. We here discuss Wikidata, a young sister project of Wikipedia but with one big
difference: it is a machine readable database, making it far more useful for interoperability of analatablases in

systems biolog¥. Tharks to the Wikidata:WikiProject Chemistry community, there is a growing amount of
information about chemical compounds: Wikidata currently has over 150 thousand chemical compounds, of which
more than 95% is associated with InChlKeys and has more than éatltbCAS registry numbers. Ongoing work

E\ WKLV :LNL3URMHFW LQFOXGHV FDSWXULQJ FKHPLFDO FODVVHV DQG
machine readable data. Other prégeinclude covering human drdisMeSH Chemicals and Drugand volatile

organic compounds. This work is supported the many tools around Wikidata, sQdh[dsQ 1 0 Wwhigh-iiKused to

include ChEBI.

We here introduce our contributions to the WikiProject Chemistry to support-Fisd&on of open chemical
knowledge. For example, we proposed new Wikidata properties to annotate compounds with external database
identifiers for he EPA CompTox Dashbodfd the SPLASH!, and MetaboLights. Furthermore, we used a
combination ofBioclipse and QuickStatementso add missing chemical compounds for biatad) pathways from
WikiPathway®!. Finally, we introduce an extension &cholia [6], visualizing data about compounds and
compound classes, including external identifiers, physicochemical properties, and an overview of the literature from
which the knowledge is derived.

1. Mietchen D, et alEnabling Open Scienc®ikidata for Research (Wiki4RResearch Ideas and Outcomes.
2015Dec 22;1:e7573.

2. Putman TE, et alWikiGenomes: an open web application for community consumption and curation of
gene annotation data in Wikida@atabase2017Jan;2017(1).

3. Williams, AJ, et al. The CompTox Chemistry Dashboard: a community data resource for
environmental chemistryl. Cheminform2017Nov 18;9:61.

4. Wohlgemuth G, et alISPLASH, a hashed identifier for mass specMature Biotechnology2016 Nov
8;34(11):1099401.

5. Slenter DN, et alWikiPathways: a multifaceted pathway database bridging metabolomics to other omics
researchNucleic Acids ResearcR018Jan 4;46(D1):D661D667.

6. Nielsen, FA, et alScholia, Scientometrics and WikidafEhe Semantic WelESWC 2017 Satellite Events,
2017

P-76: PSMILESA particlebased Molecular Structure Representation for Mesoscopic
Simulation

Karina van den Broek?, Mirco DanieP, Matthias Epplé, Jonas SchaufpHubert Kuhr?,
Achim Zielesny
' Inorganic Cheristry and Center for Nanointegration, University of Duisbiigsen, Essen, Germany,

Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences,
Recklinghausen, German’y:;AM—D Technologies, Essen, Germany

Adequate moleular structure representations are at heart of cheminformatics developments: The various approaches
like line notations, connection tables, XYZ tables ematrices, fragment codes or fingerprints address the broad
spectrum of different use cases whichargtterize current research efforts. The majority of existing structure
representations are atdmased descriptions that comprise characteristic properties and topological or spatial aspects
FRQFHUQLQJ D PROHFXOMHV DWRPLF FRPSRVLWLRQ
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In contrast, thicontribution focusses on a partiddased molecular structure representation where a single particle

PD\ FRPSULVH VHYHUDO DWRPV L H PD\ UHSUHVHQW D 3PROHFXODU Il
part of a molecular fragment cheminforica roadmald for particlebased mesoscopic simulation techniques like
Dissipative Particle Dynamics (DPD) which aims at describing supramolecular phenomena at the nanometer (length)
and microsecond (time) scale for large interacting physical ensemigjeseqdenting millions of atoms). DPD

particles in particular may be identified with distinct small molecules of molar mass in the order of 100 Da where
ODUJHU PROHFXOHV DUH FRPSRVHG RI PXOWLSOH DGHTXDWrhbnfcP ROH F X
springs to mimic covalent connectivities and spatial 3D conformations.

The proposed particlbased molecular structure representation is chosen to be an intuitive line notation which is
similar to the weHestablished SMILES representation for atbased molecular connectivity! and denoted
Particle SMILES or PSMILES. An open Java library for PSMILES structure handling and mesoscopic simulation
support in combination with an open Java Graphical User Interface viewer application for visual tapologic
inspection of PSMILES molecule definitions are outlined.

Gasteiger J, Engel T. Chemoinformatics: A Textbook. Weinheim: WHVEH; 2003.

Truszkowski A, Daniel M, Kuhn H, Neumann S, Steinbeck C, Zielesny A, Epple M. J Cheminf. 2014;6:45.
WeiningerD. JCHP ,Ql &RPSXW 6FL i

"HLQLQJHU ' :HLQLQJHU $ :HLQLQJHU -/ - &KHP ,Ql &RPSXW 6FL
"HLQLQJHU ' - &KHP ,Ql &RPSXW 6FL i
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P-78:A new, improved model to predict kinase inhibition

Cornel CatanaPieter Stoten
Galapagos NV, Mechelen, Belgium

Kinases constitute an important family of targets for Galapagos, as exemplified by filgotinib, which is currently in
phase llI clinical trials for RA and IBD. As part of its kinase HTS campaigns, Galapagos routinalycaedsfully
screens a set of around 80,000 kirBeised compounds, belonging to the categories shown in Fig. 1.

Fig. 1: Sources of hits (PIN > 50%) for a representative kinase HTS

As Fig. 1 shows, the set of compounds selected based on ourgnowe NLQDVH LQKLELWLRQ SURSH
OLNHQHVV" PRGHOV H[KLELWV D KLJK KLW UDWH ,Q RUGHU WR IXUWK
we have recently developed new models since:

larger and new data sets, new descriptors, and imgrsteg¢istical techniques have become available; and

while we previously exclusively selected models on the basis of their performance datiC our current goal is to
develop a model that performs well both on HTS PIN (%inhibition) asgld&ta.

The taining set contained ~88 k kinaaetive compounds taken from ref 1 and the Galapagos collection, and ~84 k
kinaseinactive compounds taken from refs 1, 2 and 3. A random forest (RF 2018 all) classification model was
developed using Pipeline PifofThe satistics on the training set are very good (kappa = 0.94; accuracy = 97%). In
order to have an unbiased assessment of model performance aghiogsendata, a model was also developed
without the ~22 k Galapagos compounds (RF 20018 NoG).

The models wergested on irhouse HTS (PIN) data against 20 kinases. A compound was consideredadtiase
if it was at least 2x a hit (PIN>75%) irrespective of the number of assays. It was consideredhkicise if it was
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assayed at least 5x and never was &ilter compounds were ignored. This stringency was used to account for the
variability in single dose experiments. This test set comprised a tof&l, 989 unique compounds, of which 3,339
were active. Using the newly developed models, the following ttafisesults were obtained for the PIN test set
(Table 1) and for twoecently published 1§s data sets (Table 2).

Table 1: Model statistics for ihouse test set (HTS PIN values)

BEDROC | Number of hits retrieved and enrichment factor
Model Top 1% (450) Top 2% (900) Top 5% (2,250)
Bayes 2008 0.265 184/6 259 /4 44413
RF 2011 0.310 216 /7 324/5 562 /3
RF 2018 NoG 0.354 162 /5 29715 612/4
RF 2018 all 0.358 191/6 428 /6 920/6

Table 2: Model statistics for two literature testss@C50 values)

Christmann(2,101 compounds) Martin (3,814 compounds)
Mode! kappa ROC score kappa ROC score
RF 2011 0.230 0.687 0.187 0.570
RF 2018 NoG 0.475 0.707 0.434 0.739
RF 2018 all 0.450 0.694 0.413 0.723

In conclusion, while our pregus models (2008 and 2011) have been very useful in identifying kinase inhibitors (see
yLJ ZH KDYH QRZ GHYHORSHG WZR Y Z D QIDOJOE|SslhReddy BeifgRueeH BV 7K H
the process of selecting and acquiring kinfseised compauds to expand our kinagecused collection.

1. Bento, A. P.; Gaulton, A.; Hersey, A.; Bellis, L. J.; Chambers, J.; Davies, M.; Kriger, F. A.; Light, Y.;
Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos R.; Overington, J. P. The ChEMBL
bioactivity database: an updaftéucleic Acids Re2014 42, 10831090.

2. Bora, A.; Avram, S.; Ciucanu, |.; Raica, M.; Avram, S. Predictive Models for Fast and Effective Profiling
of Kinase InhibitorsJ. Chem. Inf. ModeR016 56, 895905.

3. Rohner, S. G.; Baumann, aximum unbiased validation (MUV) Data Sets for Virtual Screening Based
on PubChem Bioactivity Datd. Chem. Inf. ModeR009 49, 169184.

4. Biovia Pipeline Pilot, 17.2.0, San Diego: Dassault Systega:k]

5. ChristmannFranck, S.; Van Westen, G.RB.; Papadatos, G.; Beltran Escudie, F.; Roberts, A.; Overington,
J. P.; Domine, DUnprecedently Larg&cale Kinase Inhibitor Set Enabling the Accurate Prediction of
CompouneKinase Activities: A Way toward Selective Promiscuity by Design€hem. Inf. ModeR016
56, 16541675.

6. Martin, E. J.; Polyakov, V. R.; Tian, L.; Perez, R.RZofile-QSAR 2.0: Kinase Virtual Screening Accuracy
Comparable to Fou€oncentration IC50 for Realistically Novel CompoundsChem. Inf. Model2017,
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